12.6 GHz to 15.4 GHz,
GaAs, MMIC, I/Q Downconverter
Data Sheet
ADMV1010
Rev. B Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©2017-2018 Analog Devices, Inc. All rights reserved.
Technical Support www.analog.com
FEATURES
RF input frequency range: 12.6 GHz to 15.4 GHz
IF output frequency range: 2.7 GHz to 3.5 GHz
LO input frequency range: 9 GHz to 12.6 GHz
Power conversion gain: 15 dB typical
Image rejection: 25 dB typical
SSB noise figure: 2 dB typical
Input IP3: 1 dBm typical
Input P1dB:7 dBm typical
Single-ended, 50 Ω RF and LO input ports
4.9 mm × 4.9 mm, 32-terminal LCC with exposed pad
APPLICATIONS
Point to point microwave radios
Radars and electronic warfare systems
Instrumentation and automatic test equipment
Satellite communications
FUNCTIONAL BLOCK DIAGRAM
1910
22
2
4
3
14
28
RFIN
LOIN
VDLO
IF1
IF2
GND
GND
11
GND
VDRF
ADMV1010
15788-001
Figure 1.
GENERAL DESCRIPTION
The ADMV1010 is a compact, gallium arsenide (GaAs) design,
monolithic microwave integrated circuit (MMIC), I/Q down-
converter in a RoHS compliant package optimized for point to
point microwave radio designs that operates in the 12.6 GHz to
15.4 GHz frequency range. The ADMV1010 is optimized to work
as a low noise, upper sideband (low-side local oscillator (LO)),
image reject downconverter.
The ADMV1010 provides 15 dB of conversion gain with 25 dB
of image rejection. The ADMV1010 uses a radio frequency
(RF), low noise amplifier (LNA) followed by an in-phase/
quadrature (I/Q) double balanced mixer, where a driver
amplifier drives the LO. IF1 and IF2 mixer outputs are
provided, and an external 90° hybrid is needed to select the
required sideband. The I/Q mixer topology reduces the need for
filtering the unwanted sideband. The ADMV1010 is a much
smaller alternative to hybrid style SSB downconverter
assemblies, and it eliminates the need for wire bonding by
allowing the use of surface-mount manufacturing assemblies.
The ADMV1010 downconverter comes in a compact, thermally
enhanced, 4.9 mm × 4.9 mm, 32-terminal LCC package. The
ADMV1010 operates over the −40°C to +85°C temperature range.
ADMV1010 Data Sheet
Rev. B | Page 2 of 21
TABLE OF CONTENTS
Features .............................................................................................. 1
Applications ....................................................................................... 1
Functional Block Diagram .............................................................. 1
General Description ......................................................................... 1
Revision History ............................................................................... 2
Specifications ..................................................................................... 3
Absolute Maximum Ratings ............................................................ 4
ESD Caution .................................................................................. 4
Pin Configuration and Function Descriptions ............................. 5
Typical Performance Characteristics ............................................. 6
IF Frequency = 2.7 GHz .............................................................. 6
IF Frequency = 3.1 GHz .............................................................. 8
IF Frequency = 3.5 GHz ............................................................ 10
IF Bandwidth .............................................................................. 12
Leakage Performance ................................................................. 13
Return Loss Performance .......................................................... 14
Spurious Performance ............................................................... 15
M × N Spurious Performance ................................................... 15
Theory of Operation ...................................................................... 16
Mixer ............................................................................................ 16
LNA .............................................................................................. 16
Applications Information .............................................................. 17
Typical Application Circuit ....................................................... 17
Evaluation Board ........................................................................ 18
Bill of Materials ........................................................................... 20
Outline Dimensions ....................................................................... 21
Ordering Guide .......................................................................... 21
REVISION HISTORY
4/2018—Rev. A to Rev. B
Changes to Thermal Resistance Section ........................................ 4
Changes to Figure 2 and Table 4 ..................................................... 5
1/2018—Rev. 0 to Rev. A
Changes to General Description and Figure 1 ............................. 1
Changes to Table 1 ............................................................................ 3
Changes to Table 2 ............................................................................ 4
Added Thermal Resistance Section and Table 3; Renumbered
Sequentially ....................................................................................... 4
Changes to Figure 2 and Table 4 ..................................................... 5
Changes to Figure 4 .......................................................................... 6
Changes to Figure 11 and Figure 12 ............................................... 7
Changes to Figure 16 through Figure 18 ........................................ 8
Changes to Figure 21 and Figure 22................................................ 9
Changes to Figure 26 through Figure 28 ..................................... 10
Changes to Figure 31 and Figure 32............................................. 11
Changes to Figure 35 and Figure 36............................................. 12
Changes to Figure 37 through Figure 40 ..................................... 13
Changes to Figure 44 through Figure 46 ..................................... 14
Changes to M × N Spurious Performance Section and Table 5 .... 15
Changes to Applications Information Section and Figure 47 ........ 17
Changes to Ordering Guide .......................................................... 21
10/2017—Revision 0: Initial Version
Data Sheet ADMV1010
Rev. B | Page 3 of 21
SPECIFICATIONS
Data taken at VDRF = 4 V, VDLO = 4 V, L O = −4 dBm LO ≤ +4 dBm, −40°C ≤ TA +85°C; data taken using Mini-Circuits QCN-45+
power splitter as upper sideband (low-side LO), unless otherwise noted.
