1
Copyright © Cirrus Logic, Inc. 2005
(All Rights Reserved)
http://www.cirrus.com
CS5361
114 dB, 192 kHz, Multi-Bit Audio A/D Converter
Features
zAdvanced Multi-bit Delta-sigma Architecture
z24-bit Conversion
z114 dB Dynamic Range
z-105 dB THD+N
zSystem Sampling Rates up to 192 kHz
z135 mW Power Consumption
zHigh-pass Filter and DC Offset Calibration
zSupports Logic Levels Between 5 and 2.5 V
zDifferential Analog Architecture
zOverflow Detection
zPin-compatible with the CS5381
General Description
The CS5361 is a complete analog-to-digital converte r for
digital audio systems. It performs sampling, analog-to-
digital conversion, and anti-alias filtering. The CS5361
generates 24-bit values for both left and right inputs in
serial form at sample rates up to 192 kHz per channel.
The CS5361 uses a 5th-order, multi-bit, delta-sigma
modulator followed by digital filtering and decimation.
This removes the need for an external anti-alias filter.
The ADC us es a d iff er en tia l ar chitecture which pr ov ide s
excellent noise rejection.
The CS5361 is ideal for audio systems requiring wide dy-
namic range, negligible distortion, and low noise. These
applications include A/V receivers, DVD-R, CD-R, digital
mixing consoles, and effects processors.
ORDERING INFORMATION
CS5361-KSZ -10° to 70°C 24-pin SOIC Lead Free
CS5361-KZZ -10° to 70°C 24-pin TSSOP Lead Free
CS5361-DZZ -40° to 85°C 24-pi n TSSOP Lead Fr ee
CDB5361 Evaluation Board
Voltage Reference Serial Output Interface
Digital
Filter
High
Pass
Filter
High
Pass
Filter
Decimation
Digital
Filter
Decimation
DAC
-
+
S/H
DAC
-
+
S/H
AINR+
SCLK SDOUT MCLK
RST
VQ LRCK
AINR-
AINL+
AINL-
FILT+ I
2
S/LJ
M/S
HPF
MODE0
MODE1
REFGND V
L
MDIV
LP Filter
LP Filter
∆Σ
∆Σ
OVFL
FEB ‘05
DS467F2
CS5361
2DS467F2
TABLE OF CONTENTS
1.0 CHARACTERISTICS AND SPECIFICATIONS ......................................................................4
Specified Operating Conditions ................................................................................................4
Absolute Maximum Ratings......................................................................................................4
Analog Characteristics (CS5361-KSZ/KZZ)...... ........................................................................5
Analog Characteristics (CS5361-DZZ) ................ .....................................................................6
Digital Filter Characteristics......................................................................................................7
DC Electrical Characterist ics ............ ... ... ... .............................................................................10
Digital Characteristics.............................................................................................................10
Switching Characteristics - Serial Audio Port..........................................................................11
2.0 PIN DESCRIPTIONS ............................................................................................................14
3.0 TYPICAL CONNECTION DIAGRAM ....................................................................................15
4.0 APPLICATIONS ............. ................. ... ... ... ... .... ... ... ... ................. ... ... ... ... .... ... ... ... ...................16
4.1 Operational Mode/Sample Rate Range Select ................................................................16
4.2 System Clocking .... ... .... ... ... ... ................................. ... ... ... .... ... ... ... ... ................. ... ... ... ......16
4.2.1 Slave Mode ......... ... ... .... ... ................ ... ... .... ... ... ... ................ .... ... ... ... .... ... ............16
4.2.2 Master Mode ............. .... ... ... ... ... .... ... ................ ... .... ... ... ... ... .... ... ................ ... ... ...17
4.3 Power-up Sequence ..................... ... ... ... .... ... ... ... .... ... ... ...................................................18
4.4 Analog Connections ............... .... ... ...................................................................................18
4.5 High-pass Filter and DC Offset Calibration .....................................................................19
4.6 Overflow Detection ...........................................................................................................19
4.6.1 OVFL Output Timing ...........................................................................................19
4.7 Grounding and Power Supply Decoupling .......................................................................19
4.8 Synchronization of Multiple Devices ................................................................................19
5.0 PARAMETER DEFINITIONS ................................................................................................20
6.0 PACKAGE DIMENSIONS ..................................................................................................21
7.0 REVISION HISTORY ............................................................................................................23
CS5361
DS467F2 3
LIST OF FIGURES
Figure 1. Single Speed Mode Stopband Rejection .......... ... ... .... ... ... ... ... .... ... ... ... .... ... . 8
Figure 2. Single Speed Mode Transition Band ........................................................... 8
Figure 3. Single Speed Mode Transition Band (Detail) .............................................. 8
Figure 4. Single Speed Mode Passband Ripple .............. ... ... .... ... ... ... ... .... ... ... ... .... ... . 8
