AP1332EU Advanced Power Electronics Corp. N-CHANNEL ENHANCEMENT MODE POWER MOSFET Simple Gate Drive D Small Package Outline 2KV ESD Rating(Per MIL-STD-883D) BVDSS 20V RDS(ON) 600m ID 600mA S SOT-323 G Description D The Advanced Power MOSFETs from APEC provide the designer with the best combination of fast switching, low on-resistance and cost-effectiveness. G S Absolute Maximum Ratings Symbol Parameter VDS Drain-Source Voltage VGS Gate-Source Voltage ID@TA=25 ID@TA=70 Rating Unit 20 V 6 V 3 600 mA 3 470 mA Continuous Drain Current Continuous Drain Current 1,2 IDM Pulsed Drain Current 2.5 A PD@TA=25 Total Power Dissipation 0.35 W Linear Derating Factor 0.003 W/ TSTG Storage Temperature Range -55 to 150 TJ Operating Junction Temperature Range -55 to 150 Thermal Data Symbol Rthj-a Parameter Thermal Resistance Junction-ambient Data and specifications subject to change without notice 3 Max. Value Unit 360 /W 200712041 AP1332EU Electrical Characteristics@Tj=25oC(unless otherwise specified) Symbol Parameter Test Conditions Min. Typ. Max. Unit 20 - - V BVDSS Drain-Source Breakdown Voltage BVDSS/Tj Breakdown Voltage Temperature Coefficient Reference to 25, ID=1mA - 0.02 - V/ RDS(ON) Static Drain-Source On-Resistance VGS=4.5V, ID=600mA - - 600 m VGS=2.5V, ID=400mA - - 850 m VDS=VGS, ID=250uA 0.5 - 1.2 V VGS(th) Gate Threshold Voltage gfs Forward Transconductance IDSS VDS=5V, ID=600mA - 1 - S o VDS=20V, VGS=0V - - 1 uA o Drain-Source Leakage Current (Tj=70 C) VDS=16V ,VGS=0V - - 10 uA Gate-Source Leakage VGS=6V - - 10 uA ID=600mA - 1.3 2 nC Drain-Source Leakage Current (Tj=25 C) IGSS VGS=0V, ID=250uA 2 Qg Total Gate Charge Qgs Gate-Source Charge VDS=16V - 0.3 - nC Qgd Gate-Drain ("Miller") Charge VGS=4.5V - 0.5 - nC VDS=10V - 21 - ns 2 td(on) Turn-on Delay Time tr Rise Time ID=600mA - 53 - ns td(off) Turn-off Delay Time RG=3.3,VGS=5V - 100 - ns tf Fall Time RD=16.7 - 125 - ns Ciss Input Capacitance VGS=0V - 38 60 pF Coss Output Capacitance VDS=10V - 17 - pF Crss Reverse Transfer Capacitance f=1.0MHz - 12 - pF Min. Typ. Max. Unit - - 1.2 V Source-Drain Diode Symbol VSD Parameter 2 Forward On Voltage Notes: 1.Pulse width limited by Max. junction temperature. 2.Pulse width <300us , duty cycle <2%. 3.Surface mounted on FR4 board, t 10 sec. Test Conditions IS=300mA, VGS=0V AP1332EU 2.5 2.5 5.0V 4.5V 3.5V ID , Drain Current (A) 2.0 T A = 150 o C 1.5 2.5V 1.0 V G =2.0V 1.5 2.5V 1.0 V G =2.0V 0.5 0.5 0.0 0.0 0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.5 1.0 1.5 2.0 2.5 V DS , Drain-to-Source Voltage (V) V DS , Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 1000 1.8 I D = 0.4 A I D =0.6A V G =4.5V 1.6 o T A =25 C Normalized R DS(ON) 800 RDS(ON) (m ) 5.0V 4.5V 3.5V 2.0 ID , Drain Current (A) T A =25 o C 600 1.4 1.2 1.0 400 0.8 0.6 200 2 3 4 -50 5 0 50 100 150 o V GS , Gate-to-Source Voltage (V) T j , Junction Temperature ( C) Fig 3. On-Resistance v.s. Gate Voltage Fig 4. Normalized On-Resistance v.s. Junction Temperature 2.0 1.0 0.8 Normalized VGS(th) (V) 1.5 IS(A) 0.6 T j =150 o C T j =25 o C 0.4 1.0 0.5 0.2 0.0 0.0 0 0.2 0.4 0.6 0.8 1 1.2 V SD , Source-to-Drain Voltage (V) Fig 5. Forward Characteristic of Reverse Diode 1.4 -50 0 50 100 150 o T j , Junction Temperature ( C) Fig 6. Gate Threshold Voltage v.s. Junction Temperature AP1332EU f=1.0MHz 12 100 V DS =10V V DS =12V V DS =16V 8 C iss C (pF) VGS , Gate to Source Voltage (V) I D =0.6A 10 6 4 C oss 2 C rss 0 10 0.0 0.5 1.0 1.5 2.0 2.5 1 3.0 3 5 7 9 11 V DS , Drain-to-Source Voltage (V) Q G , Total Gate Charge (nC) Fig 7. Gate Charge Characteristics Fig 8. Typical Capacitance Characteristics 10 Normalized Thermal Response (R thja) 1 100us ID (A) 1 1ms 0.1 10ms o T A =25 C Single Pulse 100ms DC Duty factor=0.5 0.2 0.1 0.05 0.1 0.02 PDM 0.01 t Single Pulse T Duty factor = t/T Peak Tj = PDM x Rthja + Ta 0.01 0.01 0.1 1 10 100 0.0001 0.001 0.01 V DS , Drain-to-Source Voltage (V) Fig 9. Maximum Safe Operating Area 0.1 1 10 100 1000 t , Pulse Width (s) Fig 10. Effective Transient Thermal Impedance VG VDS 90% QG 4.5V QGS QGD 10% VGS td(on) tr td(off) tf Fig 11. Switching Time Waveform Charge Fig 12. Gate Charge Waveform Q