Table 1.
Parameter Symbol Test Conditions/Comments Min Typ Max Unit
RF INPUT FREQUENCY RANGE 12.6 15.4 GHz
LO
Input Frequency Range 9 12.6 GHz
Amplitude −4 0 +4 dBm
IF OUTPUT FREQUENCY RANGE 2.7 3.5 GHz
RF PERFORMANCE With hybrid
Conversion Gain 11 15 17 dB
SSB Noise Figure SSB NF 2 2.6 dB
Input Third-Order Intercept IP3 At −23 dBm/tone −0.5 +1 dBm
Input 1 dB Compression Point P1dB −10 −8 dBm
Image Rejection 20 35 dB
Leakage
LO to RF −35 −25 dBm
LO to IF −20 −15 dBm
IM3 at Input
−20 dBm Input Power 46 49 dBc
−25 dBm Input Power 52 55 dBc
−30 dBm Input Power
56
59
dBc
Return Loss
RF Input −12 −10 dB
IF Output −15 −10 dB
LO Input −15 −10 dB
POWER INTERFACE
Voltage
RF VDRF 4 V
LO
VDLO
4
V
Current
RF IDRF 78 100 mA
LO IDLO 83 100 mA
Total Power 0.7 0.8 W
ADMV1010 Data Sheet
Rev. B | Page 4 of 21
ABSOLUTE MAXIMUM RATINGS
Table 2.
Parameter Rating
Supply Voltage
VDRF 5.5 V
VDLO 5.5 V
RF Input Power 15 dBm
LO Input Power 15 dBm
Maximum Junction Temperature (TJ) 175°C
Maximum Power Dissipation 1.7 W
Lifetime at Maximum Junction Temperature
>1 million hours
Operating Temperature Range −40°C to +85°C
Storage Temperature Range 65°C to +150°C
Lead Temperature Range (Soldering, 60 sec) 260°C
Moisture Sensitivity Level (MSL) Rating MSL3
Electrostatic Discharge (ESD) Sensitivity
Human Body Model (HBM) 250 V
Field Induced Charged Device Model (FICDM) 500 V
Stresses at or above those listed under Absolute Maximum
Ratings may cause permanent damage to the product. This is a
stress rating only; functional operation of the product at these
or any other conditions above those indicated in the operational
section of this specification is not implied. Operation beyond
the maximum operating conditions for extended periods may
affect product reliability.
THERMAL RESISTANCE
Thermal performance is directly linked to printed circuit board
(PCB) design and operating environment. Careful attention to
PCB thermal design is required.
θJA is thermal resistance, junction to ambient (°C/W), and θJC is
thermal resistance, junction to case (°C/W).
Table 3.
Package Type θJA1 θJC1 Unit
E-32-1
33.4
51
°C/W
1 See JEDEC standard JESD51-2 for additional information on optimizing the
thermal impedance (PCB with 3 × 3 vias).
ESD CAUTION
Data Sheet ADMV1010
Rev. B | Page 5 of 21
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
24 NIC
ADMV1010
TOP VIEW
(No t t o Scale)
23
NIC
22 IF2
21 NIC
20 NIC
19 IF1
18 NIC
17 NIC
NOTES
1. NI C = NOT INT E RNALL Y CONNECTED. T HE S E
PINS ARE NOT INT E RNALL Y CONNECTED. I T I S
RECOMME NDED TO GRO UND THES E P INS ON T HE P CB.
2. EXPOSED PAD. EXPOSED PAD M US T BE
CONNECTED TO GND. GOOD RFAND THE RM AL
GRO UNDING IS RE COMM E NDE D.
1
2
3
4
5
6
7
8
NIC
GND
RFIN
GND
NIC
NIC
NIC
NIC
9
10
11
12
13
14
15
16
NIC
LO_IN
GND
NIC
NIC
VDLO
NIC
NIC
32
31
30
29
28
27
26
25
NIC
NIC
NIC
NIC
VDRF
NIC
NIC
NIC
15788-002
Figure 2. Pin Configuration
Table 4. Pin Function Descriptions
Pin No. Mnemonic Description
1, 5 to 9, 12, 13, 15 to 18,
20, 21, 23 to 27, 29 to 32
NIC Not Internally Connected. These pins are not internally connected. It is recommended to ground
these pins on the PCB.
