August 2009 Rev 5 1/72
1
STw5095
Low-power asynchronous stereo audio Codec
with integrated power amplifiers
Features
20 bit audio resolution, 8 kHz to 96 kHz
independent rate ADC and DAC
Asynchronous sampling ADC and DAC: they
do not require oversampled clock and
information on the audio data sampling
frequency (fs). Jitter tolerant fs
4 MHz to 32 MHz master clock range
I2C/SPI compatible control I/F
Stereo headphones drivers, handsfree
loudspeaker driver, line out drivers
Mixable analog line inputs
Voice filters: 8/16 kHz with voice channel filters
Automatic gain control for microphone and line-
in inputs
Two programmable master/slave serial audio
data interfaces (I2S, SPI, PCM compatible and
other formats)
Frequency programmable clock outputs
Multibit ΣΔ modulators with data weighted
averaging ADC and DAC
DSP functions for bass-treble-volume control,
mute, mono/stereo selection, voice channel
filters, de-emphasis filter and dynamic
compression.
93 dB dynamic range ADC, 0.001% THD with
full scale output @ 2.7 V
95 dB dynamic range DAC, 0.02% THD
performance @ 2.7 V over 16 Ω load
Analog inputs
Selectable stereo differential or single-ended
microphone amplifier inputs with 51dB range
programmable gain
One microphone biasing output
Microphone plug-in and push-button detection
input
Selectable stereo differential or single-ended
line inputs with 38 dB range programmable
gain
Analog output drivers
Stereo headphones outputs driving capability:
40 mW (0.1% THD) over 16Ω with 40 dB range
programmable gain
Common mode voltage headphones driver
(phantom ground)
Balanced loudspeaker output driving
capability: up to 500 mW (VCCLS>3.5 V; 1%
THD) over 8 Ω with 30 dB range programmable
gain
Transient supression filter during power up and
power down
Balanced/unbalanced stereo line outputs
driving capability 1 kΩ
Applications
Digital cellular telephones with mp3 player,
stereo recorder, fm radio stereo listening and
recording functions, live music recording
Portable digital players and recorders
Description
STw5095 is a low power asynchronous stereo
audio CODEC device with headphones amplifiers
for high quality audio listening and recording.
STw5095
TFBGA64 5x5 (64 pins)
www.stericsson.com
Contents STw5095
2/72
Contents
1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Functional block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.1 Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Device programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3 Power up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.4 Master clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.5 Data rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.6 Clock generators and master mode function . . . . . . . . . . . . . . . . . . . . . . 15
4.7 Audio digital interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.8 Analog inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.9 Analog output drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.10 Analog mixer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.11 AD path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.12 DA path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.13 Analog-only operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.14 Automatic Gain Control (AGC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.15 Interrupt request: IRQ pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.16 Headset plug-in and push-button detection . . . . . . . . . . . . . . . . . . . . . . . 21
4.17 Microphone biasing circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5 Control registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2 Supply and power control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.3 Gains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.4 DSP control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.5 Analog functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.6 Digital audio interfaces master mode and clock generators . . . . . . . . . . . 34
STw5095 Contents
3/72
5.7 Digital audio interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.8 Digital filters, software reset and master clock control . . . . . . . . . . . . . . . 38
5.9 Interrupt control and control interface SPI out mode . . . . . . . . . . . . . . . . 38
5.10 AGC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6 Control interface and master clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.1 Control interface I2C mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 Control interface SPI mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.3 Master clock timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7 Audio interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8 Timing specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
9 Operative ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
9.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
9.2 Operative supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
9.3 Power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
9.4 Typical power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
10 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
10.1 Digital interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
10.2 AMCK with sinusoidal input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
10.3 Analog interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
10.4 Headset plug-in and push-button detector . . . . . . . . . . . . . . . . . . . . . . . . 56
10.5 Microphone bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
10.6 Power supply rejection ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
10.7 LS gain limiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
11 Analog input/output operative ranges . . . . . . . . . . . . . . . . . . . . . . . . . 58
11.1 Analog levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
11.2 Microphone input levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
11.3 Line input levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
11.4 Line output levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
11.5 Power output levels HP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Contents STw5095
4/72
11.6 Power output levels LS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
12 Stereo audio ADC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
13 Stereo audio DAC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
14 AD to DA mixing (sidetone) specifications . . . . . . . . . . . . . . . . . . . . . . 63
15 Stereo analog-only path specifications . . . . . . . . . . . . . . . . . . . . . . . . 64
16 ADC (TX) and DAC (RX) specifications with voice filters selected . . . 65
17 Typical performance plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
18 Application schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
19 Package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
20 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
21 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
STw5095 List of tables
5/85
List of tables
Table 1. Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 2. Control interface timing with I²C format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 3. Control interface timing with SPI format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 4. AMCK timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 5. Audio interface signals timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 6. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 7. Operative power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 8. Power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 9. Typical power dissipation - No master clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 10. Typical power dissipation - Master clock AMCK = 13 MHz . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 11. Digital interfaces electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 12. AMCK with sinusoidal input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 13. Analog interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 14. Headset plug-in and push-button detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 15. Microphone bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 16. Power supply ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 17. LS gain limiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 18. Reference full scale analog levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 19. Absolute levels at pins connected to preamplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 20. Absolute levels at pins connected to the line-in amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 21. Absolute levels at OLP/OLN, ORP/ORN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 22. Absolute levels at HPL - HPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 23. Absolute levels at LSP - LSN (differential) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 24. Stereo audio ADC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 25. Stereo audio DAC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 26. AD to DA mixing (sidetone) specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 27. Stereo analog-only path specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 28. ADC and DCA specifications with voice filters selected . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 29. Package dimensions (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 30. Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 31. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
List of figures STw5095
6/85
List of figures
Figure 1. Pin configuration (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 2. STw5095 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 3. Power up block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 4. Plug-in and push-button detection application note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 5. Control interface I2C format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 6. Control interface: I2C format timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 7. Control interface SPI format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 8. Control interface: SPI format timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 9. Audio interfaces formats: delayed, left and right justified . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 10. Audio interfaces formats: DSP, SPI and PCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 11. Audio interface timings: Master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 12. Audio interface timing: Slave mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 13. A.C. testing input-output waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 14. Bass treble control, de-emphasis filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 15. Dynamic compressor transfer function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 16. ADC audio path measured filter response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 17. ADC in band audio path measured filter response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 18. DAC digital audio filter characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 19. DAC in band digital audio filter characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 20. ADC 96 kHz audio path measured filter response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 21. ADC 96 kHz audio in-band measured filter response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 22. ADC voice TX path measured filter response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 23. ADC voice TX path measured in-band filter response . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 24. DAC voice (RX) digital filter characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 25. DAC voice (RX) in-band digital filter characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 26. ADC path FFT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 27. ADC S/N versus input-level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 28. DAC path FFT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 29. DAC S/N versus input-level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 30. Analog path FFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 31. Analog path S/N versus input-level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 32. STw5095 application schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Figure 33. Package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
STw5095 Overview
7/85
1 Overview
The STw5095 control registers are accessed through a selectable I2C-bus compatible or SPI
compatible interface.
The STw5095 asynchronous stereo audio CODEC is designed to easily fit in most audio
systems because it supports an extended master clock range (any value between 4 MHz
and 32 MHz) and at the same time it supports any audio data rate (independent in AD and
DA paths) from 8 kHz to 48 kHz and from 88 kHz to 96 kHz, moreover it can tolerate jitter on
audio data without degrading performance. The audio data serial interfaces (for AD and DA)
can be Master or Slave, are I2S compatible and they support other formats that can easily
interface to standard serial ports. The two audio interfaces can be used as a single
bidirectional interface. Two frequency programmable clock sources are available to generate
the master clock for the audio sub-system of other devices. The internal D to A and A to D
converters work with up to 24 bit resolution.
The supply voltage can be the same for the whole device, in the range 2.4 V to 2.7 V, or it
can be differentiated for digital (VCC: 1.8 V to 2.7 V), analog (VCCA: 2.4 V to 3.3 V) and
loudspeaker driver (VCCLS: VCCA to 5.5 V) to obtain best performance and maximum power
to the loudspeaker (up to 500 mW).
STw5095 has multiple analog mixable inputs and outputs. It can directly drive Stereo
Headphones without external capacitors and it has a Loudspeaker driver that can also be
used for monophonic group listening. Stereo differential and single ended microphones,
auxiliary line in stereo and mono signals can be mixed and connected to the ADC or directly
to the drivers, mixed also with DAC audio signals.
STw5095 stereo audio Codec main applications include multimedia handheld devices such
as cellular phones with added low-power high-quality MP3 andor FM radio
listening/recording features, or any battery powered equipment such as PDAs, Camcorders,
etc. that require Stereo Audio Codec with Headphones drivers.
Figure 1. Pin configuration (top view)
A
B
C
D
E
F
G
H
12345678
SDA/SDINVCCVCCAHDET DA_CK AD_DATA DA_SYNC IRQ
DA_OCKAD_OCKSCLKGND AD_CK AMCK AD_SYNC DA_DATA
CMODVCCAMICLNAUX1L AS/CSB VCC GND MBIAS
GNDAAUX3LMICLPCAPMIC VCCIO VCCA MICRN AUX1R
CAPLSLINEINLAUX2LPAUX2LN AUX3R GNDA CAPLINEIN MICRP
LSPSVCMHPSGNDCMOLN LSNS LINEINR AUX2RP AUX2RN
LSPVCMHPGNDPOLP LSN VCCP GNDP ORN
GNDPVCCLSHPLVCCP GNDP VCCLS HPR ORP
Functional block diagram STw5095
8/85
2 Functional block diagram
Figure 2. STw5095 block diagram
Note: This diagram shows the functionality of the device and of some control registers bits but it
does not necessarily reflect the exact hardware implementation.
MCK
AD Sample
Rate
Converter
DA Sample
Rate
Converter
Transient
Suppr.
Filter
Transient
Suppr.
Filter
Bandgap
CK Gen/
Master
Mode
Digital
DA-PLL
PLL
Control
Logic
Power-On
Reset Registers Control
I/F
Digital
AD-PLL
Audio
AD-I/F
Headset
Detection
Transient
Suppr.
Filter
Left
LineOut
-40:0 dB Step 2
-40:0 dB Step 2
Right
Driver
LOG: -18:0 dB Step 3
Right
LineOut
VCCIOGNDVCCGNDCMGNDPVCCLSVCCPGNDAVCCA
L
(L+R)/2
R
Stereo
Diff.
Stereo
Sing.E.
Stereo
Sing.E.
Stereo
Diff.
Stereo
Sing.E.
Comm.
Mode
CurrentBias
Stereo DAC
STw5095
Left
Driver
CM
Driver
Voltage
Reference
-20:+18 dB Step 2
-24:6 dB Step 2
Mono
Driver
MICLO
LSSEL
MIXLIN
MIXMIC
ADMIC ADLIN
IRQ
Gen
AD_SYNC
CAPLINEIN
CAPMIC
LINEINL
LINEINR
AUX3R
AUX3L
AUX2NR
AUX2PR
AUX2NL
AUX2PL
AUX1R
AUX1L
MICRN
MICRP
MICLN
MICLP
MBIAS
VCMHP
VCMHPS
OLP
OLN
HPL
LSPS
LSP
CAPLS
LSN
LSNS
HPR
ORP
ORN
AD_CK
AD_DATA
CMOD
AS/CSB
SCLK
SDA/SDIN
HDET
IRQ
AD_OCK
AMCK
DA_OCK
DA_SYNC
DA_CK
DA_DATA
Oscillator
Mic.
Bias
DSP
AD to DA
Mixing
Gain
AGC
(Mic&Lin)
ADMONO
DAMONO
(sidetone)
DAC
Digital
Gain
ADC
Digital
Gain
Dyn.Comp.
Bass
Treble
(Audio only)
DA to AD
Mixing
Gain
(Audio Only)
ADRTOL
Stereo ADC
Filter
Audio/Voice
Filter
Audio/Voice
DAC
MIXDAC
ΣΔ
Modulator
Analog
Filter
ΣΔADC
LINEIN
AUX1
AUX2
AUX3
MUTE
LIN L-R
Amps
LINSEL LINLG
LINRG
Stereo Path
Audio
DA-I/F
DA_SYNC
AD_SYNC
2.1V
Reference
AGC
(from DSP)
AGC
(from DSP)
RL
LSG
HPLG
HPRG
0÷39 dB
Step 1.5
MIC
AUX1
AUX2
AUX3
MUTE
MIC L-R
PreAmps
MICSEL MICLG
MICRG
-12÷0 dB
Step 1.5
MICLA
MICRA
CK Gen/
Master
Mode
L
R
L
R
STw5095 Pin description
9/85
3 Pin description
Table 1. Pin description
Pin N° Name Type Description
D2
C2
E8
D7
MICLP
MICLN
MICRP
MICRN
AI Left and Right channel differential pins for microphone input.
C8 MBIAS AO Microphone Biasing Pin. Fixed voltage reference.
D1 CAPMIC AI A capacitor must be connected between CAPMIC and Ground.
C1
D8
AUX1L
AUX1R AI Left and Right channel single ended pins for microphone or line input.
E2
E1
F7
F8
AUX2LP
AUX2LN
AUX2RP
AUX2RN
AI Left and Right channel differential pins for microphone or line input.
D3
E5
AUX3L
AUX3R AI Left and Right channel single ended pins for microphone or line input.
E3
F6
LINEINL
LINEINR AI Left and Right channel single ended pins for line input.
E7 CAPLINEIN AI A capacitor must be connected between CAPLINEIN and Ground.
G4
G5
LSP,
LSN AO
Analog differential loudspeaker amplifier output for Left channel or
Right channel or the sum of both. This output can drive 50nF (with
series resistor) or directly an earpiece transductor of 8Ω ; It can deliver
up to 500mW.
F4
F5
LSPS,
LSNS AO
LSPS, LSNS (sense) pins must be connected on the application board
to LSP, LSN pins respectively (see application note). The connection
must be as close as possible to the pins.
E4 CAPLS AI A capacitor can be connected between this node and Ground. See
application notes
H2
H7
HPL
HPR AO
Audio single ended headphones amplifier outputs for Left and Right
channels. The outputs can drive 50nF (with series resistor) or directly
an earpiece transductor of 16Ω.
G3 VCMHP AO
Common mode voltage headphones output. The negative pins of
headphones left and right speakers can be connected to this pin to
avoid decoupling capacitors.
F3 VCMHPS AO
VCMHPS (sense) pin must be connected on the application board to
VCMHP pin (see application note). The connection must be as close
as possible to the pins.
