V23990-P623-F24-PM preliminary datasheet fast PACK 0 H 2nd gen 600V / 50A Features flow 0 housing Low inductive design Clip-in PCB mounting Target Applications Schematic Distributed Power Generation Welding Types V23990-P623-F24 P623-F24 Maximum Ratings Parameter Condition Symbol Value Unit 600 V 43 50 A 150 A 79 120 W 20 V 6 Ps 175 C Transistor H-bridge (IGBT) Collector-emitter break down voltage DC collector current VCE IC Tj=Tjmax Repetitive peak collector current Icpuls tp limited by Tjmax Power dissipation per IGBT Ptot Tj=Tjmax Gate-emitter peak voltage VGE SC withstand time* tSC Maximum junction temperature Th=80C Tc=80C Th=80C Tc=80C Tj=125C VGE=15V VCC=360V Tjmax * It is recommended to not exceed 1000 short circuit situations in the lifetime of the module and to allow at least 1s between short circuits Diode H-bridge DC forward current IF Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum junction temperature Copyright by Vincotech Tjmax 1 Th=80C Tc=80C Th=80C Tc=80C 41 50 A 150 A 64 97 W 175 C Revision: 2 V23990-P623-F24-PM preliminary datasheet Maximum Ratings Parameter Condition Symbol Value Unit Thermal properties Storage temperature Tstg -40...+125 C Operation temperature Top -40...+125 C 4000 Vdc Creepage distance min 12,7 mm Clearance min 12,7 mm Insulation properties Insulation voltage Copyright by Vincotech Vis t=1min 2 Revision: 2 V23990-P623-F24-PM preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE(V) or VGS(V) Vr(V) or VCE(V) or VDS(V) Value IC(A) or IF(A) or ID(A) T(C) Unit Min Typ Max 4 5,8 7 1,64 1,9 2,35 Transistor H-bridge (IGBT) Gate emitter threshold voltage Collector-emitter saturation voltage VGE(th) 0,0008 VGE=VCE VCE(sat) 15 50 Collector-emitter cut-off ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time tr td(off) tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC Rgoff=8 Rgon=8 f=1MHz Rgon=8 Rgoff=8 Thermal grease thickness50um = 0,61 W/mK 15 300 0 50 25 300 15 50 Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C V V 0,35 mA 650 - nA Ohm ns 100 ns 15 ns 174 ns 96 mWs 0,5 mWs 1,37 3,14 nF 0,2 nF 0,09 nF nC 518 1,2 K/W K/W Diode H-bridge Diode forward voltage VF Peak reverse recovery current IRM Reverse recovery time trr Reverse recovery charge Qrr Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 50 Rgon=8 -15 dI0/dt=4429 A/us 300 50 Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C 1,68 1,7 2,3 V A 89 ns 133 PC 3,85 Thermal grease thickness50um = 0,61 W/mK 1,48 K/W K/W NTC Thermistor Rated resistance R25 Deviation of R100 DR/R Power dissipation given Epcos-Type B-value Copyright by Vincotech Tj=25C R100=1503 P B(25/100) Tol. 3% 3 20,9 22 23,1 kOhm Tc=100C 2,9 %/K Tj=25C 210 mW Tj=25C 3980 K Revision: 2 V23990-P623-F24-PM preliminary datasheet Output inverter Figure 1. Typical output characteristics Figure 2. Output inverter IGBT Typical output characteristics Output inverter IGBT