2, 4, 11 GND Ground.
3 RFIN RF Input. This pin is ac-coupled internally and matched to 50 Ω, single-ended.
10 LO_IN LO Input. This pin is ac-coupled internally and matched to 50single-ended.
14 VDLO Power Supply Voltage for the LO Amplifier. Refer to the Applications Information section for the
required external components and biasing.
19 IF1 Quadrature IF Output 1. Matched to 50 Ω and ac coupled. No external dc block required.
22
IF2
Quadrature IF Output 2. Matched to 50 Ω and ac coupled. No external dc block required.
28 VDRF Power Supply Voltage for the RF Amplifier. Refer to the Applications Information section for the
required external components and biasing.
EPAD Exposed Pad. The exposed pad must be connected to GND. Good RF and thermal grounding is
recommended.
ADMV1010 Data Sheet
Rev. B | Page 6 of 21
TYPICAL PERFORMANCE CHARACTERISTICS
IF FREQUENCY = 2.7 GHz
Data taken at VDRF = 4 V, VDLO = 4 V, LO = −4 dBm ≤ LO ≤ +4 dBm, −40°C ≤ TA ≤ +85°C, data taken with Mini-Circuits QCN-45+
power splitter as upper sideband (low-side LO), unless otherwise noted.
15788-003
10
11
12
13
14
15
16
17
18
12.5 13.0 13.5 14.0 14.5 15.0 15.5
CONVERSION GAIN (dB)
RF FREQUENCY (GHz)
–40°C
+25°C
+85°C
Figure 3. Conversion Gain vs. RF Frequency at Various Temperatures
15788-004
20
25
30
35
40
45
55
50
12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0
IMAGE REJECTION (dB)
RF FREQUENCY (GHz)
–40°C
+25°C
+85°C
Figure 4. Image Rejection vs. RF Frequency at Various Temperatures
12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0
RF FREQUENCY (GHz)
15788-005
–6
–4
–2
0
2
4
6
8
10
INPUT IP3 (dBm)
–40°C
+25°C
+85°C
Figure 5. Input IP3 vs. RF Frequency at Various Temperatures
15788-006
10
11
12
13
14
15
16
17
18
12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0
CONVERSION GAIN (dB)
RF FREQUENCY (GHz)
–4dBm
0dBm
+4dBm
Figure 6. Conversion Gain vs. RF Frequency at Various LO Powers
15788-007
20
25
30
35
40
45
50
55
12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0
IMAGE REJECTION (dB)
RF FREQUENCY (GHz)
–4dBm
0dBm
+4dBm
Figure 7. Image Rejection vs. RF Frequency at Various LO Powers
15788-008
–6
–4
–2
0
2
4
6
8
10
12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0
INPUT IP3 (dBm)
RF FREQUENCY (GHz)
–4dBm
0dBm
+4dBm
Figure 8. Input IP3 vs. RF Frequency at Various LO Powers
Data Sheet ADMV1010
Rev. B | Page 7 of 21
–12
–10
–8
–6
–4
–2
0
12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0
INPUT P1dB (dBm)
RF FREQ UE NC Y (GHz)
–40°C
+25°C
+85°C
15788-009
Figure 9. Input P1dB vs. RF Frequency at Various Temperatures
0
0.5
1.0
1.5
2.0
2.5
3.0
12.5 13.0 13.5 14.0 14.5 15.0 15.5
NOISE FIGURE (dB)
RF FREQ UE NC Y (GHz)
–40°C
+25°C
+85°C
15788-010
Figure 10. Noise Figure vs. RF Frequency at Various Temperatures
INP UT P1d B (d Bm)
RF FREQ UE NCY (GHz)
–12
–10
–8
–6
–4
–2
0
12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0
–4dBm
0dBm
+4dBm
15788-011
Figure 11. Input P1dB vs. RF Frequency at Various LO Powers
0
0.5
1.0
1.5
2.0
2.5
3.0
12.5 13.0 13.5 14.0 14.5 15.0 15.5
NOISE FIGURE (dB)
RF FREQ UE NCY (GHz)
15788-012
–4dBm
0dBm
+4dBm
Figure 12. Noise Figure vs. RF Frequency at Various LO Powers
ADMV1010 Data Sheet
Rev. B | Page 8 of 21
IF FREQUENCY = 3.1 GHz
Data taken at VDRF = 4 V, VDLO = 4 V, LO = −4 dBm ≤ LO ≤ +4 dBm, −40°C ≤ TA ≤ +85°C, data taken with Mini-Circuits QCN-45+
power splitter as upper sideband (low-side LO), unless otherwise noted.
