12.6 GHz to 15.4 GHz, GaAs, MMIC, I/Q Downconverter ADMV1010 Data Sheet FUNCTIONAL BLOCK DIAGRAM RF input frequency range: 12.6 GHz to 15.4 GHz IF output frequency range: 2.7 GHz to 3.5 GHz LO input frequency range: 9 GHz to 12.6 GHz Power conversion gain: 15 dB typical Image rejection: 25 dB typical SSB noise figure: 2 dB typical Input IP3: 1 dBm typical Input P1dB: -7 dBm typical Single-ended, 50 RF and LO input ports 4.9 mm x 4.9 mm, 32-terminal LCC with exposed pad VDRF 28 RFIN 3 LOIN 10 19 IF1 VDLO 14 22 IF2 2 GND 4 GND 11 GND ADMV1010 15788-001 FEATURES Figure 1. APPLICATIONS Point to point microwave radios Radars and electronic warfare systems Instrumentation and automatic test equipment Satellite communications GENERAL DESCRIPTION The ADMV1010 is a compact, gallium arsenide (GaAs) design, monolithic microwave integrated circuit (MMIC), I/Q downconverter in a RoHS compliant package optimized for point to point microwave radio designs that operates in the 12.6 GHz to 15.4 GHz frequency range. The ADMV1010 is optimized to work as a low noise, upper sideband (low-side local oscillator (LO)), image reject downconverter. amplifier drives the LO. IF1 and IF2 mixer outputs are provided, and an external 90 hybrid is needed to select the required sideband. The I/Q mixer topology reduces the need for filtering the unwanted sideband. The ADMV1010 is a much smaller alternative to hybrid style SSB downconverter assemblies, and it eliminates the need for wire bonding by allowing the use of surface-mount manufacturing assemblies. The ADMV1010 provides 15 dB of conversion gain with 25 dB of image rejection. The ADMV1010 uses a radio frequency (RF), low noise amplifier (LNA) followed by an in-phase/ quadrature (I/Q) double balanced mixer, where a driver The ADMV1010 downconverter comes in a compact, thermally enhanced, 4.9 mm x 4.9 mm, 32-terminal LCC package. The ADMV1010 operates over the -40C to +85C temperature range. Rev. B Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 (c)2017-2018 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com ADMV1010 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1 Leakage Performance ................................................................. 13 Applications ....................................................................................... 1 Return Loss Performance .......................................................... 14 Functional Block Diagram .............................................................. 1 Spurious Performance ............................................................... 15 General Description ......................................................................... 1 M x N Spurious Performance................................................... 15 Revision History ............................................................................... 2 Theory of Operation ...................................................................... 16 Specifications..................................................................................... 3 Mixer ............................................................................................ 16 Absolute Maximum Ratings............................................................ 4 LNA .............................................................................................. 16 ESD Caution .................................................................................. 4 Applications Information .............................................................. 17 Pin Configuration and Function Descriptions ............................. 