Ic= f(VCE) Ic= f(VCE) IC (A) 125 IC (A) 125 100 100 75 75 50 50 25 25 0 0 1 2 3 4 VCE (V) 0 5 0 1 2 3 4 VCE (V) parameter: tp = 250 us Tj = 25 C VGE parameter: from: 7 V to 17 V in 1 V steps parameter: tp = 250 us Tj = 125 C VGE parameter: from: 7 V to 17 V in 1 V steps Figure 3. Typical transfer characteristics Figure 4. Output inverter IGBT Ic= f(VGE) 60 Typical diode forward current as a function of forward voltage IF=f(VF) Output inverter FRED IF (A) IC (A) 125 50 25 oC 100 40 125 oC 75 30 125 oC 25 oC 50 20 25 10 0 0 0 2 4 6 8 10 V GE (V) 12 parameter: tp = 250 us VCE = Copyright by Vincotech 0 10 V 0,5 1 1,5 2 2,5 VF (V) 3 parameter: tp = 250 us 4 Revision: 2 5 V23990-P623-F24-PM preliminary datasheet Output inverter Figure 5. Typical switching energy losses Figure 6. as a function of collector current Output inverter IGBT Typical switching energy losses as a function of gate resistor Output inverter IGBT E = f (RG) E = f (Ic) 2,5 E (mWs) E (mWs) 2,5 Eoff 2 Eon 2 1,5 Eoff 1,5 Erec 1 1 Eon 0,5 Erec 0,5 0 0 0 20 40 60 I C (A) 100 80 0 8 inductive load, Tj = 125 C VCE = 300 V VGE= 15 V Rgon= 8 Rgoff= 8 inductive load, Tj = 125 C VCE = 300 V VGE= 15 V Ic = 50 A Figure 7. Typical switching times as a Figure 8. function of collector current Output inverter IGBT 16 24 32 R G ( : ) 40 Typical switching times as a function of gate resistor Output inverter IGBT t = f (RG) t = f (Ic) 1 t ( Ps) t ( Ps) 1 tdoff tdon tdoff tdon 0,1 0,1 tf tf tr tr 0,01 0,01 0,001 0,001 0 20 40 60 80 IC (A) 100 0 inductive load, Tj = 125 C VCE = 300 V VGE= 15 V Rgon= 8 Rgoff= 8 Copyright by Vincotech 8 16 24 32 RG (: ) inductive load, Tj = 125 C VCE = 300 V VGE= 15 V Ic = 50 A 5 Revision: 2 40 V23990-P623-F24-PM preliminary datasheet Output inverter Figure 10. Typical reverse recovery current as a function of IGBT turn on gate resistor Output inverter FRED diode function of IGBT turn on gate resistor Output inverter FRED diode trr = f (Rgon) IRRM = f (Rgon) 0,3 125 IrrM (A) t rr( Ps) Figure 9. Typical reverse recovery time as a 0,25 100 0,2 75 0,15 50 0,1 25 0,05 0 0 0 8 Tj = VR = IF= VGE= 16 125 300 50 15 24 32 R Gon ( : ) 40 0 8 C V A V Tj = VR = IF= VGE= Figure 11. Typical reverse recovery charge as a 32 R Gon ( : ) 40 24 C V A V Figure 12. Typical rate of fall of forward function of IGBT turn on gate resistor Output inverter FRED diode and reverse recovery current as a function of IGBT turn on gate resistor Output inverter FRED diode dI0/dt,dIrec/dt= f (Rgon) Qrr = f (Rgon) 4,5 6600 direc / dt (A/ Ps) Qrr ( PC) 125 300 50 15 16 4 3,5 6000 5400 4800 3 4200 2,5 3600 2 3000 dI0/dt dIrec/dt 2400 1,5 1800 1 1200 0,5 600 0 0 0 8 Tj = VR = IF= VGE= 16 125 300 50 15 24 32 R Gon ( :) 40 0 C V A V Copyright by Vincotech 8 Tj = VR = IF= VGE= 6 125 300 50 15 16 24 32 R Gon ( :) 40 C V A V Revision: 2 V23990-P623-F24-PM preliminary datasheet Output inverter Figure 13. IGBT transient thermal impedance