G1
F1
H8
G8
OLP
OLN
ORP
ORN
AO
Audio differential line out amplifier for Left and Right channels. This
outputs can drive up to 1kΩ resistive load. Can be used as single
ended outputs.
Pin description STw5095
10/85
C4 CMOD DI Control interface type selector: I2C-bus mode or SPI mode.
A2 SCLK DI Control interface serial clock input.
B4 SDA/SDIN DIOD Control interface serial data input-output in I2C mode (SDA),
Control interface serial data input in SPI mode (SDIN).
C5 AS/CSB DI Control interface address select in I2C mode (AS).
Interface enable signal in SPI mode (CSB).
A7 AD_SYNC DIO Frame Sync for stereo A/D converter.
B7 DA_SYNC DIO Frame Sync for stereo D/A converter.
A5 AD_CK DIO Serial Data Clock for stereo A/D converter.
B5 DA_CK DIO Serial Data Clock for stereo D/A converter.
B6 AD_DATA DO Serial Data Out for stereo A/D converter.
A8 DA_DATA DI Serial Data In for stereo D/A converter.
B1 HDET AI Headset detection input (Microphone Plug-in and Push-Button
detection).
B8 IRQ DO Programmable Interrupt output. Active low signal.
A3 AD_OCK DO Oversampled Clock Out from AD clock generator.
A4 DA_OCK DO Oversampled Clock Out from DA clock generator.
A6 AMCK DI
AI
Master Clock Input. Accepted range 4 MHz to 32 MHz.
AMCK is a Digital square wave
AMCK is an Analog sinewave (see AMCKSIN
Section 5.8 on page 38
)
B2
C3
D6
VCCA P
Power Supply pins for the analog section.
Standard Operating range: from 2.7 V to 3.3 V
Low Voltage (LV) Range: from 2.4 V to 2.7 V
D4
E6 GNDA P Ground pins for the analog section.
F2 GNDCM P Ground pin for analog reference.
GNDCM can be connected to GNDA.
G6
H1 VCCP P
Power Supply pins for the left and right output drivers (headphones
and line-out).
Operating range: from VCCA to 3.3V
H3
H6 VCCLS P Power Supply pins for the mono differential output driver.
Operating range: from VCCA to 5.5V
G2
G7
H4
H5
GNDP P Ground pins for the left, right and mono-differential output drivers.
GNDP and GNDA must be connected together.
B3
C6 VCC P Power Supply pins for the digital section.
Operating range: from 1.71 V to 2.7 V
Table 1. Pin description
Pin N° Name Type Description
STw5095 Pin description
11/85
Note: VCC, VCCA, VCCP, VCCLS can be connected together for low cost applications: Operating
range: 2.4 V-2.7 V.
Type definitions
A1
C7 GND P Ground pins for the digital section.
D5 VCCIO P Power Supply pin for the Digital I/O buffers.
Operating ranges: from 1.2 V to 1.8 V and from 1.71 V to VCC
Table 1. Pin description
Pin N° Name Type Description
AI - Analog input
AO - Analog Output
AIO - Analog Input Output
DI - Digital Input
DO - Digital output
DIO - Digital Input Output
DIOD - Digital Input Output Open Drain
P - Power Supply or Ground
Functional description STw5095
12/85
4 Functional description
4.1 Power supply
STw5095 can have different supply voltages for different blocks, to optimize performance,
power consumption and connectivity. See
Operative supply voltage on page 52
for voltage
definition.
The correct sequence to apply supply voltage is to set first (and unset last) the digital I/O
supply (VCCIO). The other supply voltages can be set in any order and can be disconnected
individually, if needed. Disconnection does not cause any harm to the device and no extra
current is pulled from any supply during this operation. Moreover if a voltage conflict is
detected, like VCCA < VCC (not allowed), simply all blocks connected to VCCA are set to
power down and no extra current is pulled from supply.
When VCCIO is set and VCC (digital supply) is not set, all the digital output pins are in high
impedance state, while the digital inputs are disconnected to avoid power consumption for
any input voltage value between GND and VCCIO. Before VCC is disconnected the device
has to be reset (SWRES bit in CR30).
When the analog supply (VCCA) is set and VCC is not set, all the analog inputs are in high
impedance state.
The control registers are powered by VCC pin (digital supply) so if this pin is disconnected
all the information stored in control registers is lost. When the digital supply voltage is set, a
power-on-reset (POR) circuit sets all the registers content to the default value and then
generates an IRQ signal writing 1 in bits PORMSK and POREV in CR31 and CR32
respectively.
All supplies must be on during operation.
4.2 Device programming
STw5095 can be programmed by writing Control Registers with SPI or I2C compatible
control interface (both slave). The interface is always active, there is no need to have the
master clock running to program the device registers.
The choice between the two interfaces is done via an input pin (CMOD):
1. CMOD connected to GND: I2C compatible mode selected
The device address is selected with AS pin:
2. When this mode is selected control registers are accessed through pins:
SCLK (clock)
SDA (serial data out/in, open drain)
3. CMOD connected to VCCIO: SPI compatible mode selected
When this mode is selected control registers are accessed through:
CSB (chip select, active low)
SCLK (clock)
SDIN (serial data in)
AD_OCK or DA_OCK or IRQ (serial data out, if selected)
AS connected to GND: chip address 00110101(35hex) for reading, 00110100 (34hex) for writing
AS connected to VCCIO:chip address 00110111(37hex) for reading, 00110110 (36hex) for writing
STw5095 Functional description
13/85
Device Programming: I2C. The I2C Control Interface timing is shown in
Section 6.1 on
page 43
. The interface has an internal counter that keeps the current address of the control
register to be read or written. At each write access of the interface the address counter is
loaded with the data of the
register address
field. The value in the address counter is
increased after each data byte read or write. It is possible to access the interface in 2
modes: single-byte mode in which the address and data of a single register are specified,
and multi-byte mode in which the address of the first register to be written or read is
specified and all the following bytes exchanged are the data of successive registers starting
from the one specified (in multi-byte mode the internal address counter restart from register
0 after the last register 36). Using the multi-byte mode it is possible to write or read all the
registers with a single access to the device on the I2C bus.
Device Programming: SPI. The SPI Control Interface timing is shown in
Section 6.2 on
page 44
. Bits SPIOSEL (SPI Output Select) in CR33 control the out pin selection for serial
data out (none, AD_OCK, DA_OCK or IRQ), while bit SPIOHIZ=1 in CR33 selects the high
impedance state of serial data out pin when idle. The first bit sent on SDIN, after CSB falling
edge, sets the interface for writing (SDIN=1) or reading (SDIN=0), then a 7-bit Control
Register address follows.
If the interface is set for writing then the last 8 bits on SDIN are written in the control register.
If the interface is set for reading then after the 7 bit address STw5095 sends out 8 bits data
on the pin selected with bits SPIOSEL in CR33, while bits present at SDIN pin are ignored.
If SPIOSEL=00 (no out pin selected) the reading access on SPI interface can still be useful
to clear the IRQ event bits in CR32.
4.3 Power up
STw5095 internal blocks can individually be switched on and off according to the user
needs. A general Power Up bit is present at bit 7 of CR0. The output drivers should always
be powered up after the general power up. See the following drawing to select the needed
block for the desired function. A fast-settling function is activated to quickly charge external
capacitors when the device is switched on (CAPLS, CAPLINEIN and CAPMIC).
Functional description STw5095
14/85
Figure 3. Power up block diagram
4.4 Master clock
The master clock pin (AMCK) accepts any frequency from 4 MHz to 32 MHz. The 4-32 MHz
range is divided in sub-ranges that have to be programmed in bits CKRANGE in CR30. The
jitter and spectral properties of this clock have a direct impact on the DAC and ADC
performance because it is used to directly or by integer division drive the continuous-time to
sampled-time interfaces.
Note that AMCK clock des not need to have any relation to any other digital or analog input
or output.
AMCK can be either a squarewave or a sinewave, bit AMCKSIN in CR30 selects the proper
input mode. When a sinewave is used as input, AMCK pin must be decoupled with a
capacitor. Specification for sinusoidal input can be found in
Section 10.2: AMCK with
sinusoidal input on page 55
.
The AMCK clock is not needed when only analog functions are used. For this purpose an
internal oscillator with no external components can be used to operate the device (see
Analog-only operation on page 19
).
POWERUP
ENANA
STw5095
ENMIXL
ENMIXL
ENHPVCM
ENHPL
ENLS
ENHPR
ENMICR
ENMICL
ENLINR
ENLINL
ENOSC
ENADCR
ENADCL
ENDACR
ENDACL
AUDIO I/F
ENLOL
ENLOR
ENHSD
ENPLL
DAMAST ENDAOCK
ADMAST ENADOCK
MBIAS
ENAMCK
ENDACKGEN
ENADCKGEN
ENOSC=1
ENOSC=0
STw5095 Functional description
15/85
4.5 Data rates
STw5095 supports any data rate in 2 ranges: 8 kHz to 48 kHz and 88 kHz to 96 kHz. The
range is selected with bits DA96K and AD96K in CR29 for AD and DA paths respectively.
Note: When AD96K=1 it is required to have DA96K=1.
The rates are fully independent in A/D and D/A paths. Moreover the rates do not have to be
specified to the device and they can change on the fly, within one range, while data is
flowing.
The 2 audio data interfaces (for A/D and D/A) can independently operate in master or slave
mode.
4.6 Clock generators and master mode function
STw5095 provides 2 internal clock generators that can drive, if needed, the audio interfaces
(master mode), and/or two independent master clocks.
The AMCK clock input frequency is internally raised via a PLL to obtain a clock (MCK) in the
range 32 MHz to 48 MHz. The ratio MCK/AMCK is defined in CR30 (see MCKCOEFF in
Section 5.6 on page 34
).
MCK is used to obtain, by fractional division, the oversampled clock (OCK), word clock
(SYNC) and bit clock (CK), that will therefore have edges aligned with MCK (the OCK period
can have jitter of 1 MCK period).
The frequency of OCK, SYNC and CK is set with DAOCKF in CR21/20 for DA interface, and
ADOCKF in CR24/23 for AD interface.
The ratio between OCK and SYNC clocks is selected with bit DAOCK512 in CR22 for DA
interface and bit ADOCK512 in CR25 for AD interface. The ratio between CK and SYNC
clocks depends on the selected interface format (see
Audio digital interfaces
paragraph
below). Note that SPI format can only be slave.
The ADOCK and DAOCK output clocks are activated by bits ENADOCK and ENDAOCK
respectively, while master mode generation is activated with two bits: first ADMAST
(DAMAST) sets ADSYNC and ADCK (DASYNC and DACK) pins as outputs, then
ADMASTGEN (DAMASTGEN) generates the SYNC and CK clocks. The logical value at
SYNC and CK pins before data generation depends on the interface selected format.
See description of CR20 to CR25 for further details.
4.7 Audio digital interfaces
Two separate audio data interfaces are provided for AD and DA paths to have maximum
flexibility in communicating with other devices. The 2 interfaces can have different rates and
can work in different formats and modes (i.e AD interface can be 8 kHz PCM slave while DA
is 44.1 kHz I2S master).
The pins used by the interfaces are:
AD_SYNC, AD_CK and AD_DATA for AD path word clock, bit clock and data, respectively,
and
DA_SYNC, DA_CK and DA_DATA for DA path word clock, bit clock and data, respectively.
Functional description STw5095
16/85
Data is exchanged with MSB first and left channel data first in all formats. Data word-length
is selected with bits DAWL in CR26 and ADWL in CR27. AD_DATA pin, outside the selected
time slot, is in the impedance condition selected by bit ADHIZ in CR28 in all data formats
except Right-Aligned-Format.
In the following paragraphs SYNC, CK and DATA will be used when the distinction between
AD and DA is not relevant. When Master Mode is selected (bits DAMAST and ADMAST in
CR22 and CR25 respectively) the SYNC and CK clocks are generated internally. In addition,
an oversampled clock can be generated for each interface (AD_OCK and DA_OCK). The
OCK clock is available in Slave Mode also, if needed.
The AD and DA interfaces can also be used as a single bidirectional interface when they are
configured with the same format (Delayed, DSP, etc.) and AD_SYNC is connected to
DA_SYNC and DA_CK to AD_CK. Master Mode is still available selecting ADMAST or
DAMAST (not both).
The interfaces features are controlled with control registers CR26, CR27 and CR28.
Supported operating formats:
Delayed-Format (I2S compatible) (DAFORM or ADFORM =000): the Audio Interface
is I2S compatible (
Figure 9 on page 47
). The number of CK periods within one SYNC
period is not relevant, as long as enough CK periods are used to transfer the data and
the maximum frequency limit specified for bit clock is not exceeded. CK can be either a
continuous clock or a sequence of bursts. In master mode there are 32 CK periods per
SYNC period (that means 16 CK periods per channel) when the word length is 16 bit,
while there are 64 CK periods per SYNC period (or 32 CK periods per channel) when
word length is 18bit or higher. Bits ADSYNCP, DASYNCP and ADCKP, DACKP affect
the interface format inverting the polarity of SYNC and CK pins respectively.
Left-Aligned-Format (DAFORM or ADFORM =001): this format is equivalent to
Delayed-Format without the 1 bit clock delay at the beginning of each frame (
Figure 9
on page 47
).
Right-Aligned-Format (DAFORM or ADFORM =010): this format is equivalent to
Delayed-Format, except that the Audio Data is right aligned and that the number of CK
periods is fixed to 64 for each SYNC period (
Figure 9 on page 47
).
DSP-Format (DAFORM or ADFORM =011) in this format the Audio Interface starting
from a frame sync pulse on SYNC receives (DA) or sends (AD) the Left and Right data
one after the other (
Figure 10 on page 48
). The number of CK periods within one
SYNC period is not relevant, as long as enough CK periods are used to transfer the
data and the maximum frequency limit specified for bit clock is not exceeded. CK can
be either a continuous clock or a sequence of bursts. In Master Mode there are 32 CK
periods per SYNC period when the word length is 16 bit, while there are 64 CK periods
per SYNC period when word length is 18bit or higher. Bit CKP (ADCKP and DACKP)
affects the interface format inverting the polarity of CK pin. Bit SYNCP (ADSYNCP and
DASYNCP) switches between delayed (SYNCP=0) and non delayed (SYNCP=1)
formats.
DSP-Format is suited to interface with a Multi-Channel Serial Port.
SPI-Format (DAFORM or ADFORM =100) in this format Left and Right data is received
with separate data burst. Every burst is identified with a low level on SYNC signal
(
Figure 10 on page 48
). There is no timing difference between the Left and Right data
burst: the two channels are identified by the startup order: the first burst after AD path
or DA path power-up identifies the Left channel data, the second one is the Right
channel data, then Left and Right data repeat one after the other. CK must have 16
periods per channel in case of 16 bit data word and 32 periods per channel in case of
STw5095 Functional description
17/85
18 bit to 32 bit data word.