15788-013
8
9
10
11
12
13
14
15
16
17
12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0
CONVE RS IO N GAI N ( dB)
RF FREQ UE NC Y (G Hz)
–40°C
+25°C
+85°C
Figure 13. Conversion Gain vs. RF Frequency at Various Temperatures
IM AGE REJE CTI ON (dB)
RF FREQ UE NC Y (G Hz)
0
5
10
15
20
25
30
35
40
45
50
12.0 12.4 12.8 13.2 13.6 14.0 14.4 14.8 15.2 15.6 16.0
–40°C
+25°C
+85°C
15788-014
Figure 14. Image Rejection vs. RF Frequency at Various Temperatures
15788-015
–2
0
2
4
6
8
10
12
14
16
18
20
12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0
INPUT I P 3 ( dBm)
RF FREQ UE NCY (GHz)
–40°C
+25°C
+85°C
Figure 15. Input IP3 vs. RF Frequency at Various Temperatures
15788-016
12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0
RF FREQ UE NCY (GHz)
CONVE RS IO N GAI N ( dB)
–4dBm
0dBm
+4dBm
Figure 16. Conversion Gain vs. RF Frequency at Various LO Powers
IM AGE REJE CTI ON (dB)
RF FREQ UE NC Y (G Hz)
0
5
10
15
20
25
30
35
40
45
50
12.0 12.4 12.8 13.2 13.6 14.0 14.4 14.8 15.2 15.6 16.0
+4dBm
+0dBm
–4dBm
15788-017
Figure 17. Image Rejection vs. RF Frequency at Various LO Powers
15788-018
12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0
INP UT IP 3 (d Bm)
RF FREQUENCY (GHz)
–2
0
2
4
6
8
10
12
14
16
18
20 –4dBm
0dBm
+4dBm
Figure 18. Input IP3 vs. RF Frequency at Various LO Powers
Data Sheet ADMV1010
Rev. B | Page 9 of 21
–12
–10
–8
–6
–4
–2
0
12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0
INPUT P1dB (dBm)
RF FREQ UE NCY ( GHz)
–40°C
+25°C
+85°C
15788-019
Figure 19. Input P1dB vs. RF Frequency at Various Temperatures
0
0.5
1.0
1.5
2.0
2.5
3.0
12.5 13.0 13.5 14.0 14.5 15.0 15.5
NOISE FIGUE (dB)
RF FREQ UE NCY (G Hz)
–40°C
+25°C
+85°C
15788-020
Figure 20. Noise Figure vs. RF Frequency at Various Temperatures
–12
–10
–8
–6
–4
–2
0
12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0
INPUT P1dB ( dB)
RF FREQ UE NCY (G Hz)
–4dBm
0dBm
+4dBm
15788-021
Figure 21. Input P1dB vs. RF Frequency at Various LO Powers
0
0.5
1.0
1.5
2.0
2.5
3.0
12.5 13.0 13.5 14.0 14.5 15.0 15.5
NOISE FIGURE (dB)
RF FREQ UE NCY (G Hz)
15788-022
–4dBm
0dBm
+4dBm
Figure 22. Noise Figure vs. RF Frequency at Various LO Powers
ADMV1010 Data Sheet
Rev. B | Page 10 of 21
IF FREQUENCY = 3.5 GHz
Data taken at VDRF = 4 V, VDLO = 4 V, LO = −4 dBm ≤ LO ≤ +4 dBm, −40°C ≤ TA ≤ +85°C, data taken with Mini-Circuits QCN-45+
power splitter as upper sideband (low-side LO), unless otherwise noted.