Figure 14. FRED transient thermal impedance as a function of pulse width as a function of pulse width ZthJH = f(tp) ZthJH = f(tp) 1 1 10 ZthJH (K/W) ZthJH (K/W) 10 0 0 10 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10-5 10-4 10-3 10-2 Parameter: D = tp / T 10-1 100 t p (s) 10-5 101 RthJH= 1,20 K/W 10-4 10-3 Parameter: D = tp / T IGBT thermal model values FRED thermal model values R (C/W) R (C/W) 0,07 0,21 0,54 0,25 0,07 0,06 0,00 0,00 0,00 0,00 Tau (s) 3,9E+00 5,8E-01 1,3E-01 2,1E-02 3,5E-03 3,5E-04 0,0E+00 0,0E+00 0,0E+00 0,0E+00 Copyright by Vincotech 10-2 0,08 0,26 0,62 0,33 0,09 0,10 0,00 0,00 0,00 0,00 7 10-1 100 t p (s) RthJH= 1,48 K/W Tau (s) 2,9E+00 3,7E-01 8,7E-02 1,5E-02 2,5E-03 2,8E-04 0,0E+00 0,0E+00 0,0E+00 0,0E+00 Revision: 2 101 V23990-P623-F24-PM preliminary datasheet Output inverter Figure 15. Power dissipation as a Figure 16. Collector current as a function of heatsink temperature Output inverter IGBT function of heatsink temperature Output inverter IGBT Ptot = f (Th) Ic = f (Th) 60 IC (A) Ptot (W) 150 125 50 100 40 75 30 50 20 25 10 0 0 0 50 100 150 Th ( o C) 200 0 50 100 parameter: Tj= 175 C parameter: Tj= 175 C VGE= 15 V Figure 17. Power dissipation as a Figure 18. Forward current as a 150 Th ( o C) function of heatsink temperature Output inverter FRED function of heatsink temperature Output inverter FRED Ptot = f (Th) IF = f (Th) Ptot (W) 120 200 IF (A) 60 100 50 80 40 60 30 40 20 20 10 0 0 50 100 150 Th ( o C) 0 200 0 parameter: Tj= 175 C Copyright by Vincotech 50 100 150 Th ( o C) parameter: Tj= 175 C 8 Revision: 2 200 V23990-P623-F24-PM preliminary datasheet Thermistor Figure 1. Typical NTC characteristic as afunction of temperature RT = f (T) NTC-typical temperature characteristic R/ 25000 20000 15000 10000 5000 0 25 50 75 Copyright by Vincotech 100 T (C) 125 9 Revision: 2 V23990-P623-F24-PM preliminary datasheet Switching definitions General conditions: Figure 1. Tj= 125 C Rgon= Turn-off Switching Waveforms & definition of tdoff, t Eoff (tEoff = integrating time for E off) Output inverter IGBT Figure 2. 140 8 Rgoff= 8 Turn-on Switching Waveforms & definition of t don, tEon (tEon = integrating time for E on) Output inverter IGBT 320 Ic 120 280 tdoff 100 80 240 Uce 90% Uge 90% 200 Ic 60 %160 % 40 120 tEoff 20 Uce Ic 1% 80 Uce 0 tdon Uge 40 Uge Uce3% Uge10% -20 Ic10% 0 tEon -40 -0,3 -0,2 -0,1 Uge(0%)= Uge(100%)= Uc(100%)= Ic(100%)= tdoff= tEoff= Figure 3. 0 0,1 0,2 time (us) -15 15 300 50 0,17 0,38 0,3 0,4 0,5 -40 0,6 2,6 V V V A us us 2,7 Uge(0%)= Uge(100%)= Uc(100%)= Ic(100%)= tdon= tEon= Turn-off Switching Waveforms & definition of t f Output inverter IGBT Figure 4. 