The SPI interface can be configured as a single-channel (mono) interface with bit SPIM
(ADSPIM and DASPIM). The mono interface always exchanges the left channel
sample.
SPI-Format can only be Slave: if Master Mode is selected the CK and SYNC pins are
set to 0. Bit CKP (ADCKP and DACKP) affects the interface format inverting the polarity
of CK pin.
PCM-Format (DAFORM or ADFORM =111): this format is monophonic, as it can only
receive (DA) and transmit (AD) single channel data (
Figure 10 on page 48
). It is mainly
used when voice filters are selected. If audio filters are used then the same sample is
sent from DA-PCM interface to both channel of DA path, and the left channel sample
from AD path is sent to AD-PCM interface. If in the AD path the right channel has to be
sent to the PCM interface then the following must be set: ADRTOL=1 (CR27) and
ENADCL=0 (CR1). In Master Mode the number of CK periods per SYNC period is
between 16 and 512 (see DAPCMF in CR22 and ADPCMF in CR25,
Section 5.6 on
page 34
for details). Bit CKP (ADCKP and DACKP) affects the interface format
inverting the polarity of CK pin. Bit SYNCP (ADSYNCP and DASYNCP) switches
between delayed (SYNCP=0) and non delayed (SYNCP=1) formats.
4.8 Analog inputs
STw5095 has a stereo Microphone preamplifier and a stereo Line In amplifier, with inputs
selectable among 5: MIC (for Microphone preamplifier only), LINEIN (for Line In amplifier
only) and 3 different AUX inputs (for Microphone and Line In amplifiers). The AUX inputs can
be used simultaneously for Line In amplifiers and Microphone preamplifiers.
Microphone preamplifier: it has a very low noise input, specifically designed for low
amplitude signals. For this reason it has a high input gain (up to 39 dB) keeping a
constant 50 kΩ input impedance for the whole gain range. However it can also be used
as a line in preamplifier because it can accept a high dynamic input signal (up to 4 Vpp).
There are two separate gain and attenuation stages in order to improve the S/N ratio
when the preamplifier output range is below full scale (volume control).The gain and
attenuation controls are separate for left and right channel (CR3 and CR4 respectively).
The Preamplifier input is selected with bits MICSEL in CR18, and it is disconnected
when MICMUTE=1. If a single ended input is selected then the preamplifier uses the
selected pin as the positive input and connects the negative input (for both left and right
channels) to CAPMIC pin, which has to be connected through a capacitor to a low
noise ground (typically the same reference ground of the input).
The stereo Microphone preamplifier is powered up with bits ENMICL and ENMICR in
CR1.
Line In amplifier: it is designed for high level input signal. The input gain is in the range
-20 dB up to 18 dB. The Line In amplifier input is selected with bits LINSEL in CR18,
and it is disconnected when LINMUTE=1. If a single ended input is selected then the
amplifier uses the selected pin as the positive input and connects the negative input (for
both left and right channels) to CAPLINEIN pin, which has to be connected through a
capacitor to a low noise ground (typically the same reference ground of the input).
The stereo Line In amplifier is powered up with bits ENLINL and ENLINR in CR1.
Functional description STw5095
18/85
4.9 Analog output drivers
STw5095 provides 3 different analog signal outputs and 1 common mode reference output:
Line Out Drivers: it is a stereo differential output, it can be used as single-ended
output just by using the positive or negative pin. It can drive 1 kΩ resistive load. The
load can be connected between the positive and negative pins or between one pin and
ground through a decoupling capacitor. The output gain is regulated with LOG bits in
CR7, in the range 0 to -18 dB, simultaneously for left and right channels. When used as
a single ended output the effective gain is 6 dB lower. It is muted with bit MUTELO in
CR19. The input signal of this stereo output can come from the analog mixer or directly
from MIC preamplifiers. The output Common Mode Voltage level is controlled with bits
VCML in CR19. The supply voltage of line out drivers is VCCP .
The Line Out Drivers are powered up with bits ENLOL and ENLOR in CR1. The output
pins are in high impedance state with a 180kΩ pull-down resistor when the Line Out
Drivers are powered down.
Headphones Drivers: it is a stereo single ended output. It can drive 16 Ohm resistive
load and deliver up to 40 mW. The output gain is regulated with HPLG and HPRG bits
in CR8 and CR9 respectively, with a range of -40 to 6 dB. It is muted with bit MUTEHP
in CR19. The input signal of this stereo output comes from the analog mixer.The output
Common Mode Voltage is controlled with bits VCML in CR19. The supply voltage of
headphones drivers is VCCP.
The Headphones Drivers are powered up with bits ENHPL and ENHPR in CR2.The
output pins are in high impedance state when the Headphones Drivers are powered
down.
Common Mode Voltage Driver: it is a single ended output with output voltage value
selectable with bits VCML in CR19, from 1.2 V to 1.65 V in steps of 150 mV. The output
voltage should be set to the value closest to VCCP/2 to optimize output drivers
performance. The Common Mode Voltage Driver is designed to be connected to the
common pin of stereo headphones, so that decoupling capacitors are not needed at
HPL and HPR outputs. The supply voltage of the common mode voltage driver is
VCCP.
The Common Mode Voltage Driver is powered up with bit ENHPVCM in CR2.The
output pin is in high impedance state when the Common Mode Voltage Driver is
powered down.
Loudspeaker Driver: it is a monophonic differential output. It can drive 8 Ω resistive
load and deliver up to 500 mW to the load. The output gain is regulated with LSG bits in
CR7, in the range -24 to +6 dB. The input signal of the loudspeaker driver comes from
the analog mixers: bits LSSEL in CR29 select left channel, right channel, (L+R)/2
(mono) or mute. The output Common Mode Voltage is obtained with an internal voltage
divider from VCCLS and it is connected to CAPLS pin. The supply voltage of the
loudspeaker driver is VCCLS.
The Loudspeaker Driver is powered up with bit ENLS in CR2.The output pin is in high
impedance state when the Loudspeaker Driver is powered down.
Note: Note on direct connection of VCCLS To the battery:
The voltage of batteries of handheld devices during charging is usually below 5.5 V, making
VCCLS supply pin suitable for a direct connection to the battery. In this case if STw5095 is
delivering the maximum power to the load and the ambient temperature is above 70 °C then
the simultaneous charging of the battery can overheat the device. A basic protection
scheme is implemented in STw5095 (activated with bit LSLIM in CR19): it limits the
maximum gain of the loudspeaker to -6 dB when VCCLS is above 4.2 V, and it removes the
limit for VCCLS below 4.0 V. The loudspeaker gain is left unchanged if it is set below -6 dB
STw5095 Functional description
19/85
with bits LSG. This event (VCCLS > 4.2 V) can generate, if enabled (bit VLSMSK in CR31),
an IRQ signal.
4.10 Analog mixer
STw5095 can send to the output drivers the sum of stereo audio signals from 3 different
sources, DA path (bit MIXDAC in CR17), Microphone Preamplifiers (bit MIXMIC in CR17)
and Line In Amplifiers (bit MIXLIN in CR17). The mixer does not have a gain control on the
inputs, therefore the user should reduce the levels of the input signals within the analog
signal range.
The stereo Analog Mixer is powered up with bits ENMIXL and ENMIXR in CR2.
4.11 AD path
The AD path converts audio signals from Microphone Preamplifiers (selected with bit
ADMIC in CR17) and Line In Amplifiers (bit ADLIN in CR17) inputs to digital domain. If both
inputs are selected then the sum of the two is converted. After AD conversion the audio data
is resampled with a sample rate converter and then processed with the internal DSP. Two
different filters are selectable in the DSP (bit ADVOICE in CR29): stereo Audio Filter, with
DC offset removal and FIR image filtering; and a standard mono Voice-channel filter (uses
left channel input and feeds both channel output). The AD path includes a digital gain
control (ADCLG, ADCRG in CR12 and CR13 respectively) in the range -57 to +8 dB. The
maximum gain from Mic Preamplifier to AD interface is then 47 dB. When Audio filter is
selected in both AD and DA paths then DA audio data can be summed to AD data and sent
to the AD Audio Interface (see DA2ADG in CR15). Left and Right channels can be
independently switched on and off to save power, if needed (bits ENADCL and ENADCR in
CR1)
4.12 DA path
The DA path converts digital data from the digital audio interface to analog domain and
feeds it to the analog mixer. Incoming audio data is processed with a DSP where different
filters are selectable (bit DAVOICE in CR29): Audio Filter, stereo, with FIR image filtering,
bass and treble controls (bits BASS and TREBLE in CR14), de-emphasis filter; and a
standard Voice-channel filter, mono (uses left channel input and feeds both channel output).
A dynamic compression function is available for both audio and voice filters (bit DYNC in
CR14). The DA path includes a digital gain control (DACLG, DACRG in CR10 and CR11
respectively) in the range -65 to 0 dB. AD to DA mixing (sidetone) can be enabled: see
CR16 for details. Left and Right channel can be independently switched on and off to save
power, if needed (bits ENDACL and ENDACR in CR1)
4.13 Analog-only operation
STw5095 can operate without AMCK master clock if analog-only functions are used. It is
possible to mix Microphone and Line In preamplifiers signals and listen through
headphones, loudspeaker or send them to line-out. The analog-only operation is enabled
with bit ENOSC in CR0. When ENOSC=1 the AD and DA paths cannot be used.
Functional description STw5095
20/85
In Analog Mode STw5095 can handle two different stereo audio signals, so it can be used as
a front end for an external voice codec that does not include microphone preamplifiers and
power drivers: mic signal is sent through Microphone preamplifiers directly to line out drivers
(Transmit path), while Receive signal is sent through Line In amplifiers to the selected power
drivers.
4.14 Automatic Gain Control (AGC)
STw5095 provides a digital Automatic Gain Control in AD path. The circuit can control the
input gain at MIC preamplifier, Line In amplifier or both (bits ENAGCMIC and ENAGCLIN in
CR35). When one input is selected, the center gain value used for the input is fixed with bits
MICLG, MICRG, LINLG and LINRG in CR3 to CR6 (like in normal operation), then the AGC
circuit adds to all the gains a value in the range -10.5 dB to +10.5 dB (or, extended with bit
AGCRANGE in CR35, -21 dB to 21 dB), in order to obtain an average level at the digital
interface output in the range -6 dB to -30 dB (selected with bits AGCLEV in CR35). The
AGC added gain acts directly in the input gain, to avoid input saturation and improve S/N
ratio, so it cannot exceed the input gain range. When MIC and Line-In inputs are selected
simultaneously the control is performed on the sum of the two, preserving the balance fixed
with input gains. Different values for Attack and Decay constants can be selected,
depending on the kind of signal the AGC has to control (i.e. voice, music). The Attack and
Decay time constants are related to the AD data rate (see bits AGCATT and AGCDEL in
CR34).
4.15 Interrupt request: IRQ pin
STw5095 interrupt request feature can signal to a control device the occurrence of particular
events. Two control registers are used to choose the behavior of IRQ pin: the first is a
Status/Event Register (CR32), where bits can represent the status of an internal function
(i.e. a voltage is above or below a threshold) or an event (i.e. a voltage changed crossing a
threshold); the second is a Mask Register (CR31) where if a bit in the mask is set to 1 then
the corresponding bit in the Status/Event Register can affect IRQ pin status.
The IRQ pin is always active low. At VCC power up an interrupt request is generated by the
Power-On-Reset circuit that sets to 1 bits PORMSK in CR31 and POREV in CR32. After this
event the PORMSK bit should be cleared by the user and bit IRQCMOS in CR33 should be
set according to the application (open drain or CMOS).
When an IRQ event occurs and SPI control interface is selected with no serial output pin it is
still possible to identify the event (and relative status) that generated the interrupt request.
This can be done by setting the IRQ mask/enable bits (in CR31) one at the time (with
successive writings) and reading the IRQ pin status. A simple example of this is the headset
plug-in detection: at first we set bit HSDETMSK=1 in CR31 (with all the other bits set to 0). If
there is an interrupt request then we set HSDETMSK=0 and HSDETEN=1, so we can read
the HSDET status at IRQ pin. Then we read CR32 to clear its content (even if no data is
sent out).
STw5095 Functional description
21/85
4.16 Headset plug-in and push-button detection
STw5095 can detect the plug-in of a microphone connector and the press/release event of a
call/answer push-button. An application example can be found below, while specifications
can be found in
Section 10.4 on page 56
.
Figure 4. Plug-in and push-button detection application note
4.17 Microphone biasing circuit
The Microphone Biasing Circuit can drive mono or stereo microphones and can switch them
off when not needed in order to save the current used by the microphone biasing network.
Two bits control the behavior of the microphone bias circuit: MBIAS in CR17 enables the
circuit (fixed voltage at MBIAS pin), while bit MBIASPD in CR17 affects the behavior of
MBIAS pin when the function is not enabled. In particular when MBIASPD=1 the MBIAS pin
is pulled down, otherwise it is left in tristate mode. The specification for the microphone
biasing circuit can be found in
Section 4.17 on page 21
, and an application note is shown in
Section 18 on page 69
.
Call/Answer Button 10μF
1.5kΩ
VCCA
3kΩ
200nF AUX1L
AUX1R
CAPMIC
HDET
200nF
STw5095
Generic Connector
From Driver
Control registers STw5095
22/85
5 Control registers
5.1 Summary
CR#
(hex) DescriptionD7D6D5 D4 D3D2D1D0Def.