Figure 5. Double Speed Mode Stopband Rejection ................................................... 8
Figure 6. Double Speed Mode Transition Band ......................................................... 8
Figure 7. Double Speed Mode Transition Band (Detail) ............................................. 9
Figure 8. Double Speed Mode Passband Ripple ....................................................... 9
Figure 9. Quad Speed Mode Stopband Rejection ...................................................... 9
Figure 10. Quad Speed Mode Transition Band .......................................................... 9
Figure 11. Quad Speed Mode Transition Band (Detail) ..... ... .... ... ... ... ... .... ... ... ... ........ 9
Figure 12. Quad Speed Mode Passband Ripple ........................................................ 9
Figure 13. Master Mode, Left Justified SAI .............................................................. 12
Figure 14. Slave Mode, Left Justified SAI ................................................................ 12
Figure 15. Master Mod e, I2S SAI . .... ... ... ... ... .... ... ................................ ... .... ... ... ... .... .. 12
Figure 16. Slave Mode, I2S SAI ................................................................................ 12
Figure 17. OVFL Output Timing ............................................................................... 12
Figure 18. Left Justified Serial Audio Interface ......................................................... 13
Figure 19. I2S Serial Audio Interface ........................................................................ 13
Figure 20. OVFL Output Timing, I2S Format ................ ......................... ................... 13
Figure 21. OVFL Output Timing, Left-Justified Format ............................................. 13
Figure 22. Typical Connection Diagram ................................................................... 15
Figure 23. CS5361 Master Mode Clocking ............................................................... 17
Figure 24. CS5361 Recommended Analog Input Buffer .......................................... 18
LIST OF TABLES
Table 1. CS5361 Mode Control .............................................................................. 16
Table 2. CS5361 Slave Mode Clock Ratios ........................................................... 16
Table 3. CS5361 Common Master Clock Frequencies .......................................... 17
Table 4. Revision History ....................... .................... ................... ... .................... .. 23
CS5361
4DS467F2
1.0 CHARACTERISTICS AND SPECIFICATIONS
All Min/Max characteristics and specifications are guaranteed over the specified operating conditions. Typical per-
formance characteristics an d specifications are derived from measurements taken at typical supply voltages and
TA = 25°C.
SPECIFIED OPERATING CONDITIONS
GND = 0 V, all voltages with respect to GND.
ABSOLUTE MAXIMUM RATINGS
GND = 0 V, All voltages with respect to GND. (Note 1)
Notes: 1. Operation beyond these limits may result in permanent damage to the device.
Normal operation is not guaranteed at these extremes.
2. Any pin except supplies. Transient currents of up to ±100 mA on the analog input pins will not cause SCR
latch-up.
3. The maximum over/under voltage is limited by the input current.
Parameter Symbol Min Typ Max Unit
DC Power Supplies: Positive Analog
Positive Digital
Positive Logic
VA
VD
VL
4.75
3.1
2.37
5.0
3.3
3.3
5.25
5.25
5.25
V
V
V
Ambient Operating Temperature Commercial (-KSZ/-KZZ)
Automotive (-DZZ) TAC
TAA
-10
-40 -
-70
85 °C
°C
Parameter Symbol Min Max Units
DC Power Supplies: Analog
Logic
Digital
VA
VL
VD
-0.3
-0.3
-0.3
+6.0
+6.0
+6.0
V
V
V
Input Current (Note 2) Iin -10 +10 mA
Analog Input Voltage (Note 3) VIN - 0.7 VA + 0.7 V
Digital Input Voltage (Note 3) VIND -0.7 VL + 0.7 V
Ambient Operating Temperature (Power Applied) TA-50 +95 °C
Storage Temperature Tstg -65 +150 °C
CS5361
DS467F2 5
ANALOG CHARACTERISTICS (CS5361-KSZ/KZZ)
Test conditions (unless otherwise specified): Input test signal is a 1 kHz sine wave; measurement bandwidth is
10 Hz to 20 kHz.
Notes: 4. Referred to the typical full-scale input voltage.
5. Measured between AIN+ and AIN-
Parameter Symbol Min Typ Max Unit
Single Speed Mode Fs = 48 kHz
Dynamic Range A-weighted
unweighted 108
105 114
111 -
-dB
dB
Total Harmonic Distortion + Noise (Note 4)
-1 dB
-20 dB
-60 dB
THD+N -
-
-
-105
-91
-51
-99
-
-
dB
dB
dB
Double Speed Mode Fs = 96 kHz
Dynamic Range A-weighted
unweighted
40 kHz bandwidth unweighted
108
105
-
114
111
108
-
-
-
dB
dB
dB
Total Harmonic Distortion + Noise (Note 4)
-1 dB
-20 dB
-60 dB
40 kHz bandwidth -1 dB
THD+N -
-
-
-
-105
-91
-51
-102
-99
-
-
-
dB
dB
dB
dB
Quad Speed Mode Fs = 192 kHz
Dynamic Range A-weighted
unweighted
40 kHz bandwidth unweighted
108
105
-
114
111
108
-
-
-
dB
dB
dB
Total Harmonic Distortion + Noise (Note 4)
-1 dB
-20 dB
-60 dB
40 kHz bandwidth -1 dB
THD+N -
-
-
-
-105
-91
-51
-102
-99
-
-
-
dB
dB
dB
dB
Dynamic Performance for All Modes
Interchannel Isolation - 110 - dB
DC Accuracy
Interchannel Gain Mismatch - 0 .1 - dB
Gain Error -2 - 2 %
Gain Drift -100 - 100 ppm/°C
Offset Error HPF enabled
HPF disabled -
--
-0
100 LSB
LSB
Analog Input Characteristics
Full-scale Input Voltage 1.10*VA 1.13*VA 1.15*VA Vpp
Input Impedance (Differential) (Note 5) 7.5 - - k
Common Mode Rejection Ratio CMRR - 82 - dB
CS5361
6DS467F2
ANALOG CHARACTERISTICS (CS5361-DZZ)
Test conditions (unless otherwise specified): Input test signal is a 1 kHz sine wave; measurement bandwidth is