5 Typical Application Circuit ....................................................... 17 Typical Performance Characteristics ............................................. 6 Evaluation Board ........................................................................ 18 IF Frequency = 2.7 GHz .............................................................. 6 Bill of Materials ........................................................................... 20 IF Frequency = 3.1 GHz .............................................................. 8 Outline Dimensions ....................................................................... 21 IF Frequency = 3.5 GHz ............................................................ 10 Ordering Guide .......................................................................... 21 IF Bandwidth .............................................................................. 12 REVISION HISTORY 4/2018--Rev. A to Rev. B Changes to Thermal Resistance Section........................................ 4 Changes to Figure 2 and Table 4 ..................................................... 5 1/2018--Rev. 0 to Rev. A Changes to General Description and Figure 1 ............................. 1 Changes to Table 1 ............................................................................ 3 Changes to Table 2 ............................................................................ 4 Added Thermal Resistance Section and Table 3; Renumbered Sequentially ....................................................................................... 4 Changes to Figure 2 and Table 4 ..................................................... 5 Changes to Figure 4 .......................................................................... 6 Changes to Figure 11 and Figure 12 ............................................... 7 Changes to Figure 16 through Figure 18 ........................................8 Changes to Figure 21 and Figure 22................................................9 Changes to Figure 26 through Figure 28 ..................................... 10 Changes to Figure 31 and Figure 32............................................. 11 Changes to Figure 35 and Figure 36............................................. 12 Changes to Figure 37 through Figure 40 ..................................... 13 Changes to Figure 44 through Figure 46 ..................................... 14 Changes to M x N Spurious Performance Section and Table 5 .... 15 Changes to Applications Information Section and Figure 47........ 17 Changes to Ordering Guide .......................................................... 21 10/2017--Revision 0: Initial Version Rev. B | Page 2 of 21 Data Sheet ADMV1010 SPECIFICATIONS Data taken at VDRF = 4 V, VDLO = 4 V, LO = -4 dBm LO +4 dBm, -40C TA +85C; data taken using Mini-Circuits QCN-45+ power splitter as upper sideband (low-side LO), unless otherwise noted. Table 1. Parameter RF INPUT FREQUENCY RANGE LO Input Frequency Range Amplitude IF OUTPUT FREQUENCY RANGE RF PERFORMANCE Conversion Gain SSB Noise Figure Input Third-Order Intercept Input 1 dB Compression Point Image Rejection Leakage LO to RF LO to IF IM3 at Input -20 dBm Input Power -25 dBm Input Power -30 dBm Input Power Return Loss RF Input IF Output LO Input POWER INTERFACE Voltage RF LO Current RF LO Total Power Symbol Test Conditions/Comments Min 12.6 9 -4 2.7 Typ Max 15.4 Unit GHz 12.6 +4 3.5 GHz dBm GHz 15 2 +1 -8 35 17 2.6 dB dB dBm dBm dB -35 -20 -25 -15 dBm dBm 0 With hybrid 11 SSB NF IP3 P1dB At -23 dBm/tone -0.5 -10 20 46 52 56 49 55 59 -12 -15 -15 VDRF