140 300 120 260 2,8 -15 15 300 50 0,10 0,21 2,9 3 time(us) 3,1 3,2 3,3 V V V A us us Turn-on Switching Waveforms & definition of t r Output inverter IGBT Ic fitted Ic Uce 220 100 Ic 90% 180 80 % 140 Ic 60% % 60 Uce 40 100 Ic 40% Ic90% tr 60 20 Ic10% tf 0 20 Ic10% -20 -20 0 0,05 0,1 0,15 0,2 0,25 time (us) 0,3 0,35 2,85 0,4 Uc(100%)= 300 V Ic(100%)= 50 A tf= 0,096 us Copyright by Vincotech 2,9 2,95 3 time(us) 3,05 3,1 Uc(100%)= 300 V Ic(100%)= 50 A tr= 0,015 us 10 Revision: 2 3,15 V23990-P623-F24-PM preliminary datasheet Switching definitions Figure 5. Turn-off Switching Waveforms & definition of t Eoff Figure 6. Turn-on Switching Waveforms & definition of t Eon Output inverter IGBT Output inverter IGBT 120 140 Eoff Poff 120 100 Pon Eon 100 80 80 60 60 % % 40 40 20 20 0 Uge10% Uce3% 0 Uge90% tEoff tEon Ic 1% -20 -20 -0,3 -0,2 -0,1 0 0,1 0,2 time (us) 0,3 0,4 0,5 2,6 0,6 2,7 Poff(100%)= 14,89 kW Eoff(100%)= 1,38 mJ tEoff= 0,38 us Pon(100%)= Eon(100%)= tEon= Figure 7. Gate voltage vs Gate charge Figure 8. Output inverter IGBT 2,8 2,9 3 time(us) 3,1 3,2 3,3 14,9 kW 0,50 mJ 0,21 us Turn-off Switching Waveforms & definition of t rr Output inverter FRED 20 120 15 10 40 5 0 0 % -40 -5 -80 -10 -120 -15 -160 -20 -200 Uge (V) Id 80 trr Ud IRRM10% fitted IRRM90% IRRM100% -100 0 100 200 300 400 500 600 2,8 2,85 2,9 2,95 Qg (nC) Ugeoff= -15 Ugeon= 15 Uc(100%)= 300 Ic(100%)= 50 Qg= 509,8 V V V A nC Copyright by Vincotech Ud(100%)= Id(100%)= IRRM(100%)= trr= 11 300 50 89 0,13 3 3,05 3,1 time(us) 3,15 3,2 3,25 V A A us Revision: 2 3,3 V23990-P623-F24-PM preliminary datasheet Switching definitions Figure 9. Turn-on Switching Waveforms & definition of t Qrr (tQrr= integrating time for Qrr) Output inverter FRED Figure 10. Turn-on Switching Waveforms & definition of t Erec (tErec= integrating time for Erec) Output inverter FRED 150 190 Qrr 100 160 Id 50 130 tQint Erec Prec 0 100 % % -50 70 -100 40 -150 10 -200 tErec -20 2,6 2,8 3 3,2 3,4 3,6 2,6 time(us) Id(100%)= Qrr(100%)= tQint= 50 A 3,85 uC 0,30 us Copyright by Vincotech Prec(100%)= Erec(100%)= tErec= 12 2,8 3 time(us) 3,2 3,4 14,9 kW 0,94 mJ 0,30 us Revision: 2 3,6 V23990-P623-F24-PM preliminary datasheet Package Outline and Pinout Outline Pinout Copyright by Vincotech 13 Revision: 2 V23990-P623-F24-PM preliminary datasheet PRODUCT STATUS DEFINITIONS Datasheet Status Target Preliminary Final Product Status Definition Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. First Production This datasheet contains preliminary data, and supplementary data may be published at a later date. Tyco Electronics reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. Full Production This datasheet contains final specifications. Tyco Electronics reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. DISCLAIMER Tyco Electronics reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Tyco Electronics does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Tyco Electronics products are not authorised for use as critical components in life support devices or systems without the express written approval of Tyco Electronics As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 14 Revision: 2