10 Hz to 20 kHz.
Parameter Symbol Min Typ Max Unit
Single Speed Mode Fs = 48 kHz
Dynamic Range A-weighted
unweighted 106
103 114
111 -
-dB
dB
Total Harmonic Distortion + Noise (Note 4)
-1 dB
-20 dB
-60 dB
THD+N -
-
-
-105
-91
-51
-95
-
-
dB
dB
dB
Double Speed Mode Fs = 96 kHz
Dynamic Range A-weighted
unweighted
40 kHz band width unwe ig ht ed
106
103
-
114
111
108
-
-
-
dB
dB
dB
Total Harmonic Distortion + Noise (Note 4)
-1 dB
-20 dB
-60 dB
40 kHz bandwidth -1 dB
THD+N -
-
-
-
-105
-91
-51
-102
-95
-
-
-
dB
dB
dB
dB
Quad Speed Mode Fs = 192 kHz
Dynamic Range A-weighted
unweighted
40 kHz band width unwe ig ht ed
106
103
-
114
111
108
-
-
-
dB
dB
dB
Total Harmonic Distortion + Noise (Note 4)
-1 dB
-20 dB
-60 dB
40 kHz bandwidth -1 dB
THD+N -
-
-
-
-105
-91
-51
-102
-95
-
-
-
dB
dB
dB
dB
Dynamic Performance for All Modes
Interchannel Isolation - 110 - dB
Interchannel Phase Deviation - 0.0001 - Degree
DC Accuracy
Interchannel Gain Mismatch - 0.1 - dB
Gain Error -5 - 5 %
Gain Drift -100 - 100 ppm/°C
Offset Error HPF enabled
HPF disabled -
--
-0
100 LSB
LSB
Analog Input Characteristics
Full-scale Input Voltage 1.07*VA 1.13*VA 1.18*VA Vpp
Input Impedance (Differential) (Note 5) 7.5 - - k
Common Mode Rejection Ratio CMRR - 82 - dB
CS5361
DS467F2 7
DIGITAL FILTER CHARACTERISTICS
Notes: 6. The filter frequency response scales precisely with Fs.
7. Response shown is for Fs equal to 48 kHz. Filter characteristics scale with Fs.
Parameter Symbol Min Typ Max Unit
Single Speed Mode (2 kHz to 51 kHz sample rates)
Passband (-0.1 dB) (Note 6) 0 - 0.47 Fs
Passband Ripple -0.1 - 0.035 dB
St op ba nd (Note 6) 0.58 - - Fs
Stopband Attenuation -95 - - dB
Total Group Delay (Fs = Output Sample Rate) tgd -12/Fs- s
Interchannel Phase Deviation - 0.0001 - Deg
Double Speed Mode (50 kHz to 102 kHz sample rates)
Passband (-0.1 dB) (Note 6) 0 - 0.45 Fs
Passband Ripple -0.1 - 0.035 dB
St op ba nd (Note 6) 0.68 - - Fs
Stopband Attenuation -92 - - dB
Total Group Delay (Fs = Output Sample Rate) tgd -9/Fs- s
Interchannel Phase Deviation - 0.0001 - Deg
Quad Speed Mode (100 kHz to 204 kHz sample rates)
Passband (-0.1 dB) (Note 6) 0 - 0.24 Fs
Passband Ripple -0.1 - 0.035 dB
St op ba nd (Note 6) 0.78 - - Fs
Stopband Attenuation -92 - - dB
Total Group Delay (Fs = Output Sample Rate) tgd -5/Fs- s
Interchannel Phase Deviation - 0.0001 - Deg
High-pas s Fi lt er Cha r ac te ris ti cs
Frequency Response -3.0 dB
-0.13 dB (Note 7) -1
20 -
-Hz
Hz
Phase Deviation @ 20 Hz (Note 7) - 10 - Deg
Passband Ripple - - 0 dB
Filter Settling Time 105/Fs s
CS5361
8DS467F2
Figure 1. Single Speed Mode Stopband Rejection Figure 2. Single Speed Mode Tran sition Band
-140
-130
-120
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
0
0.00.10.20.30.40.50.60.70.80.91.0
Frequency (normalized to Fs)
Amplitude (d B)
-140
-130
-120
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
0
0.40 0.42 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60
Frequency (normalized to Fs)
Amplitude (dB)
Figure 3. Single Speed Mode Transition Band (Detail) Figure 4. Single Speed Mode Passband Ripple
-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
0.45 0.46 0.47 0.48 0.49 0.50 0.51 0.52 0.53 0.54 0.55
Frequency (normalize d to Fs)
Amplitude (dB)
-0.10
-0.08
-0.05
-0.03
0.00
0.03
0.05
0.08
0.10
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
Frequency ( normalized to Fs )
Amplitude (dB)
Figure 5. Double Speed Mode Stopband Rejection Figure 6. Double Speed Mode Transition Band
-140
-130
-120
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Frequency (normalized to Fs)
Amplitude (dB)
-140
-130
-120
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
0
0.40 0.43 0.45 0.48 0.50 0.53 0.55 0.58 0.60 0.63 0.65 0.68 0.70
Frequency (normalized to Fs)
Amplitude (dB)
CS5361
DS467F2 9
Figure 7. Double Speed Mode Transition Band (Detail) Figure 8. Double Speed Mode Passband Ripple
-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
0.40 0.43 0.45 0.48 0.50 0.53 0.55
Frequency ( nor m alized to Fs)
Amplitude (dB)
-0.10
-0.08
-0.05
-0.03
0.00
0.03
0.05
0.08
0.10
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
Frequency (normalized to Fs)
Amplitude (dB)
Figure 9. Quad Speed Mode Stopband Rejection Figure 10. Quad Speed Mode Transition B and
Amplitude (dB)
Frequency (normalized to Fs)
Amplitude (dB)
Frequency (normalized to Fs)
Figure 11. Quad Speed Mode Tran sition Band (Detail) Figure 12. Quad Speed Mode Passband Ripple
Frequency (no rmalized to Fs)
Amplitude (dB)
Amplitude (dB)
Frequency (normalized to Fs)
CS5361
10 DS467F2
DC ELECTRICAL CHARACTERISTICS
GND = 0 V, all voltages with respect to ground. MCLK=12.288 MHz; Master Mode.