CR0 (00h) Supply & Power Control #1 POWERUP ENANA ENAMCK ENOSC ENPLL ENHSD A24V D12V 0000 0000
CR1 (01h) Power Control #2 ENADCL ENADCR ENDACL ENDACR ENMICL ENMICR ENLINL ENLINR 0000 0000
CR2 (02h) Power Control #3 ENLOL ENLOR ENHPL ENHPR ENHPVCM ENLS ENMIXL ENMIXR 0000 0000
CR3 (03h) Mic Gain Left MICLA(2:0) MICLG(4:0) 0000 0000
CR4 (04h) Mic Gain Right MICRA(2:0) MICRG(4:0) 0000 0000
CR5 (05h) Line in Gain Left X X X LINLG(4:0) 0000 1001
CR6 (06h) Line in Gain Right X X X LINRG(4:0) 0000 1001
CR7 (07h) LO gain & LS gain X LOG(2:0) LSG(3:0) 0000 0011
CR8 (08h) HPL Gain X X X HPLG(4:0) 0000 0011
CR9 (09h) HPR Gain X X X HPRG(4:0) 0000 0011
CR10 (0Ah) DAC Digital Gain Left X X DACLG(5:0) 0000 0000
CR11 (0Bh) DAC Digital Gain Right X X DACRG(5:0) 0000 0000
CR12 (0Ch) ADC Digital Gain Left X X ADCLG(5:0) 0000 1000
CR13 (0Dh) ADC Digital Gain Right X X ADCRG(5:0) 0000 1000
CR14 (0Eh) Bass/Treble/De-emphasis DYNC TREBLE(2:0) BASS(3:0) 0000 0000
CR15 (0Fh) DA to AD mixing gain X X X DA2ADG(4:0) 0000 0000
CR16 (10h) AD to DA mix/sidetone gain X X AD2DAG(5:0) 0000 0000
CR17 (11h) Mixer Switches & Mic Bias MBIAS MBIASPD ADMIC ADLIN MIXMIC MIXLIN MIXDAC MICLO 0000 0000
CR18 (12h) Input Switches X IN2VCM LINMUTE LINSEL(1:0) MICMUTE MICSEL(1:0) 0010 0100
CR19 (13h) Drivers Control VCML(1:0) X MUTELO MUTEHP LSLIM LSSEL(1:0) 0101 1000
CR20 (14h) DAOCK Frequency Ls byte DAOCKF(7:0) 0000 0000
CR21 (15h) DAOCK Frequency Ms byte DAOCKF(15:8) 0000 0000
CR22 (16h) DA Clock Generator Control X X DAMAST DAMASTGEN ENDAOCK DAOCK512 DAPCMF(1:0) 0000 0000
CR23 (17h) ADOCK Frequency Ls byte ADOCKF(7:0) 0000 0000
CR24 (18h) ADOCK Frequency Ms byte ADOCKF(15:8) 0000 0000
CR25 (19h) AD Clock Generator Con-
trol
X X ADMAST ADMASTGEN ENADOCK ADOCK512 ADPCMF(1:0) 0000 0000
CR26 (1Ah) DAC Data IF Control X DAFORM(2:0) DASPIM DAWL(2:0) 0000 0000
CR27 (1Bh) ADC Data IF Control ADRTOL ADFORM2:0) ADSPIM ADWL(2:0) 0000 0000
CR28 (1Ch) DAC&ADC Data IF Control AMCKINV DACKP DASYNCP DAMONO ADCKP ADSYNCP ADMONO ADHIZ 0000 0000
CR29 (1Dh) Digital Filters Control X DAVOICE DA96K RXNH ADVOICE AD96K ADNH TXNH 0000 0000
CR30 (1Eh) Soft Reset & AMCK Range SWRES X X X AMCKSIN CKRANGE(2:0) 0000 0000
CR31 (1Fh) interrupt Mask VLSHEN PUSHBEN HSDETEN VLSHMSK PUSHBMSK HSDETMSK OVFMSK PORMSK 0000 0000
CR32 (20h) Interrupt Status VLSH PUSHB HSDET VLSHEV PUSHBEV HSDETEV OVFEV POREV 0000 0000
CR33 (21h) Misc. Control X X SPIOHIZ SPIOSEL(1:0) IRQCMOS OVFDA OVFAD 0000 0000
CR34 (22h) AGC Attack/Decay coeff. AGCATT(3:0) AGCDEC(3:0) 0000 0000
CR35 (23h) AGC Control X ENAGCLIN ENAGCMIC AGCRANGE AGCLEV(3:0) 0000 0000
CR36 (24h) RESERVED X X X X X X X X 0000 0000
Note: X reserved, write zero
STw5095 Control registers
23/85
5.2 Supply and power control
CR#
(hex) DescriptionD7D6D5D4D3D2D1D0Def.
CR0 (00h) Supply & Power Control #1 POWERUP ENANA ENAMCK ENOSC ENPLL ENHSD A24V D12V 0000 0000
CR1 (01h) Power Control #2 ENADCL ENADCR ENDACL ENDACR ENMICL ENMICR ENLINL ENLINR 0000 0000
CR2 (02h) Power Control #3 ENLOL ENLOR ENHPL ENHPR ENHPVCM ENLS ENMIXL ENMIXR 0000 0000
Bits Name Val. CR0 Description Def.
7POWERUP 1
0
All the enabled analog and digital blocks are in power up
All the device is in power down 0
6 ENANA 1
0
The analog blocks can be enabled
All the analog blocks are in power down 0
5ENAMCK 1
0
AMCK clock input pin is enabled
AMCK clock input pin is disabled 0
4ENOSC
1
0
The Internal Oscillator is enabled. The analog blocks use Oscillator
clock
The Internal Oscillator is in power down
0
3ENPLL 1
0
The PLL is enabled
The PLL is in power down 0
2 ENHSD 1
0
The Headset Plug-in Detector is enabled
The Headset Plug-in Detector is disabled 0
1A24V 1
0
Analog Supply Pins voltage range is 2.4V<VCCA<2.7V
Analog Supply Pins voltage range is 2.7V<VCCA<3.3V 0
0D12V 1
0
Digital I/O Pins voltage range is 1.2V<VCCIO<1.8V
Digital I/O Pins voltage range is 1.71V<VCCIO<VCC
0
Control registers STw5095
24/85
Bits Name Value CR1 Description Def.
7 ENADCL 1
0
The left channel A/D converter is enabled
The left channel A/D converter is in power down 0
6 ENADCR 1
0
The right channel A/D converter is enabled
The right channel A/D converter is in power down 0
5ENDACL 1
0
The left channel D/A converter is enabled
The left channel D/A converter is in power down 0
4ENDACR 1
0
The right channel D/A converter is enabled
The right channel D/A converter is in power down 0
3ENMICL 1
0
The left channel microphone preamplifier is enabled
The left channel microphone preamplifier is in power down 0
2ENMICR 1
0
The right channel microphone preamplifier is enabled
The right channel microphone preamplifier is in power down 0
1ENLINL 1
0
The left channel line-in preamplifier is enabled
The left channel line-in preamplifier is in power down 0
0ENLINR 1
0
The right channel line-in preamplifier is enabled
The right channel line-in preamplifier is in power down 0
Bit # Name Value CR2 Description Def.
7ENLOL 1
0
The left channel line out driver is enabled
The left channel line out driver is in power down (default) 0
6ENLOR 1
0
The right channel line out driver is enabled
The right channel line out driver is in power down (default) 0
5 ENHPL 1
0
The left channel headphones driver is enabled
The left channel headphones driver is in power down (default) 0
4 ENHPR 1
0
The right channel headphones driver is enabled
The right channel headphones driver is in power down (default) 0
3 ENHPVCM 1
0
The headphones reference voltage generator is enabled
The headphones reference voltage generator is in power down (def) 0
2ENLS 1
0
The 8Ω loudspeaker amplifier is enabled
The 8Ω loudspeaker amplifier is in power down (default) 0
1ENMIXL 1
0
The left channel analog output mixer is enabled
The left channel analog output mixer is in power down (default) 0
0ENMIXR 1
0
The right channel analog output mixer is enabled
The right channel analog output mixer is in power down (default) 0
STw5095 Control registers
25/85
5.3 Gains
CR#
(hex) DescriptionD7D6D5D4D3D2D1D0Def.
CR3 (03h) Mic Gain Left MICLA(2:0) MICLG(4:0) 0000 0000
CR4 (04h) Mic Gain Right MICRA(2:0) MICRG(4:0) 0000 0000
CR5 (05h) Line in Gain Left X X X LINLG(4:0) 0000 1001
CR6 (06h) Line in Gain Right X X X LINRG(4:0) 0000 1001
CR7 (07h) LO gain & LS gain X LOG(2:0) LSG(3:0) 0000 0011
CR8 (08h) HPL Gain X X X HPLG(4:0) 0000 0011
CR9 (09h) HPR Gain X X X HPRG(4:0) 0000 0011
CR10 (0Ah) DAC Digital Gain Left X X DACLG(5:0) 0000 0000
CR11 (0Bh) DAC Digital Gain Right X X DACRG(5:0) 0000 0000
CR12 (0Ch) ADC Digital Gain Left X X ADCLG(5:0) 0000 1000
CR13 (0Dh) ADC Digital Gain Right X X ADCRG(5:0) 0000 1000
Bits Name CR3
Name CR4 Value CR3 and CR4 Description Def.
7-5 MICLA(2:0)
MICRA(2:0)
000
001
010
...
110
111
Left (CR3) and Right (CR4) Channels Microphone Attenuation
0.0 dB Gain (default)
-1.5 dB Gain
-3.0 dB Gain
...step 1.5 dB
-9.0 dB Gain
-12.0 dB Gain
000
4-0 MICLG(4:0)
MICRG(4:0)
00000
00001
00010
...
11010
Left (CR3) and Right (CR4) Channels Microphone Gain
0.0 dB Gain (default)
1.5 dB Gain
3.0 dB Gain
...step 1.5 dB
39.0 dB Gain
00000
Bits Name CR5
Name CR6 Value CR5 and CR6 Description Def.
4-0 LINLG(4:0)
LINRG(4:0)
00000
00001
00010
...
01001
...
10011
Left (CR5) and Right (CR6) Channels Line In Gain
18.0 dB Gain
16.0 dB Gain
14.0 dB Gain
...step 2.0 dB
0.0 dB Gain (default)
...step 2.0 dB
-20.0 dB Gain
01001
Control registers STw5095
26/85
Bits Name Value CR7 Description Def.
6-4 LOG(2:0)
000
001
010
...
110
Left and Right Channel Line Out Drivers Gain
000
3-0 LSG(3:0)
0000
0001
0010
0011
...
1111
8Ω Loudspeaker Gain
6.0dB Gain
4.0dB Gain
2.0 dB Gain
0.0dB Gain (default)
...step 2.0 dB
-24.0dB Gain
0011
Bits Name CR8
Name CR9 Value CR8 and CR9 Description Def.
4-0 HPLG(4:0)
HPRG(4:0)
00000
00001
00010
00011
...
10100
Left (CR8) and Right (CR9) Channels Headphones Driver Gain
0.0dB Gain
-2.0dB Gain
-4.0dB Gain
-6.0dB Gain (default)
...step 2.0 dB
-40.0dB Gain
00011
Gain to Differential Output Equivalent Single-Ended Gain
-18.0 dB Gain (default) -24.0 dB Gain (default)
-15.0 dB Gain -21.0 dB Gain
-12.0 dB Gain -18.0 dB Gain
...step 3 dB ...step 3 dB
00 dB Gain -6.0 dB Gain
STw5095 Control registers
27/85
Bits Name CR10
Name CR11 Value CR10 and CR11 Description Def.
5-0 DACLG(5:0)
DACRG(5:0)
000000
000001
000010
000011
000100
000101
000110
000111
001000
001001
001010
001011
001100
001101
001110
001111
010000
010001
010010
010011
010100
010101
010110
010111
011000
011001
011010
011011
011100
011101
011110
011111
100000
100001
100010
100011
100100
100101
Left (CR10) and Right (CR11) Channels DAC Digital Gain
0.0dB Gain (default)
-1.0dB Gain
-2.0dB Gain
-3.0dB Gain
-4.0dB Gain
-5.0dB Gain
-6.0dB Gain
-7.0dB Gain
-8.0dB Gain
-9.0dB Gain
-10.0dB Gain
-11.0dB Gain
-12.0dB Gain
-13.0dB Gain
-14.0dB Gain
-15.0dB Gain
-16.0dB Gain
-17.0dB Gain
-18.0dB Gain
-20.0dB Gain
-22.0dB Gain
-24.0dB Gain
-26.0dB Gain
-28.0dB Gain
-30.0dB Gain
-32.0dB Gain
-34.0dB Gain
-36.0dB Gain
-38.0dB Gain
-41.0dB Gain
-44.0dB Gain
-47.0dB Gain
-50.0dB Gain
-53.0dB Gain
-56.0dB Gain
-59.0dB Gain
-65.0dB Gain
-dB Gain
000000
Control registers STw5095
28/85
Bits Name CR12
Name CR13 Value CR12 and CR13 Description Def.
5-0 ADCLG(5:0)
ACDRG(5:0)
000000
000001
000010
000011
000100
000101
000110
000111
001000
001001
001010
001011
001100
001101
001110
001111
010000
010001
010010
010011
010100
010101
010110
010111
011000
011001
011010
011011
011100
011101
011110
011111
100000
100001
100010
100011
100100
100101
100110
Left (CR12) and Right (CR13) Channels ADC Digital Gain
8.0dB Gain
7.0dB Gain
6.0dB Gain
5.0dB Gain
4.0dB Gain
3.0dB Gain
2.0dB Gain
1.0dB Gain
0.0dB Gain (default)
-1.0dB Gain
-2.0dB Gain
-3.0dB Gain
-4.0dB Gain
-5.0dB Gain
-6.0dB Gain
-7.0dB Gain
-8.0dB Gain
-9.0dB Gain
-10.0dB Gain
-11.0dB Gain
-12.0dB Gain
-14.0dB Gain
-16.0dB Gain
-18.0dB Gain
-20.0dB Gain
-22.0dB Gain
-24.0dB Gain
-26.0dB Gain
-28.0dB Gain
-30.0dB Gain
-33.0dB Gain
-36.0dB Gain
-39.0dB Gain
-42.0dB Gain
-45.0dB Gain
-48.0dB Gain
-51.0dB Gain
-57.0dB Gain
-dB Gain
001000
STw5095 Control registers
29/85
5.4 DSP control
CR#
(hex) DescriptionD7D6D5D4D3D2D1D0Def.
CR14 (0Eh) Bass/Treble/De-emphasis DYNC TREBLE(2:0) BASS(3:0) 0000 0000
CR15 (0Fh) DA to AD mixing gain X X X DA2ADG(4:0) 0000 0000
CR16 (10h) AD to DA mix/sidetone gain X X AD2DAG(5:0) 0000 0000
Bits Name Value CR14 Description Def.
7DYNC 1
0
Audio Dynamic Compression in D/A path is enabled
Audio Dynamic Compression in D/A path is disabled 0
6-4 TREBLE(2:0)
011
010
001
000
111
110
101
100
Treble Control in D/A path
+6.0dB Treble Gain
+4.0dB Treble Gain
+2.0dB Treble Gain
0.0dB Treble Gain
-2.0dB Treble Gain
-4.0dB Treble Gain
-6.0dB Treble Gain
De-emphasis filter enabled
000
3-0 BASS(3:0)
0101
0100
0011
0010
0001
0000
1111
1110
1101
1100
1011
Bass Control in D/A path
+12.5dB Bass Gain
+10.0dB Bass Gain
+7.5dB Bass Gain
+5.0dB Bass Gain
+2.5dB Bass Gain
0.0dB Bass Gain
-2.5dB Bass Gain
-5.0dB Bass Gain
-7.5dB Bass Gain
-10.0dB Bass Gain
-12.5dB Bass Gain
0000
Control registers STw5095
30/85
Bits Name Value CR15 Description Def.
