©2010 Device Engineering Inc Page 1 of 11 DS-MW-03283-01 Rev K
08/10/10
FEATURES
Two separate analog receiver channels
Converts ARINC 429 levels to serial data
ARINC 429 inputs withstand +/-200V
TTL inputs to test complete analog/digital RX function
TTL and CMOS compatible outputs
Low power dissipation
Internal band gap voltage reference
MIL-STD-883B burn-in screening available
Package Options: 20 Lead ceramic DIP, 20 Terminal ceramic LCC, and 20 Lead SOIC
Direct replacement for Fairchild/Raytheon RM3283 and RM3183 and Holt HI-8482
Function Diagram
385 East Alamo Drive
Chandler, AZ 85225
Phone: (480) 303-0822
Fax: (480) 303-0824
E-mail: admin@deiaz.com
DEI3283
DUAL ARINC 429 LINE RECEIVER
Device
Engineering
Incorporated
©2010 Device Engineering Inc Page 2 of 11 DS-MW-03283-01 Rev K
08/10/10
General Description
The DEI3283 consists of two analog ARINC 429 receivers which take differentially encoded ARINC level data and convert it to
serial TTL level data. The DEI3283 provides two complete analog ARINC receivers with no external components required. Input
level shifting thin film resistors and bipolar technology allow ARINC input voltage transients up to ± 200V without damage to the
DEI3283. Each channel is identical, featuring symmetrical propagation delays for better high speed performance. Input common
mode rejection is excellent and threshold voltage is stable, independent of supply voltage. Data outputs are TTL and CMOS
compatible. Two TTL compatible test inputs used to test the ARINC channels are available. They can be used to override the ARINC
input data and set the channel outputs to a known state. The DEI ARINC line driver family IC’s are companion chips to the DEI3283
line receiver. Together they provide the analog functions needed for the ARINC 429 interface.
Functional Description
The DEI3283 contains two discrete ARINC 429 receiver channels. Each channel contains three main sections: a resistor input
network, a window comparator, and a logic output buffer stage. The first stage provides over voltage protection and biases the signal
using voltage dividers and current sources, providing excellent input common mode rejection. The test inputs are provided to set the
outputs to a predetermined state for built-in channel test capability. If the test inputs are not used, they should be grounded. The
window comparator section detects data from the resistor input network. A LOGIC 1 corresponds to ARINC “High” state (OUTA)
and a LOGIC 0, to ARINC “Low” state (OUTB). An ARINC “Null” state at the inputs forces both outputs to LOGIC 0. Threshold
and hysteresis voltages are generated by a band gap voltage reference to maintain stable switching characteristics over temperature
and power supply variations. The output stage generates a TTL compatible logic output capable of driving 3mA of load.
Pin Assignments
PIN NAME DESCRIPTION
1 -Vs Supply Voltage (-15V)
2 TEST A Logic Input, see functional characteristics.
3 CAP2B A429 INPUT, Ch 2, B Capacitor node
4 IN2B A429 INPUT, Ch 2, B input
5 OUT2B Logic Output, Ch 2, B’s output
6 IN2A A429 INPUT, Ch 2, A input
7 CAP2A A429 INPUT, Ch 2, A Capacitor node
©2010 Device Engineering Inc Page 3 of 11 DS-MW-03283-01 Rev K
08/10/10
PIN NAME DESCRIPTION
8 OUT2A Logic Output, Ch 2, A’s output
9 +VL Supply Voltage (+5V)
10 NC
11 +VS Supply Voltage (+15V)