0
2
4
6
8
10
12
14
16
18
12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0
CONVE RS IO N GAI N ( dB)
RF FREQ UE NCY (G Hz)
–40°C
+25°C
+85°C
15788-023
Figure 23. Conversion Gain vs. RF Frequency at Various Temperatures
0
10
20
30
40
50
60
12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0
IM AG E RE JE CTI ON (dBc)
RF FREQ UE NCY (GHz)
–40°C
+25°C
+85°C
15788-024
Figure 24. Image Rejection vs. RF Frequency at Various Temperatures
–4
–2
0
2
4
6
8
10
12
14
16
12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0
INPUT I P 3 ( dBm)
RF FREQ UE NCY (GHz)
–40°C
+25°C
+85°C
15788-025
Figure 25. Input IP3 vs. RF Frequency at Various Temperatures
0
2
4
6
8
10
12
14
18
16
12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0
CONVE RS IO N GAI N ( dB)
RF FREQ UE NCY (GHz)
15788-026
–4dBm
0dBm
+4dBm
Figure 26. Conversion Gain vs. RF Frequency at Various LO Powers
0
10
20
30
40
50
60
12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0
IM AGE REJE CTI ON (dBc)
RF FREQ UE NCY (GHz)
–4dBm
0dBm
+4dBm
15788-027
Figure 27. Image Rejection vs. RF Frequency at Various LO Powers
–4
–2
0
2
4
6
8
10
16
12
14
12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0
INPUT IP3 (dBm)
RF FREQUENCY (GHz)
15788-028
–4dBm
0dBm
+4dBm
Figure 28. Input IP3 vs. RF Frequency at Various LO Powers
Data Sheet ADMV1010
Rev. B | Page 11 of 21
–10
–9
–8
–7
–6
–5
–4
–3
–2
–1
0
12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0
INPUT P1dB (dBm)
RF FREQ UE NCY ( GHz)
–40°C
+25°C
+85°C
15788-029
Figure 29. Input P1dB vs. RF Frequency at Various Temperatures
0
0.5
1.0
1.5
2.0
2.5
3.0
12.5 13.0 13.5 14.0 14.5 15.0 15.5
NOISE FIGURE (dB)
RF FREQ UE NCY (GHz)
–40°C
+25°C
+85°C
15788-030
Figure 30. Noise Figure vs. RF Frequency at Various Temperatures
–10
–9
–8
–7
–6
–5
–4
–3
–2
–1
0
12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0
INPUT P1dB (dBm)
RF FREQ UE NCY (GHz)
–4dBm
0dBm
+4dBm
15788-031
Figure 31. Input P1dB vs. RF Frequency at Various LO Powers
12.5 13.0 13.5 14.0 14.5 15.0 15.5
RF FREQUENC Y (GHz)
0
0.5
1.0
1.5
2.0
2.5
3.0
NOISE FIGURE (dB)
15788-032
–4dBm
0dBm
+4dBm
Figure 32. Noise Figure vs. RF Frequency at Various LO Powers
ADMV1010 Data Sheet
Rev. B | Page 12 of 21
IF BANDWIDTH
Data taken at VDRF = 4 V, VDLO = 4 V, LO = −4 dBm ≤ LO ≤ +4 dBm at 9 GHz, −40°C ≤ TA ≤ +85°C, data taken with Mini-Circuits
QCN-45+ power splitter as upper sideband (low-side LO), unless otherwise noted.
18
16
14
10
6
2
12
8
4
02.0 2.2 2.4 2.6 2.8 3.0 3.0 3.4 3.6 3.8 4.0
CONVE RS IO N GAI N ( dB)
IF FREQUENCY ( GHz)
15788-033
–40°C
+25°C
+85°C
Figure 33. Conversion Gain vs. IF Frequency at Various Temperatures
8
6
4
0
2
–2
–42.0 2.2 2.4 2.6 2.8 3.0 3.0 3.4 3.6 3.8 4.0
INPUT I P 3 ( dBm)
IF FREQUENCY ( GHz)
15788-035
–40°C
+25°C
+85°C
Figure 34. Input IP3 vs. IF Frequency at Various Temperatures
18
16
14
10
6
2
12
8
4
02.0 2.2 2.4 2.6 2.8 3.0 3.0 3.4 3.6 3.8 4.0
CONVE RS IO N GAI N ( dB)
IF F RE Q UE NCY ( GHz)
15788-036
+4dBm
+0dBm
–4dBm
Figure 35. Conversion Gain vs. IF Frequency at Various LO Powers
8
6
4
0
2
–2
–42.0 2.2 2.4 2.6 2.8 3.0 3.0 3.4 3.6 3.8 4.0
INPUT I P 3 (d Bm)
IF F RE Q UE NCY ( GHz)
15788-038
+4dBm
+0dBm
–4dBm
Figure 36. Input IP3 vs. IF Frequency at Various LO Powers
Data Sheet ADMV1010
Rev. B | Page 13 of 21
LEAKAGE PERFORMANCE
Data taken at VDRF = 4 V, VDLO = 4 V, LO = −4 dBm ≤ LO ≤ +4 dBm, −40°C ≤ TA ≤ +85°C, data taken with Mini-Circuits QCN-45+
power splitter as upper sideband (low-side LO), unless otherwise noted.