4-0 DA2ADG(4:0)*
00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101
10110
DA to AD mixing
(Audio filter in D/A and A/D path selected)
DA to AD mixing Disabled (default)
+2.0dB Gain
0.0dB Gain
-2.0dB Gain
-4.0dB Gain
-6.0dB Gain
-8.0dB Gain
-10.0dB Gain
-12.0dB Gain
-14.0dB Gain
-16.0dB Gain
-18.0dB Gain
-20.0dB Gain
-22.0dB Gain
-24.0dB Gain
-26.0dB Gain
-28.0dB Gain
-30.0dB Gain
-32.0dB Gain
-34.0dB Gain
-36.0dB Gain
-38.0dB Gain
-40.0dB Gain
00000
* When Voice filter in D/A or A/D path is selected this function is disabled
Note: D/A to A/D mixing is performed at AD data rate, so if A/D and D/A rates are different then asynchronous sampling
artifacts may occur.
STw5095 Control registers
31/85
Bits Name Value CR16 Description Def.
5-0 AD2DAG(5:0)
000000
000001
000010
000011
000100
000101
000110
000111
001000
001001
001010
001011
001100
001101
001110
001111
010000
010001
010010
010011
010100
010101
010110
010111
011000
011001
011010
011011
011100
011101
011110
011111
100000
100001
100010
100011
100100
100101
100110
100111
101000
101001
101010
AD to DA mixing (sidetone)
AD to DA mixing Disabled (default)
-1.0dB Gain
-2.0dB Gain
-3.0dB Gain
-4.0dB Gain
-5.0dB Gain
-6.0dB Gain
-7.0dB Gain
-8.0dB Gain
-9.0dB Gain
-10.0dB Gain
-11.0dB Gain
-12.0dB Gain
-13.0dB Gain
-14.0dB Gain
-15.0dB Gain
-16.0dB Gain
-17.0dB Gain
-18.0dB Gain
-19.0dB Gain
-20.0dB Gain
-21.0dB Gain
-22.0dB Gain
-23.0dB Gain
-24.0dB Gain
-25.0dB Gain
-26.0dB Gain
-27.0dB Gain
-28.0dB Gain
-29.0dB Gain
-30.0dB Gain
-31.0dB Gain
-32.0dB Gain
-33.0dB Gain
-34.0dB Gain
-35.0dB Gain
-36.0dB Gain
-37.0dB Gain
-38.0dB Gain
-39.0dB Gain
-40.0dB Gain
-41.0dB Gain
-42.0dB Gain
000000
Control registers STw5095
32/85
5.5 Analog functions
CR#
(hex) DescriptionD7D6D5D4D3D2D1D0Def.
CR17 (11h) Mixer Switches & Mic Bias MBIAS MBIASPD ADMIC ADLIN MIXMIC MIXLIN MIXDAC MICLO 0000 0000
CR18 (12h) Input Switches X IN2VCM LINMUTE LINSEL(1:0) MICMUTE MICSEL(1:0) 0010 0100
CR19 (13h) Drivers Control VCML(1:0) X MUTELO MUTEHP LSLIM LSSEL(1:0) 0101 1000
Bits Name Value CR17 Description Def.
7 MBIAS 1
0
Microphone Bias Enabled (2.1V typ at MBIAS Pin)
Microphone Bias Disabled 0
6 MBIASPD
1
0
MBIAS Pin is pulled down when Microphone Bias is disabled
MBIAS Pin is in High Impedance state when Microphone Bias is
disabled
0
5ADMIC 1
0
Microphone Preamplifiers are connected to AD path
Microphone Preamplifiers are not connected to AD path 0
4ADLIN 1
0
Line In Preamplifiers are connected to AD path
Line In Preamplifiers are not connected to AD path 0
3MIXMIC 1
0
Microphone Preamplifiers are connected to Mixers
Microphone Preamplifiers are not connected to Mixers 0
2MIXLIN 1
0
Line In Preamplifiers are connected to Mixers
Line In Preamplifiers are not connected to Mixers 0
1MIXDAC 1
0
Stereo DAC path is connected to Mixers
Stereo DAC path is not connected to Mixers 0
0MICLO 1
0
Microphone Preamplifiers are connected to Line Out Drivers
Mixers are connected to Line Out Drivers 0
STw5095 Control registers
33/85
Bits Name Value CR18 Description Def.
6IN2VCM 1
0
Unused Analog input pins are biased to Common Mode voltage
Unused Analog input pins are in high impedance state 0
5LINMUTE 1
0
Line In Preamplifiers are muted
Line In Preamplifiers are not muted 1
4-3 LINSEL(1:0)
00
01
10
11
Input Pins connected to Line In Preamplifiers (if LINMUTE=0)
00
2MICMUTE 1
0
Microphone Preamplifiers are muted
Microphone Preamplifiers are not muted 1
1-0 MICSEL(1:0)
00
01
10
11
Input Pins connected to Microphone Preamplifiers (if MICMUTE=0)
00
Bits Name Value CR19 Description Def.
7-6 VCML(1:0)
00
01
10
11
Common Mode Voltage Level for Line Out and Headphones drivers
1.20 V
1.35 V (default)
1.50 V
1.65 V
01
4MUTELO 1
0
Line Out Drivers are muted
Line Out Drivers are not muted 1
3MUTEHP 1
0
Headphones Drivers (HP) are muted
Headphones Drivers (HP) are not muted 1
2LSLIM
1
0
Loudspeaker Driver (LS) gain is limited when VCCLS is above 4.2V
typ
Loudspeaker Driver (LS) gain is not limited
0
1-0 LSSEL(1:0) 00
LINEIN (LINEINL, LINEINR)
AUX1 (AUX1L, AUX1R)
AUX2 (AUX2LP-AUX2LN, AUX2RP-AUX2RN)
AUX3 (AUX3L, AUX3R)
MIC (MICLP-MICLN, MICRP-MICRN)
AUX1 (AUX1L, AUX1R)
AUX2 (AUX2LP-AUX2LN, AUX2RP-AUX2RN)
AUX3 (AUX3L, AUX3R)
00
01
10
11
Mute Loudspeaker Driver (LS) is muted
Right Right Channel Mixer only connected to Loudspeaker
driver
Left Left Channel Mixer only connected to Loudspeaker
driver
Mono (Left + Right)/2 Channel Mixers connected to
Loudspeaker driver
Control registers STw5095
34/85
5.6 Digital audio interfaces master mode and clock generators
CR#
(hex) DescriptionD7D6D5 D4 D3D2D1D0Def.
CR20 (14h) DAOCK Frequency Ls byte DAOCKF(7:0) 0000 0000
CR21 (15h) DAOCK Frequency Ms byte DAOCKF(15:8) 0000 0000
CR22 (16h) DA Clock Generator Control X X DAMAST DAMASTGEN ENDAOCK DAOCK512 DAPCMF(1:0) 0000 0000
CR23 (17h) ADOCK Frequency Ls byte ADOCKF(7:0) 0000 0000
CR24 (18h) ADOCK Frequency Ms byte ADOCKF(15:8) 0000 0000
CR25 (19h) AD Clock Generator
Control
X X ADMAST ADMASTGEN ENADOCK ADOCK512 ADPCMF(1:0) 0000 0000
Bits Name CR21-20
Name CR24-23 Value CR21-20 and CR24-23 Description Def.
15-0 DAOCKF(15:0)
ADOCKF(15:0) K
The following formulas can be used to obtain the value of K for the
desired FS or OCK respectively in the clock generator
0000h
Note: CR21-20 and CR24-23 are meaningful in Master Mode Only.
KFS()round 225 FS
AMCK MCKCOEFF
------------------------------------------------------------
⎝⎠
⎛⎞
=
KOCK()round 225 OCK
AMCK MCKCOEFF OSR
------------------------------------------------------------------------------
⎝⎠
⎛⎞
=
FS: Data Rate (DA_SYNC or AD_SYNC frequency in
Master Mode)
OCK: Oversampled Clock Frequency
(DA_OCK or AD_OCK)
AMCK: Input Master Clock Frequency
MCKCOEFF: See CR30 for definition
OSR: See bit 2 in CR22 and CR25
STw5095 Control registers
35/85
Bits Name CR22
(Name CR25) Value CR22 and CR25 Description Def.
5DAMAST
(ADMAST)
1
0
DA (AD) Audio interface is in Master Mode (low impedance output)
DA (AD) Audio interface is in Slave Mode (high impedance input) 0
4DAMASTGEN
(ADMASTGEN)
1
0
DA (AD) Master Generator is enabled
DA (AD) Master Generator is disabled 0
3ENDAOCK
(ENADOCK)
1
0
DA_OCK (AD_OCK) Output Clock is enabled
DA_OCK (AD_OCK) Output Clock is disabled 0
2DAOCK512
(ADOCK512)
1
0
Definition of DA_OSR (AD_OSR)
DA_OCK/DA_SYNC (AD_OCK/AD_SYNC) Ratio In Master Mode is
512
DA_OCK/DA_SYNC (AD_OCK/AD_SYNC) Ratio In Master Mode is
256
0
1-0 DAPCMF(1:0)
(ADPCMF(1:0))
00
00
01
10
11
11
DA_CK/DA_SYNC (AD_CK/AD_SYNC) Ratio in PCM Master Mode
-16 when CR26 DAWL=000 (CR27 ADWL=000)
- 32when CR26 DAWL000 (CR27 ADWL000)
-64
- 128
- 256when CR22 DAOCK512=0 (CR25 ADOCK512=0)
- 512when CR22 DAOCK512=1 (CR25 ADOCK512=1)
00
Control registers STw5095
36/85
5.7 Digital audio interfaces
CR#
(hex) DescriptionD7D6D5D4D3D2D1D0Def.
CR26 (1Ah) DAC Data IF Control X DAFORM(2:0) DASPIM DAWL(2:0) 0000 0000
CR27 (1Bh) ADC Data IF Control ADRTOL ADFORM2:0) ADSPIM ADWL(2:0) 0000 0000
CR28 (1Ch) DAC&ADC Data IF Control AMCKINV DACKP DASYNCP DAMONO ADCKP ADSYNCP ADMONO ADHIZ 0000 0000
Bits Name Value CR26 Description Def.
6-4 DAFORM(2:0)
000
001
010
011
100
111
DA Audio Interface Format Selection
Delayed Format (I2S Compatible)
Left Aligned Format
Right Aligned Format
DSP Format
SPI Format
PCM Format (uses left channel)
000
3 DASPIM
1
0
DA interface in SPI mode receives one word for both channels
DA interface in SPI mode receives two words (alternated, left
channel first)
0
2-0 DAWL(2:0)
000
001
010
011
100
DA interface word length
16 bit
18 bit
20 bit
24 bit
32 bit
000
Bits Name Value CR27 Description Def.
7ADRTOL 1
0
AD Right Channel sent to PCM I/F (must set ENADCR=0 in CR1)
Normal Operation 0
6-4 ADFORM(2:0)
000
001
010
011
100
111
AD Audio Interface Format Selection
Delayed Format (I2S compatible)
Left Aligned Format
Right Aligned Format
DSP Format
SPI Format
PCM Format (sends out left channel)
000
3 ADSPIM 1
0
AD interface in SPI mode sends one channel (left)
AD interface in SPI mode sends two channels (alternated, left first) 0
2-0 ADWL(2:0)
000
001
010
011
100
AD interface word length
16 bit
18 bit
20 bit
24 bit
32 bit
000
STw5095 Control registers
37/85
Bits Name Value CR28 Description Def.
7AMCKINV 1
0
AMCK is inverted
AMCK is not inverted 0
6DACKP 1
0
DA Bit Clock Pin (DA_CK) polarity is inverted
DA Bit Clock Pin (DA_CK) polarity is not inverted 0
5 DASYNCP
1
0
DSP and PCM Formats in DA Interface
Non Delayed format
Delayed Format 0
1
0
Delayed, Left-aligned, Right-aligned and SPI Formats in DA Interface
DA Sync Pin (DA_SYNC) polarity is inverted
DA Sync Pin (DA_SYNC) polarity is not inverted
4DAMONO
1
0
Mono Mode: (L+R)/2 from Audio Interface is used on both DAC
channels
Stereo Mode
0
3 ADCKP 1
0
AD Bit Clock Pin (AD_CK) polarity is inverted
AD Bit Clock Pin (AD_CK) polarity is not inverted 0
2 ADSYNCP
1
0
DSP and PCM Formats in AD Interface
Non Delayed format
Delayed Format
0
1
0
Delayed, Left-aligned, Right-aligned and SPI Formats in AD
Interface
DA Sync Pin (DA_SYNC) polarity is inverted
DA Sync Pin (DA_SYNC) polarity is not inverted
1ADMONO
1
0
Mono Mode: (L+R)/2 from ADC is sent to both channels in the Audio
Interface
Stereo Mode
0
0 ADHIZ
1
0
AD data pin (AD_DATA) is in high impedance state when no data is
available
AD data pin (AD_DATA) is forced to 0 when no data is available
0
Control registers STw5095
38/85
5.8 Digital filters, software reset and master clock control
5.9 Interrupt control and control interface SPI out mode
CR#
(hex) DescriptionD7D6D5D4D3D2D1D0Def.
CR29 (1Dh) Digital Filters Control X DAVOICE DA96K RXNH ADVOICE AD96K ADNH TXNH 0000 0000
CR30 (1Eh) Soft Reset & AMCK Range SWRES X X X AMCKSIN CKRANGE(2:0) 0000 0000
Bits Name Value CR29 Description Def.
6DAVOICE 1
0
DA path Voice RX filter is enabled (single channel, left used)
DA path Audio filters are enabled 0
5DA96K 1
0
DA path data rate is in the range 88 kHz to 96 kHz
DA path data rate is in the range 8 kHz to 48 kHz 0
4RXNH 1
0
DA path High pass Voice RX filter is disabled
DA path High pass Voice RX filter is enabled (300Hz @ 8kHz rate) 0
3ADVOICE 1
0
AD path Voice TX filter is enabled (single channel, left used)
AD path Audio filters are enabled 0
2AD96K 1
0
AD path data rate is in the range 88 kHz to 96 kHz
AD path data rate is in the range 8 kHz to 48 kHz 0
1 ADNH 1
0
AD path Audio DC filter is disabled
AD path Audio DC filter is enabled 0
0TXNH 1
0
AD path High pass Voice TX filter is disabled
AD path High pass Voice TX filter is enabled (300Hz @ 8kHz rate) 0
Bits Name Value CR30 Description Def.