Notes: 8. Power Down Mode is defined as RST = Low with all clocks and data lines held static.
9. Valid with the recommended capacitor values on FILT+ and VQ as shown in the Typical Connection
Diagram.
DIGITAL CHARACTERISTICS
THERMAL CHARACTERISTICS
Parameter Symbol Min Typ Max Unit
Power Supply Current VA = 5 V
(Normal Operation) VL,VD = 5 V
VL,VD = 3.3 V
IA
ID
ID
-
-
-
17.5
22
14.5
21.5
27.5
17
mA
mA
mA
Power Supply Current VA = 5 V
(Power-Down Mode) (Note 8) VL,VD = 5 V IA
ID
-
-100
100 -
-µA
µA
Power Consumption
(Normal Operation) VA, VD, VL = 5 V
VA = 5 V, VL, VD = 3.3 V
(Power-Down Mode)
-
-
-
-
-
-
198
135
1
243
161
-
mW
mW
mW
Power Supply Rejection Ratio (1 kHz) (Note 9) PSRR - 65 - dB
VQ Nominal Voltage
Output Impedance
Maximum allowable DC current source/sink
-
-
-
2.5
25
0.01
-
-
-
V
k
mA
Filt+ Nominal Voltage
Output Impedance
Maximum allowable DC current source/sink
-
-
-
5
15
0.01
-
-
-
V
k
mA
Parameter Symbol Min Typ Max Units
High-Level Input Voltage (% of VL) VIH 70% - - V
Low-Level Input Voltage (% of VL) VIL --30%V
High-Level Output Voltage at Io = 100 µA(% of VL)V
OH 70% - - V
Low-Level Output Voltage at Io = 100 µA(% of VL)V
OL --15%V
OVFL Current Sink Iovfl --4.0mA
Input Leakage Current (all pins except SCLK and LRCK) Iin -10 - 10 µA
Input Leakage Current (SCLK and LRCK) Iin -25 - 25 µA
Parameter Symbol Min Typ Max Unit
Allowable Junction Temperature - - 135 °C
Junction to Ambient Thermal Impedance
(Multi-layer PCB) TSSOP
(Multi-layer PCB) SOIC
(Single-layer PCB) TSSOP
(Single-layer PCB) SOIC
θJA-TM
θJA-SM
θJA-TS
θJA-SS
-
-
-
-
70
60
105
80
-
-
-
-
°C/W
°C/W
°C/W
°C/W
CS5361
DS467F2 11
SWITCHING CHARACTERISTICS - SERIAL AUDIO PORT
Logic “0” = GND = 0 V; Logic “1” = VL, CL = 20 pF
Parameter Symbol Min Typ Max Unit
Output Sample Rate Single S peed Mode
Double Speed Mode
Quad Speed Mode
Fs
Fs
Fs
2
50
100
-
-
-
51
102
204
kHz
kHz
kHz
OVFL to LRCK edge setup time tsetup 16/fsclk --s
OVFL to LRCK edge hold time thold 1/fsclk --s
OVFL time-out on overrange condition
Fs = 44.1, 88.2, 176.4 kHz
Fs = 48, 96, 192 kHz -
-740
680 -
-ms
ms
MCLK Specifications
MCLK Period tclkw 38 - 1953 ns
MCLK Pulse Duty Cycle 40 50 60 %
Master Mode
SCLK falling to LRCK tmslr -20 - 20 ns
SCLK falling to SDOUT valid tsdo 0 - 32 ns
SCLK Duty Cycle - 50 - %
Slave Mode
Single Speed
Output Sample Rate Fs 2 - 51 kHz
LRCK Duty Cycle 40 50 60 %
SCLK Period tsclkw 153 - - ns
SCLK Duty Cycle 45 50 55 %
SCLK falling to SDOUT valid tdss - - 32 ns
SCLK falling to LRCK edge tslrd -20 - 20 ns
Double Speed
Output Sample Rate Fs 50 - 102 kHz
LRCK Duty Cycle 40 50 60 %
SCLK Period tsclkw 153 - - ns
SCLK Duty Cycle 45 50 55 %
SCLK falling to SDOUT valid tdss - - 32 ns
SCLK falling to LRCK edge tslrd -20 - 20 ns
Quad Speed
Output Sample Rate Fs 100 - 204 kHz
LRCK Duty Cycle 40 50 60 %
SCLK Period tsclkw 77 - - ns
SCLK Duty Cycle 45 50 55 %
SCLK falling to SDOUT valid tdss - - 32 ns
SCLK falling to LRCK edge tslrd -8 - 3 ns
CS5361
12 DS467F2
Figure 13. Master Mode, Left Justified SAI Figure 14. Slave Mode, Left Justified SAI
SC LK output
tmslr
SDOUT
tsdo
LRCK
output
MSB MSB-1
CLK input
LRCK input
dss
t
MSB MSB-1 MSB-2
tsclkw
SDOUT
srdl
t
Figure 15. Master Mode, I2S SAI Figure 16. Slave Mode, I2S SAI
SCLK input
LRCK input