–20
–36
–28
–34
–26
–32
–24
–30
–22
–40
–38
8 9 10 11 12 13 14
LO LEAKAGE ( dBm)
LO F REQUENCY ( GHz)
15788-043
–40°C
+25°C
+85°C
Figure 37. LO Leakage at RFIN vs. LO Frequency at Various Temperatures
15788-044
–50
–45
–40
–35
–30
–25
–20
–15
–10
–5
0
8 9 10 11 12 13 14
LO L E AKAG E ( dBm)
LO FREQUENCY (GHz)
–40°C
+25°C
+85°C
Figure 38. LO Leakage at IF Output vs. LO Frequency at Various Temperatures
8 9 10 11 12 13 14
LO LEAKAGE ( dBm)
LO FREQUENCY ( GHz)
15788-046
+4dBm
+0dBm
–4dBm
–40
–38
–36
–34
–32
–30
–28
–26
–24
–22
–20
Figure 39. LO Leakage at RFIN vs. LO Frequency at Various LO Powers
8910 11 12 13 14
LO LEAKAGE ( dBm)
LO FREQUENCY ( GHz)
15788-047
50
45
40
35
30
25
20
15
10
5
0+4dBm
+0dBm
–4dBm
Figure 40. LO Leakage at IF Output vs. LO Frequency at Various LO Powers
ADMV1010 Data Sheet
Rev. B | Page 14 of 21
RETURN LOSS PERFORMANCE
Data taken at VDRF = 4 V, VDLO = 4 V, LO = −4 dBm ≤ LO ≤ +4 dBm, −40°C ≤ TA ≤ +85°C, data taken with Mini-Circuits QCN-45+
power splitter as upper sideband (low-side LO), unless otherwise noted. Measurement includes trace loss and RF connector loss.
–10
–28
–26
–24
–22
–20
–18
–16
–14
–12
–30
12.0 12.5 13.5
13.0 14.0 14.5 15.0 15.5 16.0
RETURN LO S S ( dB)
RF FREQ UE NCY ( GHz)
15788-049
–40°C
+25°C
+85°C
Figure 41. RF Input Return Loss vs. RF Frequency at Various Temperatures
–10
–30
–25
–20
–15
–35 8 9 10 11 12 13 14
RETURN LO S S ( dB)
LO F RE Q UE NCY ( GHz)
15788-050
–40°C
+25°C
+85°C
Figure 42. LO Input Return Loss vs. LO Frequency at Various Temperatures
–8
–10
–12
–16
–20
–14
–18
–222.0 2.2 2.4 2.6 2.8 3.0 3.0 3.4 3.6 3.8 4.0
RETURN LO S S ( dB)
IF FREQUENCY ( GHz)
15788-051
–40°C
+25°C
+85°C
Figure 43. IF Output Return Loss vs. IF Frequency at Various Temperatures
–10
–28
–26
–24
–22
–20
–18
–16
–14
–12
–30
12.0 12.5 13.5
13.0 14.0 14.5 15.0 15.5 16.0
RETURN LO S S ( dB)
RF FREQ UE NCY ( GHz)
15788-052
+4dBm
+0dBm
–4dBm
Figure 44. RF Input Return Loss vs. RF Frequency at Various LO Powers
–10
–30
–25
–20
–15
–35 8910 11 12 13 14
RETURN LO S S ( dB)
LO FREQUENCY ( GHz)
15788-053
+4dBm
+0dBm
–4dBm
Figure 45. LO Input Return Loss vs. LO Frequency at Various LO Powers
–8
–10
–12
–16
–20
–14
–18
–222.0 2.2 2.4 2.6 2.8 3.0 3.0 3.4 3.6 3.8 4.0
RET URN LO SS (d B)
IF F RE Q UE NCY ( GHz)
15788-054
+4dBm
+0dBm
–4dBm
Figure 46. IF Output Return Loss vs. IF Frequency at Various LO Powers
Data Sheet ADMV1010
Rev. B | Page 15 of 21
SPURIOUS PERFORMANCE
Data taken at VDRF = 4 V, VDLO = 4 V, LO = 0 dBm, −40°C ≤
TA ≤ +85°C; data taken with Mini-Circuits QCN-45+ power
splitter as upper sideband (low-side LO), unless otherwise noted.
Table 5. LO Harmonic Leakage (dBm) at IF Output
Harmonics
LO Frequency (MHz)1 1.0 2.0 3.0 4.0
9000 −36 −48 −47 −49
9500 −22 −47 −45 −50
10,000
−20
−47
−43
−60
10,500 −18 −48 −42 −53
11,000 −19 −46 −41 −50
11,500 −28 −41 −38 −65
12,000 −42 −47 −35 −60
12,600 −43 −46 −32 −61
1 LO Input Power = 0 dBm.
M × N SPURIOUS PERFORMANCE
LO = 4 dBm, Upper Sideband
IF = 2700 MHz, RF = 13.3 GHz at 20 dBm; all values in dBc
below the IF power level. N/A means not applicable.
N × LO
−2 −1 0 +1 +2
M × RF
−1
N/A
N/A
N/A
N/A
28
0 N/A N/A N/A 13 39
+1 N/A 0 24 51 43
+2 52 86 61 65 71
IF = 3100 MHz, RF = 13.3 GHz at 20 dBm; all values in dBc
below the IF power level. N/A means not applicable.
N × LO
−2 −1 0 +1 +2
M × RF
−1 N/A N/A N/A N/A 25
0 N/A N/A N/A 13 40
+1 N/A 0 24 50 40
+2 55 78 61 63 72
IF = 3500 MHz, RF = 13.3 GHz at 20 dBm; all values in dBc
below the IF power level. N/A means not applicable.