7SWRES 1
0
Software reset: All registers content is reset to the default value
Control Register content is left unchanged 0
3 AMCKSIN 1
0
Signal at AMCK pin is a sinusoid
Signal at AMCK pin is a square wave 0
2-0 CKRANGE(2:0)
000
001
010
011
100
101
000
CR#
(hex) DescriptionD7D6D5D4D3D2D1D0Def.
CR31 (1Fh) interrupt Mask VLSHEN PUSHBEN HSDETEN VLSHMSK PUSHBMSK HSDETMSK OVFMSK PORMSK 0000 0000
AMCK range MCKCOEFF
4.0 MHz to6.0MHz 8.0
6.0 MHz to8.0MHz 6.0
8.0 MHz to12.0MHz 4.0
12.0 MHz to16.0MHz 3.0
16.0 MHz to24.0MHz 2.0
24.0 MHz to32.0MHz 1.5
STw5095 Control registers
39/85
Note: Value at IRQ pin is:
CR32 (20h) Interrupt Status VLSH PUSHB HSDET VLSHEV PUSHBEV HSDETEV OVFEV POREV 0000 0000
CR33 (21h) Misc. Control X X SPIOHIZ SPIOSEL(1:0) IRQCMOS OVFDA OVFAD 0000 0000
Bits Name Value CR31 Description Def.
7VLSHEN 1
0
VLSH status can be seen at IRQ output
VLSH status is masked 0
6 PUSHBEN 1
0
PUSHB status can be seen at IRQ output
PUSHB status is masked 0
5 HSDETEN 1
0
HSDET status can be seen at IRQ output
HSDET status is masked 0
4VLSHMSK 1
0
VLSH event can be seen at IRQ output
VLSH event is masked 0
3 PUSHBMSK 1
0
PUSHB event can be seen at IRQ output
PUSHB event is masked 0
2 HSDETMSK 1
0
HSDET event can be seen at IRQ output
HSDET event is masked 0
1OVFMSK 1
0
OVF event can be seen at IRQ output
OVF event is masked 0
0PORMSK 1
0
POR event can be seen at IRQ output
POR event is masked 0
CR#
(hex) DescriptionD7D6D5D4D3D2D1D0Def.
IRQ (1 or Z) when (CR31 & CR32) = 00 hex
0 when (CR31 & CR32) 00 hex
=
Control registers STw5095
40/85
Bits Name Read
only CR32 Description Def.
7VLSH* 1
0
VCCLS is above 4.2 V
VCCLS is below 4.0 V 0
6 PUSHB* 1
0
Headset Button is pressed
Headset Button is released 0
5 HSDET* 1
0
Headset Connector is inserted
Headset Connector is not inserted 0
4VLSHEV 1
0
VLSH bit has changed
VLSH bit has not changed 0
3 PUSHBEV 1
0
Headset Button Status has changed
Headset Button Status has not changed 0
2 HSDETEV 1
0
Headset Connector Status has changed
Headset Connector Status has not changed 0
1 OVFEV 1
0
An Audio Data overflow has occurred in DSP
No Audio Data overflow has occurred in DSP 0
0POREV 1
0
Device was reset by Power-On-Reset
Device was not reset by Power-On-Reset 0
Note: content of bits 4 to 0 in CR32 is cleared after reading, while it is left unchanged if accessed for writing.
*Bits 7 to 5 represent the status when the Control register is read, not when the event occurred.
Bits Name Val. CR33 Description Def.
5 SPIOHIZ
1
0
SPI Control Interface Out Pin is set to high impedance state when
inactive
SPI Control Interface Out Pin is set to zero when inactive
0
4-3 SPIOSEL(1:0)
00
01
10
11
Out Pin Selection for SPI Control Interface
No output. Control registers cannot be read in SPI mode
SPI Output sent to IRQ pin
SPI Output sent to DA_OCK pin
SPI Output sent to AD_OCK pin
00
2 IRQCMOS 1
0
IRQ Interrupt Request Pin is set to CMOS (active low)
IRQ Interrupt Request Pin is set to Pull Down 0
1OVFDA 1
0
An overflow (saturation) occurred in DA path
No overflow occurred in DA channel 0
0 OVFAD 1
0
An overflow (saturation) occurred in AD path
No overflow occurred in AD channel 0
Note: content of bits 1 to 0 in CR33 is cleared after reading, while it is left unchanged if accessed for writing.
STw5095 Control registers
41/85
5.10 AGC
CR#
(hex) DescriptionD7D6D5D4D3D2D1D0Def.
CR34 (22h) AGC Attack/Decay coeff. AGCATT(3:0) AGCDEC(3:0) 0000 0000
CR35 (23h) AGC Control X ENAGCLIN ENAGCMIC AGCRANGE AGCLEV(3:0) 0000 0000
Bits Name Value CR34 Description Def.
7-4 AGCATT(3:0)
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
AGC Attack Time Constant; FS=AD data rate
0000
Audio filter in AD path
4096 / FS
2048 / FS
1365 / FS
1024 / FS
683 / FS
512 / FS
341 / FS
256 / FS
171 / FS
128 / FS
85 / FS
64 / FS
43 / FS
32 / FS
Voice filter in AD path
8192 / FS
4096 / FS
2731 / FS
2048 / FS
1365 / FS
1024 / FS
683 / FS
512 / FS
341 / FS
256 / FS
171 / FS
128 / FS
85 / FS
64 / FS
3-0 AGCDEC(3:0)
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
AGC Decay Time Constant; FS=AD data rate
0000
Audio filter in AD path
65536 / FS
32768 / FS
21845 / FS
16384 / FS
10923 / FS
8192 / FS
5461 / FS
4096 / FS
2731 / FS
2048 / FS
1365 / FS
1024 / FS
683 / FS
512 / FS
341 / FS
256 / FS
Voice filter in AD path
131072 / FS
65536 / FS
43691 / FS
32768 / FS
21845 / FS
16384 / FS
10923 / FS
8192 / FS
5461 / FS
4096 / FS
2731 / FS
2048 / FS
1365 / FS
1024 / FS
683 / FS
512 / FS
Control registers STw5095
42/85
Bits Name Value CR35 Description Def.
6ENAGCLIN 1
0
AGC control on AD path acts on Line In Gain
AGC control on AD path does not act on Line In Gain 0
5ENAGCMIC 1
0
AGC control on AD path acts on Mic Gain
AGC control on AD path does not act on Mic Gain 0
4 AGCRANGE 1
0
AGC action range is -21.0 dB to +21.0 dB
AGC action range is -10.5 dB to +10.5 dB 0
3-0 AGCLEV(3:0)
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
AGC requested output level
-30.0dB Gain
-30.0dB Gain
-27.0dB Gain
-24.0dB Gain
-21.0dB Gain
-18.0dB Gain
-15.0dB Gain
-12.0dB Gain
-9.0dB Gain
-6.0dB Gain
0000
STw5095 Control interface and master clock
43/85
6 Control interface and master clock
6.1 Control interface I2C mode
Figure 5. Control interface I2C format
Note: CMOD pin tied to GND
Figure 6. Control interface: I2C format timing
WRITE
SINGLE BYTE
START
DEVICE ADDRESS REG n ADDRESS REG n DATA IN
ACK ACK ACK
STOP
WRITE
MULTI BYTE
START
DEVICE ADDRESS REG n ADDRESS REG n DATA IN
ACK ACK ACK
STOP
REG n+m DATA IN
ACK
m+1 data bytes
CURRENT ADDR
START
DEVICE ADDRESS Current REG DATA OUT
ACK NO ACK
STOP
READ
SINGLE BYTE
CURRENT ADDR
START
DEVICE ADDRESS Current REG DATA OUT
ACK NO ACK
STOP
READ
MULTI BYTE
Curr REG+m DATA OUT
ACK
ACK
ACK
m+1 data bytes
START
DEVICE ADDRESS REG n ADDRESS
ACK ACK
START
DEVICE ADDRESS REG n DATA OUT
ACK NO ACK
STOP
RANDOM ADDR
READ
SINGLE BYTE
RANDOM ADDR
READ
MULTI BYTE
START
DEVICE ADDRESS REG n ADDRESS
ACK ACK
START
DEVICE ADDRESS
NO ACK
STOP
REG n+m DATA OUT
ACK ACK
m+1 data bytes
REG n DATA OUT
ACK
001101AS1
001101AS1
001101AS
0
001101AS
0
001101AS1
001101AS1
001101AS
0
001101AS
0
(STO)
t
SU
(STA)
t
SU
(STA)
t
HD
(DAT)
t
SU
t
HIGH
t
BUF
(DAT)
t
HD
t
F
t
R
t
LOW
(STA)
t
HD
P S PS
r
P=STOP
S = START
Sr = START repeated
SDA
SCLK
Control interface and master clock STw5095
44/85
6.2 Control interface SPI mode
Figure 7. Control interface SPI format(a)
Table 2. Control interface timing with I²C format
Symbol Parameter Test Condition Min. Typ. Max. Unit
fSCL Clock frequency 400 kHz
tHIGH Clock pulse width high 600 ns
tLOW Clock pulse width low 1300 ns
tRSDA and SCLK rise time 1000 ns
tFSDA and SCLK fall time 300 ns
tHD:STA Start condition hold time 600 ns
tSU:STA Start condition setup time 600 ns
tHD:DAT Data input hold time 0 ns
tSU:DAT Data input setup time 250 ns
tSU:STO Stop condition setup time 600 ns
tBUF Bus free time 1300 ns
a. CMOD pin tied to VCCIO; SDO pin position selected with bits SPIOSEL in CR33.
A6 A5
8 bit Address
A4 A3 A2 A1 A0W/R D7 D6 D5 D4 D3 D2 D1 D0
8 bit Data
SDIN
D7 D6 D5 D4 D3 D2 D1 D0
8 bit Data
SDO
SCLK
CSB
SPIOHIZ=1
STw5095 Control interface and master clock
45/85
Figure 8. Control interface: SPI format timing
tDDO tDDOL
tDDOF
SPIOHIZ=0
SPIOHIZ=1
tSCSF
tHSCK
tLSCK
tSDI tHDI
tSCSR
tHICS
SDIN
SDO
SCLK
CSB
1580
W/R D7
D7 D0
D0
tPSCK tHCS
Table 3. Control interface timing with SPI format
Symbol Parameter Test Condition Min. Typ. Max. Unit
tHICS CSB pulse width high 80 ns
tSCSR Setup time CSB rising
edge to SCLK rising edge 20 ns
tSCSF Setup time CSB falling
edge to SCLK rising edge 20 ns
tHCS Hold time CSB rising edge
from SCLK rising edge 20 ns
tSDI Setup time SDIN to SCLK
rising edge 20 ns
tHDI Hold time SDIN from SCLK
rising edge 20 ns
tDDOF SDO first Delay time from
SCLK falling edge 30 ns
tDDO SDO Delay time from
SCLK falling edge 20 ns
tDDOL SDO Delay time from CSB
rising edge 30 ns
tPSCK Period of SCK 100 ns
tHSCK SCK pulse width high Measured from VIH to VIH 40 ns
tLSCK SCK pulse width low Measured from VIL to VIL 40 ns
Control interface and master clock STw5095
46/85
6.3 Master clock timing
Table 4. AMCK timing
Symbol Parameter AMCK range Min. Typ. Max. Unit
tCKDC AMCK d
uty cycle
4
MHz
-8
MHz
8
MHz
-32 M
Hz
45
40
55
60
%
%
STw5095 Audio interfaces
47/85
7 Audio interfaces
Figure 9. Audio interfaces formats: delayed, left and right justified
1 2 n-1 n
MSB LSB
1 2 n-1 n
MSB LSB
1 2 n-1 n
MSB LSB
1 2 n-1 n
MSB LSB
1 AD_CK/DA_CK 1 AD_CK/DA_CK
n-bit word Left data
I2S format (delayed) with default polarity settings, ADHIZ=0
Left justified format with default polarity settings, ADHIZ=0
n-bit word Left data
n-bit word Right data
n-bit word Right data
1 2 n-1 n
MSB LSB
1 2 n-1 n
MSB LSB
1 2 n-1 n
MSB LSB
1 2 n-1 n
MSB LSB
n-bit word Left data
n-bit word Left data
n-bit word Right data
n-bit word Right data
1 2 n-1 n
MSB LSB
1 2 n-1 n
MSB LSB
1 2 n-1 n
MSB LSB
1 2 n-1 n
MSB LSB
n-bit word Left data
Right justified format with default polarity settings
n-bit word Left data
n-bit word Right data
n-bit word Right data
32 AD_CK/DA_CK 32 AD_CK/DA_CK
DA_SYNC/
AD_SYNC
DA_DATA
AD_DATA
DA_CK/
AD_CK
DA_SYNC/
AD_SYNC
DA_DATA
AD_DATA
DA_CK/
AD_CK
DA_SYNC/
AD_SYNC
DA_DATA
AD_DATA
DA_CK/
AD_CK
Audio interfaces STw5095
48/85
Figure 10. Audio interfaces formats: DSP, SPI and PCM
DA_SYNC/
1 2 n-1 n
MSB LSB
AD_SYNC
1 2 n-1 n
MSB LSB
1 2 n-1 n
MSB LSB
1 2 n-1 n
MSB LSB
n-bit word Left data
DSP format delayed and non-delayed (default AD_CK/DA_CK polarity, ADHIZ=0)
SPI format (slave only) (default AD_CK/DA_CK polarity, ADHIZ=1 - Stereo or Mono)
n-bit word Left data
n-bit word Right data
n-bit word Right data
1 2 n-1 n
MSB LSB
1 2
MSB
n-bit word Left/Mono data n-bit word Right/Mono data
PCM format (default AD_CK/DA_CK polarity, ADHIZ=1)
3 3
1 2 n-1 n
MSB LSB
1 2
MSB
n-bit word Left/Mono data n-bit word Right/Mono data
3 3
1 2 n-1 n
MSB LSB
n-bit word Mono data
3
1 2 n-1
MSB LSB
n-bit word Mono data
3High impedance
1
MSB
1
MSB
xHigh impedance x
SYNCP=0
SYNCP=1
{
DA_DATA
AD_DATA
DA_CK/
AD_CK
DA_SYNC/
AD_SYNC
DA_DATA
AD_DATA
DA_CK/
AD_CK
DA_SYNC/
AD_SYNC
SYNCP=0
SYNCP=1
{
DA_DATA
AD_DATA
DA_CK/
AD_CK
n
STw5095 Audio interfaces
49/85
Figure 11. Audio interface timings: Master mode
Figure 12. Audio interface timing: Slave mode
ADHIZ=0
ADHIZ=0
ADHIZ=1
ADHIZ=1
ADHIZ=0
ADHIZ=1
ADHIZ=0
ADHIZ=1
tDSY
tSDDA tHDDA
tDAD
CKP=0
CKP=1
tDAD tDADZ
DA_SYNC/
AD_SYNC
DA_CK/
AD_CK
DA_DATA
{
tDAD
PCM format only
AD_DATA
AD_DATA
All other formats
ADHIZ=0
ADHIZ=0
ADHIZ=1
ADHIZ=1
ADHIZ=0
ADHIZ=1
ADHIZ=0
tDADST
tHCK tLCK
tPCK
tSSY
DA_SYNC/
tSDDA tHDDA
tHSY
AD_SYNC
tDAD
CKP=0
CKP=1
tDADZ
DA_CK/
AD_CK
DA_DATA
{
tDAD
tDAD
PCM format
AD_DATA
AD_DATA
All other formats
ADHIZ=1
Audio interfaces STw5095
50/85
Table 5. Audio interface signals timing
Symbol Parameter Test Condition Min. Typ. Max. Unit
tDSY
Delay of
AD_SYNC/DA_SYNC
edge from AD_CK/DA_CK
active edge
Master Mode 10 ns
tSDDA Setup time DA_DATA to
DA_CK active edge 10 ns
tHDDA Hold time DA_DATA from
DA_CK active edge 10 ns
tDAD Delay of AD_DATA edge
from AD_CK active edge 30 ns
tDADST
Delay of the first AD_DATA
edge from AD_SYNC
active edge
AD_SYNC active edge comes
after AD_CK active edge 30 ns
tDADZ
Delay of AD_DATA high
impedance from
AD_SYNC inactive edge
PCM format 10 50 ns
tSSY
Setup time
AD_SYNC/DA_SYNC to
AD_CK/DA_CK active
edge
Slave Mode 20 ns
tHSY
Hold time
AD_SYNC/DA_SYNC from
AD_CK/DA_CK active
edge
Slave Mode 20 ns
tPCK Period of AD_CK/DA_CK Slave Mode 100 ns
tHCK AD_CK/DA_CK pulse
width high Measured from VIH to VIH 40 ns
tLCK AD_CK/DA_CK pulse
width low Measured from VIL to VIL 40 ns
STw5095 Timing specifications
51/85
8 Timing specifications
Unless otherwise specified, VCCIO = 1.71 V to 2.7 V,Tamb = -30°C to 85°C, max capacitive
load 20 pF; typical characteristics are specified at VCCIO = 2.4 V, Tamb = 25 °C; all signals
are referenced to GND, see Note below figure for timing definitions.