MSB MSB-1
tsclkw
SDOUT
srdl
t
dss
t
SCLK input
LRCK input
MSB MSB-1
tsclkw
SDOUT
srdl
t
dss
t
OVFL
tsetup
LRCK
thold
Figure 17. OVFL Output Timing
CS5361
DS467F2 13
Figure 18. Left Justified Serial Audio Inter fa ce
SDATA 23 22 7 623 22
SCLK
LRCK
23 2254321087654321089 9
Left Channel Right Channel
Figure 19. I2S Serial Audio Interface
SDATA 23 22 8 723 22
SCLK
LRCK
23 2265432108765432109 9
Left Channel Right Channel
Figure 20. OVFL Output Timing, I2S Format
LRCK
OVFL
SCLK
OVFL_R OVFL_L OVFL_R
Figure 21. OVFL Output Timing, Left-Justified Format
LRCK
OVFL
SCLK
OVFL_R OVFL_L OVFL_R
CS5361
14 DS467F2
2.0 PIN DESCRIPTIONS
RST 124FILT+
M/S 223REFGND
LRCK 322VQ
SCLK 421AINR+
MCLK 520AINR-
VD 619VA
GND 718GND
VL 817AINL-
SDOUT 916AINL+
MDIV 10 15 OVFL
HPF 11 14 M1
I2S/LJ 12 13 M0
Pin Name #Pin Description
RST 1Reset (Input) - The device enters a low power mo de when low.
M/S 2Master/Slave Mode (Input) - Selects operation as either clock master or slave.
LRCK 3Left Right Clock (Input/Output) - Determines which channel, Left or Right, is currently active on the
serial audio data line.
SCLK 4Serial Clock (Input/Output) - Serial clock for the serial audio interface.
MCLK 5Master Clock (Input) - Clock source for the delta-sigma modulator and digital filters.
VD 6Digital Power (Input) - Positive power supply for the digital section.
GND 7,18 Ground (Input) - Ground reference. Must be connected to anal og ground.
VL 8Logic Power (Input) - Positive power for the digital input/output.
SDOUT 9Serial Audio Data Output (Output) - Output for two’s complement serial audio data.
MDIV 10 MCLK Divider (Input) - Enables a master clock divide by two function.
HPF 11 High-pass Filter Enab le (Input) - Enables the Digital High-Pass Filter.
I2S/LJ 12 Serial Audio Interface Format Select (Input) -Selects either the left-justified or I2S format for the SAI.
M0
M1 13,
14 Mode Selection (Input) - Determines the operational mode of the device.
OVFL 15 Overflow (Output, open drain) - Detects an overflow condition on both left and right channels.
AINL+
AINL- 16,
17 Differential Left Channel Analog Input (Input) - Signals are presented differentially to the delta-sigma
modulators via the AINL+/- pins.
VA 19 Analog Power (Input) - Positive power supply for the analog section.
AINR-
AINR+ 20,
21 Differential Right Channel Analog Input (Input) -Signals are presented differentially to the delta-sigma
modulators via the AINR+/- pins.
VQ 22 Quiescent Voltage (Output) - Filter connection for the internal quiescent reference voltage.
REF_GND 23 Reference Ground (Input) - Ground reference for the internal sampling circui ts.
FILT+ 24 Positive Voltage Reference (Output) - Positive reference voltage for the internal sampling circuits.
CS5361
DS467F2 15
FILT+
AINL+
AINL-
V
D
0.01µ
F
A/D CONVERTER
SCLK
CS5361
M/S
MCLK
AINR+
AINR-
VQ
**47 µ
F+
RST
VA V L
+5V
1µ
F+ 5Vto2.5 V
5.1
1µ
F
+
+ +
SDOUT
GND
I2S/LJ
LRCK
GND
Power Down
and M ode
Settings
Audio Data
Processor
TimingLogic
andClock
0.01µ
F
0.01µ
F0.01 µF
HPF
M0
M1
REFGND
MDIV
+ 5 V to 3 .3 V 1µ
F0.01µF
1µ
F
+
Analog
Input
Buffer
(Figure 24)
Analog
Input
Buffer
(Figure 24)
OVFL
10 k
VL
*
0.01µ
F
* Resistor m ay only
be used if VD is
derived from V A. If
used, do not drive any
other logic from V D.