12 OUT1B Logic Output, Ch 1, B’s output
13 NC
14 GND Supply Return
15 OUT1A Logic Output, Ch 1, A’s output
16 IN1B A429 INPUT, Ch 1, B input
17 CAP1B A429 INPUT, Ch 1, B Capacitor node
18 IN1A A429 INPUT, Ch 1, A input
19 CAP1A A429 INPUT, Ch 1, A Capacitor node
20 TESTB Logic Input, see functional characteristics.
Absolute Maximum Ratings
Parameter Min. Max. Units
Supply Voltage: +VS to -VS
+VS to GND
-Vs to GND
-20
+36
+20
V
V
V
+VL Voltage +7 V
Logic Input Voltage -0.3 +VL + 0.3 V
ARINC 429 Input Voltage -200 +200 V
Storage -65 +150 °C Temperature Range
Operating -55 +125 °C
Junction Temperature Ceramic
Plastic
-55
-55
+175
+145
°C
Lead Soldering Temperature (60 sec., DIP, LCC) +300 °C
Peak Body Temperature, J-STD-020 (SOIC)
Non-G Package
-G Package
+240
+260
°C
Recommended Operating Conditions
Symbol Parameters Min. Max. Units
+Vs Positive Supply Voltage 13.5 16.5 V
-Vs Negative Supply Voltage -16.5 -13.5 V
+VL +VL Supply Voltage 4.5 5.5 V
Top Case Temperature
Ceramic
Plastic: -SA
-SE
-55
-40
-55
+125
+125
+85
°C
°C
°C
©2010 Device Engineering Inc Page 4 of 11 DS-MW-03283-01 Rev K
08/10/10
Electrical Characteristics
Symbol Parameter Conditions (1,2) Min. Max. Units
POWER SUPPLIES
ICC +VS (+15V) Supply
Current
Supply = +/- 16.5V, Vl = 5.0V,
Test Inputs = 0V
Test Inputs = 5V
3.5
3.5
6.0
6.0
mA
IEE -Vs (-15V) Supply
Current
Supply = +/- 16.5V, Vl = 5.0V,
Test Inputs = 0V
Test Inputs = 5V
7.5
11.0
12.0
18.5
mA
IL
+VL (+5V) Supply
Current
Supply = +/- 16.5V, Vl = 5.0V,
Test Inputs = 0V
Test Inputs = 5V
4.5
10.8
9.0
17.6
mA
A429 INPUTS
VHH NULL to 1 transition,
V(INA) – V(INB)
Supply = +/-15.0V, Vl = 5.00V
Test inputs = 0V
VINB = -2.50V
5.70 6.30 V
VHL 1 to NULL transition,
V(INA) – V(INB)
Supply = +/-15.0V, Vl = 5.00V
Test inputs = 0V
VINB = -2.50V
4.50 5.50 V
VHHYS 1 to NULL transition
hysteresis
VHH-VHL 0.8 1.2 V
VLL NULL to 0 transition,
V(INA) – V(INB)
Supply = +/-15.0V, Vl = 5.00V
Test inputs = 0V
VINB = +2.50V
-6.30 -5.70 V
VHL 0 to NULL transition,
V(INA) – V(INB)
Supply = +/-15.0V, Vl = 5.00V
Test inputs = 0V
VINB = +2.50V
-5.50 -4.50 V
VLHYS 0 to NULL transition
hysteresis
VLL-VLH -1.2 -0.8 V
VCM Input common mode
voltage range
-13 +13 V
RINGND Input resistance,
Input to GND
Unpowered,
INA to GND, INB to GND
20 30 k
RIN Input resistor,
INA to CAPA,
INB to CAPB
Unpowered
INA to CAPA, INB to CAPB
8.5 11.5 k
CIN Input capacitance,
INA to GND,
INB to GND
(3) 10 pF
TEST LOGIC INPUTS
VIH LOGIC 1 input voltage Functional Test 2.0 V
VIL LOGIC 0 input voltage Functional Test 0.9 V
IIH LOGIC 1 input current VIH = 5V
Supply = +/-15.0V, Vl = 5.00V
0 300 µA
IIL LOGIC 0 input current VIL = 0.8V
Supply = +/-15.0V, Vl = 5.00V
0 40 µA
LOGIC OUTPUTS
VOH LOGIC 1 output
voltage
Vsupply = +/-15.0V, Vl = 5.0V
IOH = -100uA (Room Temp)
IOH = -2.8mA
4.0
3.5
V
V
VOL LOGIC 0 output
voltage
Vsupply = +/-15.0V, Vl = 5.0V
IOL = 100uA (Room Temp)
IOL = 2.0mA
0.1
0.8
V
V
©2010 Device Engineering Inc Page 5 of 11 DS-MW-03283-01 Rev K
08/10/10
Symbol Parameter Conditions (1,2) Min. Max. Units
Tr Output rise time CL = 60 pF (4) 10 70 ns
Tf Output Fall Time CL = 60 pF (4) 10 70 ns
TPLH Prop delay,
A429 to LH output
A429 In = 0 to 10V (4)
CAPA, CAPB, OUT CL = 60 pF
1500 ns
TPHL Prop delay,
A429 to HL output
A429 In = 0 to 10V (4)
CAPA, CAPB, OUT CL = 60 pF
1500 ns
DTP Matching of
TPLH and TPHL
|TPLH-TPHL| (4) 500 ns
TPTLH Prop delay,
TESTA/B to LH output
CL = 60 pF, VIN = 0.8V/2.0V (4) 400 600 ns
TPTHL Prop delay,
TESTA/B to HL output
CL = 60 pF, VIN = 0.8V/2.0V (4) 800 1300 ns
Notes:
1. Unless otherwise noted, currents flowing in to DUT are positive, Currents flowing out of DUT are negative, Voltages are
referenced to Ground.