VDLO 4 4 IDRF IDLO 78 83 0.7 Rev. B | Page 3 of 21 dBc dBc dBc -10 -10 -10 dB dB dB V V 100 100 0.8 mA mA W ADMV1010 Data Sheet ABSOLUTE MAXIMUM RATINGS THERMAL RESISTANCE Table 2. Parameter Supply Voltage VDRF VDLO RF Input Power LO Input Power Maximum Junction Temperature (TJ) Maximum Power Dissipation Lifetime at Maximum Junction Temperature Operating Temperature Range Storage Temperature Range Lead Temperature Range (Soldering, 60 sec) Moisture Sensitivity Level (MSL) Rating Electrostatic Discharge (ESD) Sensitivity Human Body Model (HBM) Field Induced Charged Device Model (FICDM) Rating 5.5 V 5.5 V 15 dBm 15 dBm 175C 1.7 W >1 million hours -40C to +85C -65C to +150C 260C MSL3 Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required. JA is thermal resistance, junction to ambient (C/W), and JC is thermal resistance, junction to case (C/W). Table 3. Package Type E-32-1 1 JA1 33.4 JC1 51 Unit C/W See JEDEC standard JESD51-2 for additional information on optimizing the thermal impedance (PCB with 3 x 3 vias). ESD CAUTION 250 V 500 V Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. Rev. B | Page 4 of 21 Data Sheet ADMV1010 32 31 30 29 28 27 26 25 NIC NIC NIC NIC VDRF NIC NIC NIC PIN CONFIGURATION AND FUNCTION DESCRIPTIONS 1 2 3 4 5 6 7 8 ADMV1010 TOP VIEW (Not to Scale) 24 23 22 21 20 19 18 17 NIC NIC IF2 NIC NIC IF1 NIC NIC NOTES 1. NIC = NOT INTERNALLY CONNECTED. THESE PINS ARE NOT INTERNALLY CONNECTED. IT IS RECOMMENDED TO GROUND THESE PINS ON THE PCB. 2. EXPOSED PAD. EXPOSED PAD MUST BE CONNECTED TO GND. GOOD RF AND THERMAL GROUNDING IS RECOMMENDED. 15788-002 NIC LO_IN GND NIC NIC VDLO NIC NIC 9 10 11 12 13 14 15 16 NIC GND RFIN GND NIC NIC NIC NIC Figure 2. Pin Configuration Table 4. Pin Function Descriptions Pin No. 1, 5 to 9, 12, 13, 15 to 18, 20, 21, 23 to 27, 29 to 32 2, 4, 11 3 10 14 Mnemonic NIC 19 22 28 IF1 IF2 VDRF GND RFIN LO_IN VDLO EPAD Description Not Internally Connected. These pins are not internally connected. It is recommended to ground these pins on the PCB. Ground. RF Input. This pin is ac-coupled internally and matched to 50 , single-ended. LO Input. This pin is ac-coupled internally and matched to 50 single-ended. Power Supply Voltage for the LO Amplifier. Refer to the Applications Information section for the required external components and biasing. Quadrature IF Output 1. Matched to 50 and ac coupled. No external dc block required. Quadrature IF Output 2. Matched to 50 and ac coupled. No external dc block required. Power Supply Voltage for the RF Amplifier. Refer to the Applications Information section for the required external components and biasing. Exposed Pad. The exposed pad must be connected to GND. Good RF and thermal grounding is recommended. Rev. B | Page 5 of 21 ADMV1010 Data Sheet TYPICAL PERFORMANCE CHARACTERISTICS IF FREQUENCY = 2.7 GHz Data taken at VDRF = 4 V, VDLO = 4 V, LO = -4 dBm LO +4 dBm, -40C TA +85C, data taken with Mini-Circuits QCN-45+ power splitter as upper sideband (low-side LO), unless otherwise noted. 16 15 14 13 12 16 15 14 13 12 13.5 14.0 14.5 15.0 15.5 RF FREQUENCY (GHz) 10 12.0 15788-003 13.0 40 35 30 25 15.0 15.5 16.0 45 40 35 30 13.5 14.0 14.5 15.0 15.5 16.0 20 12.0 10 13.0 13.5 14.0 14.5 15.0 15.5 16.0 RF FREQUENCY (GHz) Figure 7. Image Rejection vs. RF Frequency at Various LO Powers 10 -40C +25C +85C 8 12.5 15788-007 13.0 15788-004 12.5 Figure 4. Image Rejection vs. RF Frequency at Various Temperatures -4dBm 0dBm +4dBm 8 6 INPUT IP3 (dBm) 6 4 2 0 4 2 0 -2 -2 -4 -4 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 RF FREQUENCY (GHz) -6 12.0 15788-005 INPUT IP3 (dBm) 