Figure 13. A.C. testing input-output waveform
Note: A signal is valid if it is above VIH or below VIL and invalid if it is between VIL and VIH. For the
purpose of this specification the following conditions apply (see Figure 13 above):
a) All input signal are defined as: VIL =0.2
VCCIO
, VIH =0.8
VCCIO
, tR < 10ns, tF < 10ns.
b) Delay times are measured from the inputs signal valid to the output signal valid.
c) Setup times are measured from the data input valid to the clock input invalid.
d) Hold times are measured from the clock signal valid to the data input invalid.
Note: All timing specifications subject to change.
AC Testing: inputs are driven at 0.8
VCCIO for a logic ‘1’ and 0.2
VCCIO for a logic ‘0’.
Timing measurements are made at 0.7
VCCIO for a logic ‘1’ and 0.3
VCCIO for a logic ‘0’.
TEST POINTS
0.7
V
CCIO
0.3
V
CCIO
0.7
V
CCIO
0.3
V
CCIO
0.8
V
CCIO
0.2
V
CCIO
INPUT OUTPUT
Operative ranges STw5095
52/85
9 Operative ranges
9.1 Absolute maximum ratings
9.2 Operative supply voltage
Table 6. Absolute maximum ratings
Parameter Value Unit
VCC or VCCIO to GND -0.5 to 3.6 V
VCCA or VCCP to GND -0.5 to 5 V
VCCLS to GND -0.5 to 7 V
Voltage at analog inputs (VCCA 3.3V) GND-0.5 to VCCA+0.5 V
Maximum power delivered to the load from LSP/N 500 mW
Peak current at HPR,HPL 100 mA
Current at VCCP
, VCCLS, GNDP 350 mA
Current at any digital output 50 mA
Voltage at any digital input (VCCIO 2.7V); limited at ± 50mA GND-0.5 to VCCIO+0.5 V
Storage temperature range -65 to 150 °C
Operating temperature range(1) -30 to 85 °C
Electrostatic discharge voltage (Vesd)
Human body model(2)
Charge device model(3)
-2 to +2
-500 to +500
kV
V
1. in some operating conditions the temperature can be limited to 70 °C. See Loudspeaker Driver description from
Section 4.9
for details.
2. HBM tests have been performed in compliance with JESD22-A114-B and ESD STM 5.1-2001.HBM
3. CDM tests have been performed in compliance with CDM ANSI-ESDSTM5.3.1-1999
Table 7. Operative power supply
Symbol Parameter Condition Min. Max. Unit
VCC Digital supply 1.71 2.7 V
VCCA
Analog supply
Note: VCCA VCC
A24V=0 (bit 1 in CR0)
A24V=1 (bit 1 in CR0)
2.7
2.4
3.3
2.7
V
V
VCCIO Digital I/O supply D12V=0 (bit 0 in CR0)
D12V=1 (bit 0 in CR0)
1.71
1.2
VCC
1.8
V
V
VCCP Stereo power drivers supply VCCA 3.3 V
VCCLS Mono power driver supply VCCA 5.5 V
VGSingle supply voltage range VCC
=
VCCA
=
VCCIO
=
VCCP
=
VCCLS
A24V=1 (bit 1 in CR0) 2.4 2.7 V
STw5095 Operative ranges
53/85
9.3 Power dissipation
Unless otherwise specified, VCCP =V
CCLS =V
CCA = 2.7V to 3.3V, VCCIO =V
CC = 1.71V to
2.7V, Tamb = -30°C to 85°C, all analog outputs not loaded; typical characteristics are
specified at VCCIO =V
CC = 1.8V, VCCP =V
CCLS =V
CCA =2.7V, T
amb =25°C.
9.4 Typical power dissipation
Tamb = 25°C; analog supply: VCCP =V
CCLS =V
CCA =2.7V;
digital supply: VCCIO =V
CC =1.8V
Full scale signal in every path, 20kΩ load at analog outputs.
Table 8. Power dissipation
Symbol Parameter Test Condition Min. Typ. Max. Unit
POFF Power Down Dissipation No Master Clock
AMCK=13MHz
0.4
2.9
μW
μW
PAD Stereo ADC power 26.3 mW
PDA Stereo DAC power 23.3 mW
PDAAD Stereo ADC+DAC power 46.9 mW
PAA Stereo Analog Path power 13.8 mW
Table 9. Typical power dissipation - No master clock
N. Function CR0-CR2
setting Other settings Supply Current Power
1 Power Down
CR0=0x00
CR1=0x00
CR2=0x00
Analog:
Digital:
Total:
0.02 μA
0.20 μA
0.05 μW
0.36 μW
0.41 μW
2Stereo analog path
(Mic-LO)
CR0=0xD0
CR1=0x0C
CR2=0xC0
MICLO=1
MICSEL=2
Analog:
Digital:
Total:
4.3 mA
2.0 μA
11.6 mW
0.0 mW
11.6 mW
3Stereo analog path
(Mic-Mixer-LO)
CR0=0xD0;
CR1=0x0C;
CR2=0xC3
MIXMIC=1
MICSEL=2
Analog:
Digital:
Total:
5.4 mA
2.0 μA
14.6 mW
0.0 mW
14.6 mW
Operative ranges STw5095
54/85
Table 10. Typical power dissipation - Master clock AMCK = 13 MHz
N. Function CR0-CR2
setting Other settings Supply Current Power
4 Power Down
CR0=0x00
CR1=0x00
CR2=0x00
Analog:
Digital:
Total:
0.02 μA
2.20 μA
0.05 μW
3.96 μW
4.01 μW
5Stereo ADC
CR0=0xE8
CR1=0xCC
CR2=0x00
MICSEL=1
ADMIC=1
Analog:
Digital:
Total:
7.9 mA
2.8 mA
21.3 mW
5.0 mW
26.3 mW
6Stereo DAC
CR0=0xE8
CR1=0x30
CR2=0x33
MIXDAC=1
Analog:
Digital:
Total:
6.1 mA
3.8 mA
16.5 mW
6.8 mW
23.3 mW
7Stereo analog path
(Mic-LO)
CR0=0xE8
CR1=0x0C
CR2=0xC0
MICLO=1
MICSEL=2
Analog:
Digital:
Total:
4.8 mA
0.8 mA
13.0 mW
1.4 mW
13.8 mW
8Stereo ADC
Stereo DAC
CR0=0xE8
CR1=0xFC
CR2=0x33
MICSEL=2
ADMIC=1
MIXDAC=1
Analog:
Digital:
Total:
13.5 mA
5.8 mA
36.5 mW
10.4 mW
46.9 mW
9
Stereo ADC
Stereo DAC
Stereo analog path
CR0=0xE8
CR1=0xFF
CR2=0xF3
LINSEL=2; MICSEL=2
ADLIN=1;MIXDAC=1
MICLO=1
Analog:
Digital:
Total:
15.2 mA
5.8 mA
41.0 mW
10.4 mW
51.4 mW
10 Voice TX+RX
CR0=0xE8
CR1=0xA8
CR2=0x06
MICSEL=2;
LSMODE=2
ADMIC=1 MIXDAC=1
ADVOICE=1
DAVOICE=1
VCCA,VCCP:
VCCLS:
Digital
Total:
6.8 mA
1.3 mA
2.5 mA
18.4 mW
5.5 mW
4.5 mW
28.4 mW
STw5095 Electrical characteristics
55/85
10 Electrical characteristics
Unless otherwise specified, VCCIO = 1.71 V to 2.7 V, Tamb = -30°C to 85°C; typical
characteristic are specified at VCCIO = 2.0 V, Tamb = 25°C; all signals are referenced to
GND.
10.1 Digital interfaces
Note: See Figure 13: A.C. testing input-output waveform on page 51.
10.2 AMCK with sinusoidal input
Table 11. Digital interfaces electrical characteristics
Symbol Parameter Test Condition Min. Typ. Max. Unit
VIL Input low voltage All digital inputs DC
AC
0.3VCCIO
0.2VCCIO
V
V
VIH Input high voltage All digital inputs, DC
AC
0.7VCCIO
0.8VCCIO
V
V
VOL Output low voltage All digital outputs IL=10μA
IL=2μA
0.1
0.4
V
V
VOH Output high voltage All digital outputs IL=10μA
IL=2μA
VCCIO-0.1
VCCIO-0.4
V
V
IIL Input low current Any digital input,
GND < VIN < VIL
-1 1 μA
IIH Input high current Any digital input,
VIH < VIN < VCCIO
-1 1 μA
IOZ
Output current in
high impedance
(Tristate)
Tristate outputs -1 1 μA
Table 12. AMCK with sinusoidal input
Symbol Parameter Test Condition Min. Typ. Max. Unit
CAMCK Minimum External
Capacitance AMCKSIN=1, see CR30 100 pF
VAMCK AMCK sinusoidal voltage
swing AMCKSIN=1, see CR30 0.5 VCCIO VPP
Electrical characteristics STw5095
56/85
10.3 Analog interfaces
10.4 Headset plug-in and push-button detector
Table 13. Analog interfaces
Symbol Parameter Test Condition Min. Typ. Max. Unit
IMIC MIC input leakage GND< VMIC< VCCA -100 +100 μA
RMIC MIC input resistance 30 50 kΩ
RLIN Line in input resistance 30 kΩ
RLHP Headphones (HP) drivers
load resistance
HPL, HPR to GNDP or
VCMHP 14.4 16/32 Ω
CLHP Headphones (HP) drivers
load capacitance
HPL, HPR to GNDP or
VCMHP
50
50*
pF
nF
RLLS
Loudspeaker (LS)
differential driver load
resistance
LSP to LSN 6.4 8 Ω
CLLS
Loudspeaker (LS)
differential driver load
capacitance
LSP to LSN 50
50*
pF
nF
VOFFLS Differential offset voltage
at LSP, LSN RL=50Ω-50 +50 mV
RLOL
Line out (OL) diff./single-
ended driver load
resistance
OLP/ORP to OLN/ORN or
OLP/ORP to GND
(decoupled)
1kΩ
* with series resistor
Table 14. Headset plug-in and push-button detector
Symbol Parameter Test Condition Min. Typ. Max. Unit
HDVL Plug-in detected Voltage at HDET VCCA-1 V
HDVH Plug-in undetected Voltage at HDET VCCA-0.5 V
HDHPlug-in detector hysteresis 100 mV
PBVL Push-button pressed Voltage at HDET 0.5 V
PBVH Push-button released Voltage at HDET 1 V
PBDPush-button de-bounce
time 15 50 ms
STw5095 Electrical characteristics
57/85
10.5 Microphone bias
10.6 Power supply rejection ratio
10.7 LS gain limiter
Table 15. Microphone bias
Symbol Parameter Test Condition Min. Typ. Max. Unit
VMBIAS MBIAS output
voltage 1.95 2.1 2.25 V
IMBIAS MBIAS output
current From MBIAS to ground 1.1 mA
RMBIAS MBIAS output load 3.5 kΩ
CMBIAS MBIAS output
capacitance 150 pF
PSRMB4
PSRMB20
MBIAS power
supply rejection
f<4kHz
f<20kHz
60
50
dB
dB
Table 16. Power supply ratio
Symbol Parameter Test Condition Min. Typ. Max. Unit
PSRL20
PSRL200
PSRR VCCLS
Each output(LSP, LSN)
f<20kHz
f<200kHz
65
47
dB
dB
PSRPH
PSRPOS
PSRPOD
PSRR VCCP
Headphones f<20kHz
Line out single ended f<20kHz
Line out differential f<20kHz
65
65
65
dB
dB
dB
PSRAM
PSRAL
PSRR VCCA Mic input f<20kHz
Line In f<20kHz
50
50
dB
dB
Table 17. LS gain limiter
Symbol Parameter Test Condition Min. Typ. Max. Unit
VLSLIMH
High voltage at VCCLS
(VLSH=1) VCCLS raising 4.2 V
VLSLIML
Low voltage at VCCLS
(VLSH=0) VCCLS falling 4.0 V
VLSLIMD VCCLS Hysteresis 200 mV
Note: See CR32 for VLSH definition. See Loudspeaker driver description in
Section 4.9
for details.