N × LO
−2 −1 0 +1 +2
M × RF
−1 N/A N/A N/A N/A 24
0 N/A N/A N/A 14 38
+1 N/A 0 24 49 44
+2 54 66 60 61 70
ADMV1010 Data Sheet
Rev. B | Page 16 of 21
THEORY OF OPERATION
The ADMV1010 is a compact GaAs, MMIC, single sideband
(SSB) downconverter in a RoHS compliant package optimized
for upper sideband point to point microwave radio applications
operating in the 12.6 GHz to 15.4 GHz input frequency range.
The ADMV1010 supports LO input frequencies of 9 GHz to
12.6 GHz and IF output frequencies of 2.7 GHz to 3.5 GHz.
The ADMV1010 uses a RF LNA amplifier followed by an I/Q
double balanced mixer, where a driver amplifier drives the LO
(see Figure 1). The combination of design, process, and pack-
aging technology allows the functions of these subsystems to be
integrated into a single die, using mature packaging and inter-
connection technologies to provide a high performance, low
cost design with excellent electrical, mechanical, and thermal
properties. In addition, the need for external components is
minimized, optimizing cost and size.
LO DRIVER AMPLIFIER
The LO driver amplifier takes a single LO input and amplifies it
to the desired LO signal level for the mixer to operate optimally.
The LO driver amplifier is self biased, and it only requires a
single dc bias voltage (VDLO) to operate. The bias current for
the LO amplifier is 100 mA at 4 V typically. The LO drive range
of −4 dBm to +4 dBm makes it compatible with Analog Devices,
Inc., wideband synthesizer portfolio without the need for an
external LO driver amplifier.
MIXER
The mixer is an I/Q double balanced mixer, and this mixer
topology reduces the need for filtering the unwanted sideband.
An external 90° hybrid is required to select the upper sideband
of operation. The ADMV1010 has been optimized to work with
the Mini-Circuits QCN-45+ RF 90° hybrid.
LNA
The LNA is self biased, and it requires only a single dc bias
voltage (VDRF) to operate. The bias current for the LNA is
60 mA at 4 V typically.
The application circuit (see Figure 47) provided shows the
necessary external components on the bias lines to eliminate
any undesired stability problems for the RF amplifier and the
LO amplifier.
The ADMV1010 is a much smaller alternative to hybrid style
image reject converter assemblies, and it eliminates the need for
wire bonding by allowing the use of surface-mount manufacturing
assemblies.
The ADMV1010 downconverter comes in a compact, thermally
enhanced, 4.9 mm × 4.9 mm, 32-terminal ceramic leadless chip
carrier (LCC) package. The ADMV1010 operates over the
40°C to +85°C temperature range.
Data Sheet ADMV1010
Rev. B | Page 17 of 21
APPLICATIONS INFORMATION
The evaluation board and typical application circuit are
optimized for low-side LO (upper sideband) performance with
the Mini-Circuit QCN-45+ RF 90° hybrid. Because the I/Q
mixers are double balanced, the ADMV1010 can support IF
frequencies from 3.5 GHz to low frequency.
TYPICAL APPLICATION CIRCUIT
The typical applications circuit is shown in Figure 47. The
application circuit shown here has been replicated for the
evaluation board circuit.
13/15 DC
ADMV1010AEZ
0.01µF
QCN-45+
50Ω
1µF
0.01µF
1µF
100pF
100pF
DUT
IF_OUTPUT
LO_INPUT
RF_INPUT
VDLNA
VDLO
X1
C7
C8
C9
R3
C3
C2
C1
LO_INPUT
RF_INPUT
IF_OUTPUT
VDLNA
VDLO
14 28
3
32
31
30
29
27
26
25
24
17
16
15
13
12
8
7
6
5
1
10
22
19
23
21
20
18
11
9
4
2
PAD
4 3 2
1
1
1
1
1
1 6
4 3
PAD
NIC
NIC
NIC
NIC
VDRF
NIC
NIC
NIC
NIC
NIC
IF2
GND
GND
IF1
GND
NIC
NIC
NIC
VDLO
NIC
NIC
GND
LO_IN
NIC
NIC
NIC
NIC
NIC
GND
RFIN
GND
NIC
AGND
AGND
AGND
AGND AGND
AGND
PORT_1
PORT_2
GND
50_OHM_TERM
GND
SUM_PORT
AGND
AGND
AGND
15788-147
5 2
4 3 2
4 3 2
Figure 47. Typical Application Circuit
ADMV1010 Data Sheet
Rev. B | Page 18 of 21
EVALUATION BOARD
The circuit board used in the application must use RF circuit
design techniques. Signal lines must have 50 Ω impedance, and
the package ground leads and exposed pad must be connected
directly to the ground plane similarly to that shown in Figure 48
and Figure 49. Use a sufficient number of via holes to connect
the top and bottom ground planes. The evaluation circuit board
shown in Figure 50 is available from Analog Devices upon
request.