14.5 25 RF FREQUENCY (GHz) -6 12.0 14.0 -4dBm 0dBm +4dBm 50 IMAGE REJECTION (dB) IMAGE REJECTION (dB) 55 45 20 12.0 13.5 Figure 6. Conversion Gain vs. RF Frequency at Various LO Powers -40C +25C +85C 50 13.0 RF FREQUENCY (GHz) Figure 3. Conversion Gain vs. RF Frequency at Various Temperatures 55 12.5 15788-006 11 11 10 12.5 -4dBm 0dBm +4dBm 17 CONVERSION GAIN (dB) CONVERSION GAIN (dB) 17 18 -40C +25C +85C 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 RF FREQUENCY (GHz) Figure 8. Input IP3 vs. RF Frequency at Various LO Powers Figure 5. Input IP3 vs. RF Frequency at Various Temperatures Rev. B | Page 6 of 21 15788-008 18 Data Sheet 0 -40C +25C +85C -2 -4 INPUT P1dB (dBm) -6 -8 -10 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 RF FREQUENCY (GHz) 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 RF FREQUENCY (GHz) Figure 11. Input P1dB vs. RF Frequency at Various LO Powers 3.0 3.0 -4dBm 0dBm +4dBm 2.5 NOISE FIGURE (dB) 2.5 2.0 1.5 1.0 0.5 13.0 2.0 1.5 1.0 0.5 -40C +25C +85C 13.5 14.0 14.5 15.0 15.5 RF FREQUENCY (GHz) 15788-010 NOISE FIGURE (dB) -8 -12 12.0 Figure 9. Input P1dB vs. RF Frequency at Various Temperatures 0 12.5 -6 -10 15788-009 -12 12.0 -4 15788-011 INPUT P1dB (dBm) -2 -4dBm 0dBm +4dBm Figure 10. Noise Figure vs. RF Frequency at Various Temperatures 0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 RF FREQUENCY (GHz) Figure 12. Noise Figure vs. RF Frequency at Various LO Powers Rev. B | Page 7 of 21 15788-012 0 ADMV1010 ADMV1010 Data Sheet IF FREQUENCY = 3.1 GHz Data taken at VDRF = 4 V, VDLO = 4 V, LO = -4 dBm LO +4 dBm, -40C TA +85C, data taken with Mini-Circuits QCN-45+ power splitter as upper sideband (low-side LO), unless otherwise noted. 17 16 CONVERSION GAIN (dB) CONVERSION GAIN (dB) 15 14 13 12 11 10 13.0 13.5 14.0 14.5 15.0 15.5 16.0 RF FREQUENCY (GHz) 12.0 45 45 40 40 IMAGE REJECTION (dB) 20 15 15.0 15.5 16.0 35 30 25 20 15 0 12.0 12.4 +4dBm +0dBm -4dBm 5 12.8 13.2 13.6 14.0 14.4 14.8 RF FREQUENCY (GHz) 15.2 15.6 16.0 0 12.0 15788-014 5 -40C +25C +85C 20 20 16 14 14 INPUT IP3 (dBm) 16 10 8 6 13.2 13.6 14.0 14.4 14.8 15.2 15.6 16.0 -4dBm 0dBm +4dBm 18 12 12.8 Figure 17. Image Rejection vs. RF Frequency at Various LO Powers -40C +25C +85C 18 12.4 RF FREQUENCY (GHz) Figure 14. Image Rejection vs. RF Frequency at Various Temperatures 12 10 8 6 4 4 2 2 0 0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 RF FREQUENCY (GHz) -2 12.0 15788-015 INPUT IP3 (dBm) 14.5 10 10 -2 12.0 14.0 15788-017 IMAGE REJECTION (dB) 50 25 13.5 Figure 16. Conversion Gain vs. RF Frequency at Various LO Powers 50 30 13.0 RF FREQUENCY (GHz) Figure 13. Conversion Gain vs. RF Frequency at Various Temperatures 35 12.5 15788-016 12.5 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 RF FREQUENCY (GHz) Figure 18. Input IP3 vs. RF Frequency at Various LO Powers Figure 15. Input IP3 vs. RF Frequency at Various Temperatures Rev. B | Page 8 of 21 15788-018 8 12.0 -4dBm 0dBm +4dBm -40C +25C +85C 15788-013 9 Data Sheet 0 -40C +25C +85C -2 -2 -4 -4 INPUT P1dB (dB) -6 -8 -8 13.5 14.0 14.5 15.0 15.5 16.0 -12 12.0 13.5 14.0 14.5 15.0 15.5 16.0 Figure 21. Input P1dB vs. RF Frequency at Various LO Powers 3.0 2.5 2.5 NOISE FIGURE (dB) 3.0 2.0 1.5 1.0 -4dBm 0dBm +4dBm 2.0 1.5 1.0 0.5 -40C +25C +85C 13.0 13.5 14.0 14.5 15.0 15.5 RF FREQUENCY (GHz) 15788-020 0 12.5 13.0 RF FREQUENCY (GHz) Figure 19. Input P1dB vs. RF Frequency at Various Temperatures 0.5 12.5 15788-021 13.0 15788-019 12.5 RF FREQUENCY (GHz) NOISE FIGUE (dB) -6 -10 -10 -12 12.0 -4dBm 0dBm +4dBm 0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 RF FREQUENCY (GHz) Figure 