3.0 TYPICAL CONNECTION DIAGRAM
Figure 22. Typical Connection Diagram
CS5361
16 DS467F2
4.0 APPLICATIONS
4.1 Operational Mode/Sample Rate Range Select
The output sample rate, Fs, can be adjusted from 2 kHz to 204 kHz. The CS5361 must be set to the proper speed
mode via the mode pins, M1 and M0. Refer to Table 1.
4.2 System Clocking
The device supports operation in either Master Mode, where the left/right and serial clocks are synchronously gen-
erated on-chip, or Slave Mode, which requires external generation of the left/right and serial clocks. The d evice also
includes a master clock divider in Master Mode where the master clock will be internally divided prior to any other
internal circuitry when MDIV is enabled, se t to logic 1. In Slave Mode, the MDIV pin needs to be disabled, set to logic
0.
4.2.1 Slave Mode
LRCK and SCLK opera te as inputs in Slave mode. The left/right clock must be synchrono usly derived from the mas-
ter clock and be equal to F s. It is also recommend ed that the serial clock be synchro nously derived fr om the master
clock and be equal to 64x Fs to maximize system performance. Refer to Table 2 for required clock ratios.
Table 2. CS5361 Slave Mode Clock Ratios
M1 (Pin 14) M0 (Pin 13) MODE Output Sample Rate (Fs)
0 0 Single Speed Mode 2 kHz - 51 kHz
0 1 Double Speed Mode 50 kHz - 102 kHz
1 0 Quad Speed Mode 100 kHz - 204 kHz
11 Reserved
Table 1. CS5361 Mode Control
Single Speed Mode
Fs = 2 kHz to 51 kHz Double Speed Mode
Fs = 50 kHz to 102 kHz Quad Speed Mode
Fs = 100 kHz to 204 kHz
MCLK/LRCK Ratio 256x, 512x 128x, 256x 128x
SCLK/LRCK Ratio 32x, 64x, 128x 32x, 64x 32x, 64x
CS5361
DS467F2 17
4.2.2 Master Mode
In Master mode, LRCK an d SCLK operate as outputs. T he left/rig ht and serial clocks are in ternally derived from the
master clock with the left/right clock equal to Fs and the serial clock equal to 64x Fs, as shown in Figure 23. Refer
to Table 3 for common master clock frequencies.
÷ 128
÷ 256
÷ 64
M0M1
LRCK Output
(Equal to Fs)
Single
Speed
Quad
Speed
Double
Speed
00
01
10
÷ 2
÷ 4
÷ 1
SCLK Output
Single
Speed
Quad
Speed
Double
Speed
00
01
10
÷ 2
÷ 1 0
1
MCLK
MDIV
Figure 23. CS5361 Master Mode Clocking
SAMPLE RATE (kHz) MDIV = 0
MCLK (MHz) MDIV = 1
MCLK (MHz)
32 8.192 16.384
44.1 11.2896 22.5792
48 12.288 24.576
64 8.192 16.384
88.2 11.2896 22.5792
96 12.288 24.576
176.4 11.2896 22.5792
192 12.288 24.576
Table 3. CS5361 Common Mast er Clock Frequencies
CS5361
18 DS467F2
4.3 Power-up Sequence
Reliable power-up can be accomplished by keeping the device in reset until the power supplies, clocks and config-
uration pins are stable. It is also recommended that rese t be enabled if the analog or digital sup plies drop below the
minimum specified operating voltages to prevent power glitch related issues.
The internal reference voltage must be stable for the device to produce valid data. Therefore, there is a delay be-
tween the release of reset and the generation of valid output, due to the finite output impedance of FILT+ and the
presence of the external capacitance.
4.4 Analog Connections
The analog modulator samples the input at 6.144 MHz. The digital filter will reject signals within the stopband of the
filter. However, there is no rejection for input signals which are (n ×6.144 MHz) the digital passband frequency,
where n=0,1,2,...Refer to Figure 24 which shows the suggested filter that will attenuate any noise energy at
6.144 MHz, in addition to providing the optimum sou rce impedance fo r the modulators. The u se of capacitors wh ich
have a large voltage coefficient (such as general purpose ceramics) must be avoided since these can degrade signal
linearity.
Figure 24. CS5361 Recommended Analog Input Buffer
VQ
+
634
634
91
91
+
-
-
2700 pF
470 pF
470 pF
COG
COG
10 uF
10 uF
ADC AIN+
ADC AIN-
AIN+
AIN-
COG
100k
10 k
10 k
100k
CS5361
DS467F2 19
4.5 High-pass Filter and DC Offset Calibration
The operational amplifie rs in the input circuitry driving the CS5361 may generate a small DC offset into the A/D con-
verter. The CS5361 includ es a high-pass filter afte r the de cimator to re move any DC offset which could resu lt in re-
cording a DC level, possibly yielding “clicks” when switching between devices in a multichannel system.
The high-pass filter continuously subtracts a measure of the DC offset fro m the ou tput of the de cimation filter. If the
HPF pin is taken high during normal op eration, the current value of the DC offset register is frozen and this DC offset
will continue to be subtracted from the conversion result. This feature makes it possible to perform a system DC
offset calibration by:
1) Running the CS5361 with the high- pass filter enabled until the filter settles. See the Digital Filter Char acter-
istics for filter settling time.