2. Unless otherwise noted, Tcase = -55°C to +125°C for -xMx, -40°C to +125°C for -xAx, and -55°C to +85°C for –xEx versions;
+VS = +13.5 to 16.5V, -Vs = -13.5 to –16.5V, +VL = 4.5 to 5.5V.
3. Guaranteed by design. Not production tested.
4. Sample tested.
AC Test Waveforms
©2010 Device Engineering Inc Page 6 of 11 DS-MW-03283-01 Rev K
08/10/10
Functional Characteristics
Test Inputs Outputs ARINC Inputs
V(A) – V(B) TEST A TEST B OUT_A OUT_B
Output
State
Null 0 0 0 0 Null
Low 0 0 0 1 Low
High 0 0 1 0 High
X 0 1 0 1 Low
X 1 0 1 0 High
X 1 1 0 0 Null
V[INA – INB]
V[OUT_A]
V[OUT_B]
Parameter Characteristics (100KBS)
min max units
Time Y 9.75 10.25 us
Time X 4.87 5.13 us
Pulse rise time 0.5 2 us
Pulse fall time 0.5 2 us
Vhigh +7.25 11 V diff
Vhh +6.5 V diff
Vhl +2.5 V diff
Vnull -0.5 +0.5 V diff
Vll -2.5 V diff
Vlh -6.5 V diff
Vlow -11 -7.25 V diff
©2010 Device Engineering Inc Page 7 of 11 DS-MW-03283-01 Rev K
08/10/10
Applications Discussion
The standard connections for the DEI3283 are shown in the figure below. Dual ±15VDC supplies are recommended for the +VS/-VS
supplies. Decoupling of all supplies should be done near the IC to avoid propagation of noise spikes due to switching transients. The
ground connection should be sturdy and isolated from large switching currents to provide as quiet a ground reference as possible. The
noise filter capacitors are optional and are added to provide extra noise immunity by limiting bandwidth of the input signal before it
reaches the window comparator stage. Two capacitors are used for each channel and they must be the same value. The suggested
capacitor value for a 100 kHz operation is 39 pF. For lower data rates, larger values of capacitance may be used to yield better noise
performance. To get optimum performance, the following equation can be used to calculate capacitor value for a specific data rate:
Where CFILTER is the capacitor value in pF, and FO is the input frequency (10 kHz FO 150 kHz).