22. Noise Figure vs. RF Frequency at Various LO Powers Figure 20. Noise Figure vs. RF Frequency at Various Temperatures Rev. B | Page 9 of 21 15788-022 INPUT P1dB (dBm) 0 ADMV1010 ADMV1010 Data Sheet IF FREQUENCY = 3.5 GHz 18 18 16 16 14 14 CONVERSION GAIN (dB) 12 10 8 6 13.0 13.5 14.0 14.5 15.0 15.5 16.0 50 IMAGE REJECTION (dBc) 50 30 20 13.0 13.5 14.0 14.5 15.0 15.5 16.0 14.5 15.0 15.5 16.0 -4dBm 0dBm +4dBm 40 30 20 0 12.0 15788-024 12.5 16 12 10 10 INPUT IP3 (dBm) 12 4 13.5 14.0 14.5 15.0 15.5 16.0 -4dBm 0dBm +4dBm 14 6 13.0 Figure 27. Image Rejection vs. RF Frequency at Various LO Powers -40C +25C +85C 8 12.5 RF FREQUENCY (GHz) Figure 24. Image Rejection vs. RF Frequency at Various Temperatures 2 8 6 4 2 0 -2 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 RF FREQUENCY (GHz) 15788-025 0 -2 -4 12.0 14.0 15788-027 -40C +25C +85C RF FREQUENCY (GHz) 14 13.5 10 10 16 13.0 Figure 26. Conversion Gain vs. RF Frequency at Various LO Powers 60 40 12.5 RF FREQUENCY (GHz) 60 0 12.0 -4dBm 0dBm +4dBm 0 12.0 Figure 23. Conversion Gain vs. RF Frequency at Various Temperatures IMAGE REJECTION (dBc) 6 15788-026 12.5 RF FREQUENCY (GHz) INPUT IP3 (dBm) 8 2 -40C +25C +85C 15788-023 0 12.0 10 4 4 2 12 Figure 25. Input IP3 vs. RF Frequency at Various Temperatures -4 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 RF FREQUENCY (GHz) Figure 28. Input IP3 vs. RF Frequency at Various LO Powers Rev. B | Page 10 of 21 15788-028 CONVERSION GAIN (dB) Data taken at VDRF = 4 V, VDLO = 4 V, LO = -4 dBm LO +4 dBm, -40C TA +85C, data taken with Mini-Circuits QCN-45+ power splitter as upper sideband (low-side LO), unless otherwise noted. Data Sheet -1 -2 -2 -3 -3 -4 -5 -6 -5 -6 -7 -8 -8 -9 -9 13.0 13.5 14.0 14.5 15.0 15.5 16.0 -10 12.0 15788-029 12.5 RF FREQUENCY (GHz) 13.0 13.5 14.0 14.5 15.0 15.5 16.0 Figure 31. Input P1dB vs. RF Frequency at Various LO Powers 3.0 2.5 2.5 NOISE FIGURE (dB) 3.0 2.0 1.5 1.0 -4dBm 0dBm +4dBm 2.0 1.5 1.0 0.5 0.5 -40C +25C +85C 13.0 13.5 14.0 14.5 15.0 15.5 RF FREQUENCY (GHz) 15788-030 0 12.5 12.5 RF FREQUENCY (GHz) Figure 29. Input P1dB vs. RF Frequency at Various Temperatures NOISE FIGURE (dB) -4 -7 -10 12.0 -4dBm 0dBm +4dBm 15788-031 INPUT P1dB (dBm) INPUT P1dB (dBm) -1 0 -40C +25C +85C 0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 RF FREQUENCY (GHz) Figure 32. Noise Figure vs. RF Frequency at Various LO Powers Figure 30. Noise Figure vs. RF Frequency at Various Temperatures Rev. B | Page 11 of 21 15788-032 0 ADMV1010 ADMV1010 Data Sheet IF BANDWIDTH Data taken at VDRF = 4 V, VDLO = 4 V, LO = -4 dBm LO +4 dBm at 9 GHz, -40C TA +85C, data taken with Mini-Circuits QCN-45+ power splitter as upper sideband (low-side LO), unless otherwise noted. 16 CONVERSION GAIN (dB) 14 12 10 8 6 10 8 6 4 2 2 0 2.0 2.2 2.4 2.6 2.8 3.0 3.0 3.4 3.6 3.8 4.0 IF FREQUENCY (GHz) 0 2.0 8 8 6 4 4 INPUT IP3 (dBm) 6 0 -2 2.6 2.8 3.0 3.0 3.4 3.6 3.8 4.0 +4dBm +0dBm -4dBm 2 0 -2 2.2 2.4 2.6 2.8 3.0 3.0 3.4 3.6 3.8 4.0 IF FREQUENCY (GHz) 15788-035 -4 2.0 2.4 Figure 35. Conversion Gain vs. IF Frequency at Various LO Powers -40C +25C +85C 2 2.2 IF FREQUENCY (GHz) Figure 33. Conversion Gain vs. IF Frequency at Various Temperatures INPUT IP3 (dBm) 12 4 15788-033 CONVERSION GAIN (dB) 14 +4dBm +0dBm -4dBm 15788-036 16 18 -40C +25C +85C Figure 34. Input IP3 vs. IF Frequency at Various Temperatures -4 2.0 2.2 2.4 2.6 2.8 3.0 3.0 3.4 3.6 3.8 IF FREQUENCY (GHz) Figure 36. Input IP3 vs. IF Frequency at Various LO Powers Rev. B | Page 12 of 21 4.0 15788-038 18 Data Sheet ADMV1010 LEAKAGE PERFORMANCE Data taken at VDRF = 4 V, VDLO = 4 V, LO = -4 dBm LO +4 dBm, -40C