Layout
Solder the exposed pad on the underside of the ADMV1010 to
a low thermal and electrical impedance ground plane. This pad
is typically soldered to an exposed opening in the solder mask
on the evaluation board. Connect these ground vias to all other
ground layers on the evaluation board to maximize heat dissi-
pation from the device package. Figure 48 shows the printed
circuit board (PCB) land pattern footprint for the ADMV1010-
EVA LZ, and Figure 49 shows the solder paste stencil for the
ADMV1010-E VA L Z .
0.138" SQUARE M AS K OPE NING
0.02 × 45° CHAM FER FO R P IN 1
0.197"
[0.50]
PAD SI ZE
0.026" × 0.010"
0.217" SQUARE
0.004" MAS K/ME TAL OVE RLAP
0.010" MINI M UM M AS K WI DTH
0.010" REF
0.030"
MASK O P E NING
0.156"
MASK
OPENING
PIN 1
GRO UND P AD
SOLDER MASK
0.146" SQUARE
GRO UND P AD
ø.010"
TYPICAL VIA
ø.034"
TYPICAL
VIA S P ACING
15788-148
Figure 48. PCB Land Pattern Footprint of the ADMV1010-EVALZ
Data Sheet ADMV1010
Rev. B | Page 19 of 21
0.219
SQUARE
0.017
0.017
0.027
TYP
0.010
TYP
0.0197
TYP
R0.0040 T Y P
132 PLCS
0.132
SQUARE
15788-149
Figure 49. Solder Paste Stencil of the ADMV1010-EVALZ
15788-150
Figure 50. ADMV1010-EVALZ Evaluation Board, Top Layer
ADMV1010 Data Sheet
Rev. B | Page 20 of 21
BILL OF MATERIALS
Table 6.
Qty. Reference Designator Description Manufacturer/Part No.
1
Not applicable
PCB
Analog Devices/042361
2 C1, C7 100 pF multilayer ceramic capacitors, high
temperature, 0402
Murata/GRM1555C1H101JA01D
2 C2, C8 0.01 µF ceramic capacitors, X7R, 0402 Murata/GRM155R71E103KA01D
2 C3, C9 1 µF monolithic ceramic capacitors, SMD, X5R,
0402
Taiyo Yuden/UMK107AB7105KA-T
4
GND, GND1, VDLO, VDLNA
Connection PCB SMT test points, CNKEY5016TP
Keystone Electronics Corporation/5016
3 LO_INPUT, RF_INPUT, IF_OUTPUT Connection PCB SMA, K_SRI-NS,
CNSMAL460W295H156
SRI Connector Gage Co./25-146-1000-92
1 R3 50 Ω, high frequency chip resistor, 0402 Vishay Precision Group/FC0402E50R0FST1
1 X1 XFMR power splitter/combiner, 2500 MHz to
4500 MHz, TSML126W63H42
Mini-Circuits/QCN-45+
1 Device Under Test (DUT) GaAs, MMIC, I/Q downconverter Analog Devices/ADMV1010AEZ
1 Heatsink Heatsink Analog Devices/111332
Data Sheet ADMV1010
Rev. B | Page 21 of 21
OUTLINE DIMENSIONS
16
0.50
BSC
3.50 REF 0.20 M I N
BOTTOM VIEW
TOP VIEW
SIDE VIEW
1
32
9
17
24
25
8
FO R P ROPE R CONNECTI ON O F
THE EXPOSED PAD, REFER TO
THE P IN CO NFI GURAT IO N AND
FUNCTION DES CRIPTI ONS
SECTION OF THIS DATA SHEET.
04-24-2017-D
0.36
0.30
0.24
EXPOSED
PAD
PKG-004843
PIN 1
INDICATOR
5.05
4.90 SQ
4.75
4.10 REF
1.10
1.00
0.90
0.38
0.32
0.26
3.60
3.50 SQ
3.40
PIN 1
0.08
REF
SEATING
PLANE
Figure 51. 32-Terminal Ceramic Leadless Chip Carrier [LCC]
(E-32-1)
Dimensions shown in millimeters
ORDERING GUIDE
Model1 Temperature Range Package Body Material Lead Finish Package Description Package Option
ADMV1010AEZ −40°C to +85°C Alumina Ceramic Gold Over Nickel 32-Terminal Ceramic LCC E-32-1
ADMV1010AEZ-R7 −40°C to +85°C Alumina Ceramic Gold Over Nickel 32-Terminal Ceramic LCC E-32-1
ADMV1010-EVALZ Evaluation Board
1 Z = RoHS Compliant Part.
©2017-2018 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D15788-0-4/18(B)