2) Disabling the high-pass filter and freezing the stored DC offset.
A system calibration performed in this way will eliminate offsets anywhere in the signal path between the calibration
point and the CS5361.
4.6 Overflow Detection
The CS5361 includes overflow detection on both the left and right channels. This time multiplexed information is
presented as open dr ain, active low on pin 15, OVFL. The OVFL_L and OVFL_R da ta will go to a logical low as soon
as an overrange condition in either chan nel is detected. The data will remain low as specified in the Switching Char-
acteristics - Serial Audio Port section. This ensures sufficient time to detect an overra nge condition regardless of the
speed mode. After the timeout, the OVFL_L and OVFL_R data will return to a logical high if there has not been any
other overrange condition detected. Please note that an overrange condition on either channel will restart the time-
out period for both channels.
4.6.1 OVFL Output Timing
In left-justified format, the OVFL pin is updated one SCLK period after an LRCK transition. In I2S format, the OVFL
pin is updated two SCLK peri ods after an LRCK transition. Refer to Figures 23 and 2 4. In both cases the OVFL data
can be easily demultiplexed by using the LRCK to latch the data. In left-justified format, the rising edge of LRCK
would latch the right channel overflow status, and the falling edge of LRCK would latch the left channel overflow
status. In I2S format, the falling edge of LRCK would latch the right channel overflow status and the rising edge of
LRCK would latch the left channel overflow status.
4.7 Grounding and Power Supply Decoupling
As with any high resolution converter, the CS5361 requires careful attention to power supply and grounding arrange-
ments if its potential performance is to be realized. Figure 22 shows the recommended power arrangements, with
VA and VL connected to clean supplies. VD, which powers the digital filter, may be run from the system logic supply
or may be powered from the analog supply via a resistor. In this case, no additional devices should be powered from
VD. Decoupling c apacitors should be as near to the AD C as possible, with the low value ceramic capacitor being
the nearest. All signals, especially clocks, sh ould be kept away from the FILT+ and VQ pins in order to avoid un-
wanted coupling into the modulators. The FILT+ and VQ decoupling capacitors, particularly the 0.01 µF, must be
positioned to minimize the electrical path from FILT+ and REFGND. The CDB5361 evaluation board demonstr ates
the optimum layout and power supply ar rangements. To minimize digital noise, con nect the ADC digital outputs only
to CMOS inputs.
4.8 Synchronization of Multiple Devices
In systems where multiple ADCs are required, care must be taken to achieve simultaneous sampling. To ensure
synchronous sampling, the MCLK and LRCK must be the same for all of the CS5361’s in the system. If on ly one
master clock source is needed, one solution is to place one CS5361 in Master mode, and slave all of the other
CS5361’s to the one master. If multiple master clock so urces are needed, a possible solution would be to supply all
clocks from the same external source and time the CS53 61 reset with the inactive edge of MCLK. This will ensure
that all converters begin sampling on the same clock edge.
CS5361
20 DS467F2
5.0 PARAMETER DEFINITIONS
Dynamic Range
The ratio of the rms valu e of the signal to the rms sum of all other spectral components o ver the specified
bandwidth. Dynamic Range is a signal-to-noise ratio measurement over the specified bandwidth made
with a -60 dBFS signal. 60 dB is added to resulting me asureme nt to refer th e measurement to full-scale.
This technique ensures that th e distortion components are below the noise level and do not affect the
measurement. This measurement technique has been accepted by the Audio Engineering Society,
AES17-1991, and the Electronic Industries Association of Japan, EIAJ CP-307. Expressed in decibels.
Total Harmonic Distortion + Noise
The ratio of the rms valu e of the signal to the rms sum of all other spectral components o ver the specified
bandwidth (typically 10 Hz to 20 kHz), including distortion components. Expressed in decibels. Measured
at -1 and -20 dBFS as suggested in AES17-1991 Annex A.
Frequency Response
A measure of the amplitude response variation from 10 Hz to 20 kHz relative to the amplitude response
at 1 kHz. Units in decibels.
Interchannel Isolation
A measure of crosstalk between the left and right channels. Measured for each channel at the converter's
output with no signal to the input under test and a full-scale signal applied to the other channel. Units in
decibels.
Interchannel Gain Mismatch
The gain difference between left and right channels. Units in decib els.
Gain Error
The deviation from the nominal full-scale analog output for a full-scal e digital input.
Gain Drift
The change in gain value with temperature. Units in ppm/°C.
Offset Error
The deviation of the mid- scale transition (111...111 to 000...000) from the ideal. Units in mV.
CS5361
DS467F2 21
6.0 PACKAGE DIMENSIONS
INCHES MILLIMETERS
DIM MIN MAX MIN MAX
A 0.093 0.104 2.35 2.65
A1 0.004 0.012 0.10 0.30
B 0.013 0.020 0.33 0.51
C 0.009 0.013 0.23 0.32
D 0.598 0.614 15.20 15.60
E 0.291 0.299 7.40 7.60
e 0.040 0.060 1.02 1.52
H 0.394 0.419 10.00 10.65
L 0.016 0.050 0.40 1.27
24L SOIC (300 MIL BODY) PACKAGE DRAWING
D
HE
b
A1
A
c
L
SEATING
PLANE
1
e
CS5361
22 DS467F2
Notes: 1.“D” and “E1” are refere nce datums and do no t in cluded mold flash or protrusions, but do include mold
mismatch and are measure d at the parting line, mold flash or pr otrusions shall not exceed 0.20 mm per
side.