TA +85C, data taken with Mini-Circuits QCN-45+ power splitter as upper sideband (low-side LO), unless otherwise noted. -20 -40C +25C +85C -24 -26 -26 LO LEAKAGE (dBm) -24 -28 -30 -32 -34 -30 -32 -34 -36 -38 -38 -40 9 10 11 12 13 14 LO FREQUENCY (GHz) Figure 37. LO Leakage at RFIN vs. LO Frequency at Various Temperatures -40 8 0 -10 -15 -15 LO LEAKAGE (dBm) -10 -25 -30 -35 12 13 14 -20 -25 -30 -35 -40 -40 9 10 11 12 LO FREQUENCY (GHz) 13 14 -50 15788-044 8 8 9 10 11 12 LO FREQUENCY (GHz) Figure 38. LO Leakage at IF Output vs. LO Frequency at Various Temperatures 13 14 15788-047 -45 -45 -50 11 +4dBm +0dBm -4dBm -5 -20 10 Figure 39. LO Leakage at RFIN vs. LO Frequency at Various LO Powers -40C +25C +85C -5 9 LO FREQUENCY (GHz) 0 LO LEAKAGE (dBm) -28 -36 8 +4dBm +0dBm -4dBm -22 15788-043 LO LEAKAGE (dBm) -22 15788-046 -20 Figure 40. LO Leakage at IF Output vs. LO Frequency at Various LO Powers Rev. B | Page 13 of 21 ADMV1010 Data Sheet RETURN LOSS PERFORMANCE Data taken at VDRF = 4 V, VDLO = 4 V, LO = -4 dBm LO +4 dBm, -40C TA +85C, data taken with Mini-Circuits QCN-45+ power splitter as upper sideband (low-side LO), unless otherwise noted. Measurement includes trace loss and RF connector loss. -12 -14 -16 -16 RETURN LOSS (dB) -14 -18 -20 -22 -24 -18 -20 -22 -24 -26 -26 -28 -28 -30 12.0 13.0 12.5 13.5 14.0 14.5 15.5 15.0 +4dBm +0dBm -4dBm -12 16.0 RF FREQUENCY (GHz) -30 12.0 15788-049 Figure 41. RF Input Return Loss vs. RF Frequency at Various Temperatures 14.0 14.5 15.0 15.5 16.0 Figure 44. RF Input Return Loss vs. RF Frequency at Various LO Powers -10 +4dBm +0dBm -4dBm -40C +25C +85C -15 RETURN LOSS (dB) -15 -20 -25 -20 -25 -30 -30 8 9 10 11 12 13 14 LO FREQUENCY (GHz) -35 15788-050 -35 Figure 42. LO Input Return Loss vs. LO Frequency at Various Temperatures 10 11 12 13 Figure 45. LO Input Return Loss vs. LO Frequency at Various LO Powers -8 -40C +25C +85C -10 RETURN LOSS (dB) -14 -16 -12 -14 -16 -18 -18 -20 -20 2.4 2.6 2.8 3.0 3.0 IF FREQUENCY (GHz) 3.4 3.6 3.8 4.0 -22 2.0 15788-051 2.2 +4dBm +0dBm -4dBm -10 -12 Figure 43. IF Output Return Loss vs. IF Frequency at Various Temperatures 14 LO FREQUENCY (GHz) -8 -22 2.0 9 8 15788-053 RETURN LOSS (dB) 13.5 RF FREQUENCY (GHz) -10 RETURN LOSS (dB) 13.0 12.5 2.2 2.4 2.6 2.8 3.0 3.0 IF FREQUENCY (GHz) 3.4 3.6 3.8 4.0 15788-054 RETURN LOSS (dB) -10 -40C +25C +85C 15788-052 -10 Figure 46. IF Output Return Loss vs. IF Frequency at Various LO Powers Rev. B | Page 14 of 21 Data Sheet ADMV1010 SPURIOUS PERFORMANCE Data taken at VDRF = 4 V, VDLO = 4 V, LO = 0 dBm, -40C TA +85C; data taken with Mini-Circuits QCN-45+ power splitter as upper sideband (low-side LO), unless otherwise noted. IF = 3100 MHz, RF = 13.3 GHz at -20 dBm; all values in dBc below the IF power level. N/A means not applicable. Table 5. LO Harmonic Leakage (dBm) at IF Output LO Frequency (MHz)1 9000 9500 10,000 10,500 11,000 11,500 12,000 12,600 1 Harmonics 2.0 3.0 -48 -47 -47 -45 -47 -43 -48 -42 -46 -41 -41 -38 -47 -35 -46 -32 1.0 -36 -22 -20 -18 -19 -28 -42 -43 M x RF 4.0 -49 -50 -60 -53 -50 -65 -60 -61 M x N SPURIOUS PERFORMANCE LO = 4 dBm, Upper Sideband IF = 2700 MHz, RF = 13.3 GHz at -20 dBm; all values in dBc below the IF power level. N/A means not applicable. M x RF -1 0 +1 +2 -2 N/A N/A N/A 52 -1 N/A N/A 0 86 N x LO 0 N/A N/A 24 61 +1 N/A 13 51 65 -1 N/A N/A 0 78 N x LO 0 N/A N/A 24 61 +1 N/A 13 50 63 +2 25 40 40 72 IF = 3500 MHz, RF = 13.3 GHz at -20 dBm; all values in dBc below the IF power level. N/A means not applicable. M x RF LO Input Power = 0 dBm. -1 0 +1 +2 -2 N/A N/A N/A 55 +2 28 39 43 71 Rev. B | Page 15 of 21 -1 0 +1 +2 -2 N/A N/A N/A 54 -1 N/A N/A 0 66 N x LO 0 N/A N/A 24 60 +1 N/A 14 49 61 +2 24 38 44 70 ADMV1010 Data Sheet THEORY OF OPERATION The ADMV1010 is a compact GaAs, MMIC, single sideband (SSB) downconverter in a RoHS compliant package optimized for upper sideband point to point microwave radio applications operating in the 12.6 GHz to 15.4 GHz input frequency range. The ADMV1010 supports LO input frequencies of 9 GHz to 12.6 GHz and IF output frequencies of 2.7 GHz to 3.5 GHz. MIXER The ADMV1010 uses a RF LNA amplifier followed by an I/Q double balanced mixer, where a driver amplifier drives the LO (see Figure 1). The combination of design, process, and packaging technology allows the functions of these subsystems to be integrated into a single die, using mature packaging and interconnection technologies to provide a high performance, low cost design with excellent electrical, mechanical, and thermal properties. In addition, the need for external components is minimized, optimizing cost and size. LNA LO DRIVER AMPLIFIER The LO driver amplifier takes a single LO input and amplifies it to the desired LO signal level for the mixer to operate optimally. The LO driver amplifier is self biased, and it only requires a single dc bias voltage (VDLO) to operate. The bias current for the LO amplifier is 100 mA at 4 V typically. The LO drive range of -4 dBm to +4 dBm makes it compatible with Analog Devices, Inc., wideband synthesizer portfolio without the need for an external LO driver amplifier. The mixer is an I/Q double balanced mixer, and this mixer topology reduces the need for filtering the unwanted sideband. An external 90 hybrid is required to select the upper sideband of operation. The ADMV1010 has been optimized to work with the Mini-Circuits QCN-45+ RF 90 hybrid. The LNA is self biased, and it requires only a single dc bias voltage (VDRF) to operate. The bias current for the LNA is 60 mA at 4 V typically. The application circuit (see Figure 47) provided shows the necessary external components on the bias lines to eliminate any undesired stability problems for the RF amplifier and the LO amplifier. The ADMV1010 is a much smaller alternative to hybrid style image reject converter assemblies, and it eliminates the need for wire bonding by allowing the use of surface-mount manufacturing assemblies. The ADMV1010 downconverter comes in a compact, thermally enhanced, 4.9 mm x 4.9 mm, 32-terminal ceramic leadless chip carrier (LCC) package. The ADMV1010 operates over the -40C to +85C temperature range. Rev. B | Page 16 of 21 Data Sheet ADMV1010 APPLICATIONS INFORMATION TYPICAL APPLICATION CIRCUIT The evaluation board and typical application circuit are optimized for low-side LO (upper sideband) performance with the Mini-Circuit QCN-45+ RF 90 hybrid. Because the I/Q mixers are double balanced, the ADMV1010 can support IF frequencies from 3.5 GHz to low frequency. The typical applications circuit is shown in Figure 47. The application circuit shown here has been replicated for the evaluation board circuit. VDLNA VDLNA 1 C9 1F C8 0.01F C7 100pF AGND IF_OUTPUT IF_OUTPUT 1 26 25 NIC NIC 28 29 30 31 27 NIC VDRF NIC NIC 32 NIC PAD ADMV1010AEZ NIC GND 13/15 DC GND NIC NIC SUM_PORT PORT_2 AGND 6 23 22 4 21 PORT_1 50_OHM_TERM GND GND 5 2 20 19 QCN-45+ 3 R3 50 18 17 AGND AGND 16 9 X1 1 24 NIC NIC NIC IF1 NIC NIC VDLO 8 AGND GND 15 7 GND 14 6 IF2 NIC 5 NIC 13 3 2 NIC RFIN NIC 4 DUT GND 12 4 NIC GND 3 11 2 RF_INPUT LO_IN RF_INPUT 1 10 1 NIC PAD 4 3 2 C1 AGND AGND 100pF C2 LO_INPUT 1 0.01F C3 3 2 1F AGND 1 AGND 15788-147 4 LO_INPUT VDLO VDLO Figure 47. Typical Application