Applications
ARINC Receiver Standard Connections
©2010 Device Engineering Inc Page 8 of 11 DS-MW-03283-01 Rev K
08/10/10
Process Flow
Process Step Plastic
Standard
Ceramic
Standard
Plastic
Burn-In
Ceramic
Burn-In
THERMAL CYCLE
MIL-STD-883B M1010.4 Condition B NO 10 Cycles NO 10 Cycles
CONSTANT ACCELERATION
MIL-STD-883B M2001, Method D. N/A YES N/A YES
GROSS & FINE LEAK
MIL-STD-883B M1014.10 N/A YES N/A YES
PRE-BURN-IN Electrical Test N/A N/A YES YES
BURN IN
MIL-STD-883B M1015 Condition A N/A N/A
160hrs @ +125 °C
160hrs @ +125 °C
FINAL ELECTRICAL TEST,
Room Temperature 100% 100% 100% 100%
FINAL ELECTRICAL TEST,
High Temperature
100% @
+85 or +12C 100% @ +125°C
100% @
+85 or +12C 100% @ +125°C
FINAL ELECTRICAL TEST,
Low Temperature
0.65% AQL
@
-55 or -40°C
0.65% AQL
@ -55°C
0.65% AQL
@
-55 or -40°C
0.65% AQL
@ -55°C
Burn-In Circuit
©2010 Device Engineering Inc Page 9 of 11 DS-MW-03283-01 Rev K
08/10/10
Package Characteristics
Package Characteristics
PACKAGE TYPE 20L
Ceramic
LCC
20L CERDIP 20L CERDIP
GREEN
20L SOIC 20L SOIC
GREEN
Reference
(see ordering info)
20 CLCC 20 CERDIP 20 CERDIP
G
20 SOIC 20 SOIC G
JEDEC MO Reference MO-047 MS-030-A-
AE
MS-030-A-
AE
MS-013-AE MS-013-AE
THERMAL RESISTANCE:
θJA (4 layer PCB)
θJC
85 °C/W
30 °C/W
70 °C/W
28 °C/W
70 °C/W
28 °C/W
85 °C/W
30 °C/W
85 °C/W
30 °C/W
JEDEC Moisture
Sensitivity Level (MSL)
Hermetic Hermetic Hermetic MSL 1 /
250°C
MSL 1 /
250°C
Lead Finish Material /
JEDEC Pb-free code
SnPb
solder dip
na
SnPb
solder dip
na
SnAgCu
solder dip
e1
SnPb
plate
na
Matte Sn
e3
Pb-Free DESIGNATION Not Pb-free Not Pb-free Pb free Not Pb-free RoHS
Compliant
20L SOIC ( – G and non - G ) Package
©2010 Device Engineering Inc Page 10 of 11 DS-MW-03283-01 Rev K
08/10/10
20L CERDIP (-G and non-G) Package
20L Ceramic LCC Package
©2010 Device Engineering Inc Page 11 of 11 DS-MW-03283-01 Rev K
08/10/10
Ordering Information
Part Number Marking Package Operating Temperature
Range Burn In
DEI3283-CMB DEI3283-CMB 20 CERDIP -55°C to +125°C Y
DEI3283-CMB-G DEI3283-CMB
E1 20 CERDIP G -55°C to +125°C Y
DEI3283-CMS DEI3283-CMS 20 CERDIP -55°C to +125°C N
DEI3283-CMS-G DEI3283-CMS
E1 20 CERDIP G -55°C to +125°C N
DEI3283-EMB DEI3283-EMB 20 CLCC -55°C to +125°C Y
DEI3283-EMS DEI3283-EMS 20 CLCC -55°C to +125°C N
DEI3283-SAB DEI3283-SAB 20 SOIC -40°C to +125°C Y
DEI3283-SAB-G DEI3283-SAB
E3 20 SOIC G -40°C to +125°C Y
DEI3283-SAS DEI3283-SAS 20 SOIC -40°C to +125°C N
DEI3283-SAS-G DEI3283-SAS
E3 20 SOIC G -40°C to +125°C N
DEI3283-SEB DEI3283-SEB 20 SOIC -55°C to +85°C Y
DEI3283-SEB-G DEI3283-SEB
E3 20 SOIC G -55°C to +85°C Y
DEI3283-SES DEI3283-SES 20 SOIC -55°C to +85°C N
DEI3283-SES-G DEI3283-SES
E3 20 SOIC G -55°C to +85°C N
DEI3283-SMB DEI3283-SMB 20 SOIC -55°C to +125°C Y
DEI3283-SMB-G DEI3283-SMB
E3 20 SOIC G -55°C to +125°C Y
DEI3283-SMS DEI3283-SMS 20 SOIC -55°C to +125°C N
DEI3283-SMS-G DEI3283-SMS
E3 20 SOIC G -55°C to +125°C N
Notes:
1. All packages marked with Lot Code and Date Code. “E1” or “E3” after Date Code denotes Pb Free category.
2. The –CMB/-EMB/-SAB/-SEB/-SMB parts may be marked as – CMS/-EMS/-SAS/-SES/-SMS with a “B” stamp to denote
burn-in.
DEI reserves the right to make changes to any products or specifications herein. DEI makes no warranty, representation, or
guarantee regarding suitability of its products for any particular purpose.