2.Dimension “b” does n ot include d ambar protru sion/intrusion. Allowable dambar protrusion shall b e
0.13 mm total in excess of “b” dimension at maximum material condition. Dambar intrusion shall not
reduce dimension “b” by more than 0.07 mm at least material condition.
3.These dimensions apply to the flat section of the lead between 0.10 and 0.25 mm from lead tips.
INCHES MILLIMETERS NOT
E
DIM MIN NOM MAX MIN NOM MAX
A -- -- 0.043 -- -- 1.10
A1 0.002 0.004 0.006 0.05 -- 0.15
A2 0.03346 0.0354 0.037 0.85 0.90 0.95
b 0.00748 0.0096 0.012 0.19 0.245 0.30 2,3
D 0.303 0.307 0.311 7.70 7.80 7.90 1
E 0.248 0.2519 0.256 6.30 6.40 6.50
E1 0.169 0.1732 0.177 4.30 4.40 4.50 1
e -- 0.026 BSC -- -- 0.65 BSC --
L 0.020 0.024 0.028 0.50 0.60 0.70
JEDEC #: MO-153
Controlling Dimension is Millimeters.
24L TSSOP (4.4 mm BODY) PACKAGE DRAWING
E
N
123
eb2A1
A2 A
D
SEATING
PLANE
E11
L
SIDE VIEW
END VIEW
TOP VIEW
CS5361
DS467F2 23
7.0 REVISION HISTORY
Release Date Changes
PP3 Mar 2003 Preliminary datasheet.
PP4 Sept 2004 Include lead-free device ordering info.
F1 Jan 2005 Improve Gain Error specification under Analog Characteri stics.
Specify Full-scale Input Voltage in terms of VA under Analog Characteristics.
Update Differential Input Impedance under Analog Characteristics.
Increase maximum THD+N rating for automotive grade devices.
Increase maxim u m Pow er -Su p ply Curr en t, I A, un de r DC Electric al Ch ar ac ter ist ics.
Reduce maximum Power Consumption under DC Electrical Characteristics.
Update FILT+ Output Impedance specification under DC Electrical Characteristics.
Extend maximum Fs in Single-Speed Mode to 51 kHz.
Extend maximum Fs in Double-Speed Mode to 102 kHz.
Extend maximum Fs in Quad-Speed Mode to 204 kHz.
Decrease maximum SCLK falling to LRCK edge specification in Quad-Speed Mode.
Replace min im um MC LK hig h/ l ow timin g spe c ifications with duty cycle specification.
Replace minimum SCLK high/low timing specifications with duty cycle specification.
F2 Feb 2005 Correct Recommended Analog Input Circuit.
Table 4. Revision History
Contacting Cirrus Lo gic Support
For all product questions and inquiries contact a Cirrus Logic Sales Representative.
To find one nearest you go to www.cirrus.com
IMPORTANT NOTICE
Cirrus Logic, Inc. and its sub sidiaries ("C irrus") believe that the infor mation contai ned in this do cumen t is accurate and reliable. Howeve r, the information is subject
to change wit hout not ice an d is pr ovi ded "AS IS" wi th out warr anty of any kin d (expr ess or impl i ed). Cus to mers ar e advi sed to ob tain the latest version of relevant
information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and cond itions of sale
supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by
Cirrus for the use of this information , including use of this informatio n as the basis for manu facture or sale of any items, or for infringement of patents or other rights
of third parties. This docum ent is the property of Cirrus and by furni shing this inform ation, Cirrus gran ts no license, express or implied under any patents, mask work
rights, cop yrig hts, tr adema rks, tr ade secr ets or o ther int el lect ual pro pert y ri ght s. Ci rrus owns the copy righ ts as soci ated wit h th e informat ion con tained he rein an d
gives consent for co pies to be made of the informatio n only for use within yo ur organization w ith respect to Cirrus integ rated circuits or other pr oducts of Cirrus. This
consent does not exte nd to other copying su ch as co pying for genera l distr ibution, advertising or pro m otional purposes, or for creating any wo rk for resale.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROP-
ERTY OR ENVIRONMENTAL DAMAGE ("CRIT ICAL APPLICATIONS"). CI RRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR
USE IN AIRCRAFT SYSTEMS, MILITARY APPLICATIONS, PRODUCT S SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY
DEVICES, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDER-
STOOD TO BE FULLY AT THE CUSTOMER'S RISK AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUD-
ING THE IMPLIED WARRANTIES OF MERCHANT ABILITY AND FITNESS FO R PARTICULAR PU RPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT
IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER'S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL
APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND
OTHER AGENTS FROM ANY AND ALL LI ABILI TY, IN CLUDING ATT ORNEYS' F EES AND COSTS, T HAT MAY RESULT FROM OR ARISE IN CONNECTION
WITH THESE USES.
Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks
or service marks of their respective owners.