Circuit Rev. B | Page 17 of 21 ADMV1010 Data Sheet EVALUATION BOARD Layout The circuit board used in the application must use RF circuit design techniques. Signal lines must have 50 impedance, and the package ground leads and exposed pad must be connected directly to the ground plane similarly to that shown in Figure 48 and Figure 49. Use a sufficient number of via holes to connect the top and bottom ground planes. The evaluation circuit board shown in Figure 50 is available from Analog Devices upon request. Solder the exposed pad on the underside of the ADMV1010 to a low thermal and electrical impedance ground plane. This pad is typically soldered to an exposed opening in the solder mask on the evaluation board. Connect these ground vias to all other ground layers on the evaluation board to maximize heat dissipation from the device package. Figure 48 shows the printed circuit board (PCB) land pattern footprint for the ADMV1010EVALZ, and Figure 49 shows the solder paste stencil for the ADMV1010-EVALZ. 0.217" SQUARE SOLDER MASK 0.004" MASK/METAL OVERLAP 0.010" MINIMUM MASK WIDTH GROUND PAD PAD SIZE 0.026" x 0.010" PIN 1 0.197" [0.50] 0.156" MASK OPENING o.034" TYPICAL VIA SPACING o.010" TYPICAL VIA 0.138" SQUARE MASK OPENING 0.02 x 45 CHAMFER FOR PIN 1 0.146" SQUARE GROUND PAD Figure 48. PCB Land Pattern Footprint of the ADMV1010-EVALZ Rev. B | Page 18 of 21 15788-148 0.010" REF 0.030" MASK OPENING Data Sheet ADMV1010 0.017 0.0197 TYP 0.219 SQUARE 0.132 SQUARE 0.017 R0.0040 TYP 132 PLCS 0.010 TYP 15788-149 0.027 TYP 15788-150 Figure 49. Solder Paste Stencil of the ADMV1010-EVALZ Figure 50. ADMV1010-EVALZ Evaluation Board, Top Layer Rev. B | Page 19 of 21 ADMV1010 Data Sheet BILL OF MATERIALS Table 6. Qty. 1 2 Reference Designator Not applicable C1, C7 2 2 C2, C8 C3, C9 4 3 GND, GND1, VDLO, VDLNA LO_INPUT, RF_INPUT, IF_OUTPUT 1 1 R3 X1 1 1 Device Under Test (DUT) Heatsink Description PCB 100 pF multilayer ceramic capacitors, high temperature, 0402 0.01 F ceramic capacitors, X7R, 0402 1 F monolithic ceramic capacitors, SMD, X5R, 0402 Connection PCB SMT test points, CNKEY5016TP Connection PCB SMA, K_SRI-NS, CNSMAL460W295H156 50 , high frequency chip resistor, 0402 XFMR power splitter/combiner, 2500 MHz to 4500 MHz, TSML126W63H42 GaAs, MMIC, I/Q downconverter Heatsink Rev. B | Page 20 of 21 Manufacturer/Part No. Analog Devices/042361 Murata/GRM1555C1H101JA01D Murata/GRM155R71E103KA01D Taiyo Yuden/UMK107AB7105KA-T Keystone Electronics Corporation/5016 SRI Connector Gage Co./25-146-1000-92 Vishay Precision Group/FC0402E50R0FST1 Mini-Circuits/QCN-45+ Analog Devices/ADMV1010AEZ Analog Devices/111332 Data Sheet ADMV1010 OUTLINE DIMENSIONS 0.36 0.30 0.24 0.08 REF 1 0.50 BSC 3.60 3.50 SQ 3.40 EXPOSED PAD 17 0.38 0.32 0.26 TOP VIEW 1.10 1.00 0.90 PIN 1 32 25 24 8 16 9 0.20 MIN BOTTOM VIEW 3.50 REF 4.10 REF SIDE VIEW FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONFIGURATION AND FUNCTION DESCRIPTIONS SECTION OF THIS DATA SHEET. PKG-004843 SEATING PLANE 04-24-2017-D PIN 1 INDICATOR 5.05 4.90 SQ 4.75 Figure 51. 32-Terminal Ceramic Leadless Chip Carrier [LCC] (E-32-1) Dimensions shown in millimeters ORDERING GUIDE Model 1 ADMV1010AEZ ADMV1010AEZ-R7 ADMV1010-EVALZ 1 Temperature Range -40C to +85C -40C to +85C Package Body Material Alumina Ceramic Alumina Ceramic Lead Finish Gold Over Nickel Gold Over Nickel Z = RoHS Compliant Part. (c)2017-2018 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D15788-0-4/18(B) Rev. B | Page 21 of 21 Package Description 32-Terminal Ceramic LCC 32-Terminal Ceramic LCC Evaluation Board Package Option E-32-1 E-32-1