Analog input/output operative ranges STw5095
58/85
11 Analog input/output operative ranges
11.1 Analog levels
11.2 Microphone input levels
Analog supply range: 2.7 V < VCCA <3.3V
Table 18. Reference full scale analog levels
Symbol Parameter Test Condition Min. Typ. Max. Unit
0dBFS level 2.7V < VCCA < 3.3V 12
4
dBVpp
Vpp
0dBFS level low voltage
mode 2.4V < VCCA < 2.7V 10
3.18
dBVpp
Vpp
Table 19. Absolute levels at pins connected to preamplifiers
Symbol Parameter Test Condition Min. Typ. Max. Unit
Overload level, single
ended MIC gain = 0 to 6dB
707
2
-6
mVRMS
Vpp
dBFS
Overload level,single
ended, versus MIC gain MIC gain > 6dB − (MIC_Gain) dBFS
Overload level, differential MIC gain = 0dB
1.41
4
0
mVRMS
Vpp
dBFS
Overload level, differential,
versus MIC gain MIC gain > 0dB − (MIC_Gain) dBFS
Note: When 2.4 V < VCCA < 2.7 V, voltage values are reduced by 2dB.
STw5095 Analog input/output operative ranges
59/85
11.3 Line input levels
Analog supply range: 2.7 V < VCCA <3.3 V
11.4 Line output levels
Analog supply range: 2.7 V < VCCA <3.3V
Table 20. Absolute levels at pins connected to the line-in amplifiers
Symbol Parameter Test Condition Min. Typ. Max. Unit
Overload level, single
ended
Line in
gain from 20dB to 6dB
707
2
-6
mVRMS
Vpp
dBFS
Overload level (single
ended) versus line in gain
Line in
gain > 6dB − (Line_In_Gain) dBFS
Overload level (differential)
Line in
gain from 20dB to 0dB
1.41
4
0
mVRMS
Vpp
dBFS
Overload level (differential)
versus line in gain
Line in
gain > 0dB − (Line_In_Gain) dBFS
Note: When 2.4 V < VCCA < 2.7 V, the values are reduced by 2dB
Table 21. Absolute levels at OLP/OLN, ORP/ORN
Symbol Parameter Test Condition Min. Typ. Max. Unit
Output level, single ended 0 dB gain
Full scale digital input
707
2
-6
mVRMS
Vpp
dBFS
Output level, differential 0 dB gain
Full scale digital input
1.41
4
0
mVRMS
Vpp
dBFS
Note: When 2.4 V < VCCA < 2.7 V, the values are reduced by 2dB
Analog input/output operative ranges STw5095
60/85
11.5 Power output levels HP
Analog supply range: 2.7 V < VCCA <3.3V
11.6 Power output levels LS
Analog supply range: 2.7 V < VCCA <3.3V
Table 22. Absolute levels at HPL - HPR
Symbol Parameter Test Condition Min. Typ. Max. Unit
Output level -6dB gain
Full scale digital input
707
2
-6
mVRMS
Vpp
dBFS
Max output power(1) 16 Ω load
VCCP > 3.2 V 40 mW
Note: When 2.4 V < VCCA < 2.7 V, the values are reduced by 2dB
Table 23. Absolute levels at LSP - LSN (differential)
Symbol Parameter Test Condition Min. Typ. Max. Unit
Output level 0dB gain
Full scale digital input
1.41
4
0
VRMS
Vpp
dBFS
Max output power(1) 8Ω load
VCCLS > 4V 500 mW
1. In some operating conditions the maximum output power can be limited. See “
Section 9.1: Absolute maximum ratings
” and
“Loudspeaker Driver” description from
Section 4.9: Analog output drivers
for details.
Note: When 2.4 V < VCCA < 2.7 V, the values are reduced by 2dB
STw5095 Stereo audio ADC specifications
61/85
12 Stereo audio ADC specifications
Typical measures-VCCA=VCCP=VCCLS=2.7V; VCCIO=VCC=1.8 V; Tamb=25°C;13 MHz AMCK
Table 24. Stereo audio ADC specifications
Symbol Parameter Test Condition Min. Typ. Max. Unit
ADN Resolution 20 Bits
ADDRM
ADDRLI Dynamic range
20Hz to 20kHz, A-weighted
Measured at -60dBFS
MIC input, 21dB gain
Line-In, 0dB gain
87
89
91
93
dB
dB
ADSNA
ADSN Signal to noise ratio
Max level at MIC input, 21dB gain
A-weighted
Unweighted (20 Hz to 20 kHz)
90
86
dB
dB
Input referred ADC
noise
A-weighted
Mic input 0dB Gain
Mic input 21dB Gain
Mic input 39dB Gain
Line in input 0dB Gain
Line in input 18dB Gain
37
3.3
1.9
30
7.5
μV
μV
μV
μV
μV
ADTHD Total harmonic
distortion
Max level at MIC input,
21dB gain 0.001 0.003 %
Deviation from
linear phase
Measurement bandwidth 20Hz to
20kHz, Fs= 48kHz. Combined digital
and analog filter characteristics
1Deg
ADfPB Passband Combined digital and analog filter
characteristics AD96K=0 00.45FskHz
Passband ripple Combined digital and analog filter
characteristics AD96K=0 0.2 dB
ADfSB Stopband Combined digital and analog filter
characteristics AD96K=0 0.55Fs kHz
Stopband
Attenuation
Measurement bandwidth up to
3.45Fs.
Combined digital and analog filter
characteristics, AD96K=0
60 dB
ADtgd Group delay
Audio filters, 96kHz FS
Audio filters, 48kHz FS
Audio filters, 8kHz FS
0.11
0.4
2.6
ms
ms
ms
Interchannel
isolation 90 dB
Interchannel gain
mismatch 0.2 dB
Gain error 0.5 dB
Note: When 2.4 V < VCCA < 2.7 V, the values are reduced by 2dB
Stereo audio DAC specifications STw5095
62/85
13 Stereo audio DAC specifications
Typical measures - VCCA=VCCP=VCCLS=2.7V; VCCIO=VCC=1.8V; Tamb=25°C;13MHz AMCK
Table 25. Stereo audio DAC specifications
Symbol Parameter Test Condition Min. Typ. Max. Unit
DAN Resolution 20 Bits
DADR Dynamic range
20Hz to 20kHz, A-weighted.
Measured at -60dBFS
Differential line out
Single-ended line out
HPL/HPR to GND or VCMHP
LSP-LSN
92 95
93
94
94
dB
dB
dB
dB
DASNA
DASN Signal to noise ratio
2Vpp output
HPL, HPR gain set to -6dB, 16Ω load
A-weighted
Unweighted (20 Hz to 20 kHz)
94
90
dB
dB
DATHDL
Total harmonic
distortion
Worst case load
2Vpp output
HPL, HPR gain set to -6dB, 16Ω load 0.02 0.04 %
DATHD Total harmonic
distortion
2Vpp output,
HPL, HPR gain set to -6dB, 1kΩ load 0.004 %
Deviation from
linear phase
Measurement bandwidth 20Hz to
20kHz, Fs= 48kHz.
Combined digital and analog filter
characteristics
1Deg
DAfPB Passband Combined digital and analog filter
characteristics, DA96K=0 00.45FskHz
Passband ripple Combined digital and analog filter
characteristics, DA96K=0 0.2 dB
DAfSB Stopband Combined digital and analog filter
characteristics, DA96K=0 0.55Fs kHz
Stopband
attenuation
Measurement bandwidth up to
3.45Fs.
Combined digital and analog filter
characteristics, DA96K=0
50 dB
TSF
Transient
suppression filter
cut-off frequency
15 23 Hz
Out of band noise Measurement bandwidth 20 kHz to
100 kHz. Zero input signal -85 dBr
DAtgd Group delay
Audio filters, 96kHz FS
Audio filters, 48kHz FS
Audio filters, 8kHz FS
0.09
0.4
2.6
ms
ms
ms
STw5095 AD to DA mixing (sidetone) specifications
63/85
14 AD to DA mixing (sidetone) specifications
Typical measures - VCCA=VCCP=VCCLS=2.7V; VCCIO=VCC=1.8V; Tamb=25°C;13MHz AMCK
Interchannel
isolation
2Vpp output HPR, HPL unloaded
HPR, HPL with 16Ω to VCMHP
100
60
dB
dB
Interchannel gain
mismatch 0.2 dB
Gain error 0.5 dB
SUT Startup time from
power up
FS=48 kHz Line out
HPL/R out
1
10
ms
ms
Note: When 2.4 V < VCCA < 2.7 V, values are reduced by 2 dB
Table 25. Stereo audio DAC specifications
Symbol Parameter Test Condition Min. Typ. Max. Unit
Table 26. AD to DA mixing (sidetone) specifications
Symbol Parameter Test Condition Min. Typ. Max. Unit
STDEL AD to DA mixing
(sidetone) delay Valid for audio and voice filters 5 10 μs
Stereo analog-only path specifications STw5095
64/85
15 Stereo analog-only path specifications
Measured at differential line-out, ENOSC=1, No master clock.
Typical measures at VCCA=VCCP=VCCLS=2.7V; VCCIO=VCC=1.8V; Tamb=25°C
Table 27. Stereo analog-only path specifications
Symbol Parameter Test Condition Min. Typ. Max. Unit
AADRM
AADRLI Dynamic range
20Hz to 20kHz, A-weighted.
Measured at -60dBFS
MIC input, 21dB gain
Line-In, 0dB gain
90
90
95
97
dB
dB
AASNA
AASN Signal to noise ratio
Max level at line-in input, 0dB gain,
A-weighted
Unweighted (20 Hz to 20 kHz)
97
94
dB
dB
AATHD Total harmonic
distortion
1kHz @ 0dBFS
MIC input, 21dB gain
Line-in input, 0dB gain
0.003
0.004
0.01
0.02
%
%
Note: When 2.4V<VCCA<2.7V, the values are reduced by 2dB.
STw5095 ADC (TX) and DAC (RX) specifications with voice filters selected
65/85
16 ADC (TX) and DAC (RX) specifications with voice
filters selected
Typical measures - VCCA=VCCP=VCCLS=2.7V; VCCIO=VCC=1.8V; Tamb=25°C;13MHz AMCK
Table 28. ADC and DCA specifications with voice filters selected
Symbol Parameter Test Condition Min. Typ. Max. Unit
TXDR
RXDR
Dynamic range
300Hz to 3.4kHz; 1kHz @ -60dBFS
TX Path, MIC input, 21dB gain
RX Path, LS Output, 0dB gain
86
83
89
86
dB
dB
TXSN
RXSN
Signal to noise ratio
300Hz to 3.4kHz; 1kHz @ 0dBFS
TX Path, MIC input, 21dB gain
RX Path, LS Output, 0dB gain
88
86
dB
dB
THD THD
1kHz @ 0dBFS
TX Path, MIC input, 21dB gain
RX Path, LS Output, 0dB gain
<0.001
0.005
%
%
TXG TX gain mask
f=60Hz
f=100Hz
f=200Hz
f=300Hz
f=400Hz-3000Hz
f=3400Hz
f=4000H
f=4600Hzz
f=8000Hz
-1.5
-0.5
-1.5
-30
-24
-6
0.5
0.5
0.0
-14
-35
-47
dB
dB
dB
dB
dB
dB
dB
dB
dB
RXG RX gain mask
f=60Hz
f=100Hz
f=200Hz
f=300Hz
f=400Hz-3000Hz
f=3400Hz
f=4000Hz
f=5000Hz
-1.5
-0.5
-1.5
-20
-12
-2
0.5
0.5
0.0
-14
-50
dB
dB
dB
dB
dB
dB
dB
dB
RX out of band
noise
Measurement bandwidth 4kHz to
100kHz. Zero input signal -85 dBr
Group delay TX path
RX path
0.32
0.28
ms
ms
Note: When 2.4V<VCCA<2.7V, the values are reduced by 2dB
Typical performance plots STw5095
66/85
17 Typical performance plots
Figure 14. Bass treble control, de-emphasis
filter
Figure 15. Dynamic compressor transfer
function
Figure 16. ADC audio path measured filter
response
Figure 17. ADC in band audio path measured
filter response
Figure 18. DAC digital audio filter
characteristics
Figure 19. DAC in band digital audio filter
characteristics
Bass and treble gains are independently selectable in any combination.
The de-emphasis filter (thick line, alternative to treble control)
compensates for pre-emphasis used on some audio CDs.
Gain error < 0.1dB. Filter characteristics at Fs=44.1kHz are plotted
-15
-10
-5
0
5
10
15
100 1k 10k
Gain @ Fs=44.1 kHz [dB]
Frequency [Hz]
Audio signal transfer function when the Dynamic Compressor is active.
-1
-0.75
-0.5
-0.25
0
0.25
0.5
0.75
1
-1 -0.75-0.5-0.25 0 0.25 0.5 0.75 1
Output Amplitude [FS]
Input Amplitude [FS]
48 kHz sample rate.
Full ADC path Frequency response up to 100 kHz.
-80
-70
-60
-50
-40
-30
-20
-10
0
100 1k 10k 100k
Gain [dB]
Frequency [Hz]
48 kHz Sample Rate.
In band Frequency response
-0.5
-0.4
-0.3
-0.2
-0.1
0
0.1
0.2
0.3
0.4
0.5
0 5k 10k 15k 20k
Gain [dB]
Frequency [Hz]
DA96K=0; 48 kHz Sample Rate
Frequency response up to 166kHz (3.45 Fs @ 48kHz sampling rate)
-80
-60
-40
-20
0
100 1k 10k 100k
Gain [dB]
Frequency [Hz]
48 kHz Sample Rate
In band Frequency response
-0.5
-0.4
-0.3
-0.2
-0.1
0
0.1
0.2
0.3
0.4
0.5
0 5k 10k 15k 20k
Gain [dB]
Frequency [Hz]
STw5095 Typical performance plots
67/85
Figure 20. ADC 96 kHz audio path measured
filter response
Figure 21. ADC 96 kHz audio in-band
measured filter response
Figure 22. ADC voice TX path measured filter
response
Figure 23. ADC voice TX path measured in-
band filter response
Figure 24. DAC voice (RX) digital filter
characteristics
Figure 25. DAC voice (RX) in-band digital filter
characteristics
The plot is extended down to 5 Hz to show the high pass filter
implemented in the ADC 96 kHz sample rate,
96 kHz audio filter selected signal from Mic input
-80
-70
-60
-50
-40
-30
-20
-10
0
10 100 1k 10k 100k
Gain [dB]
Frequency [Hz]
96 kHz sample rate,
96 kHz audio filter selected signal from Mic input.
-5
-4
-3
-2
-1
0
1
0 5k 10k 15k 20k 25k 30k 35k 40k 45k
Gain [dB]
Frequency [Hz]
8 kHz Sample rate, tx voice filter selected.
Signal from Mic input
-70
-60
-50
-40
-30
-20
-10
0
100 1k 10k
Gain [dB]
Frequency [Hz]
8 kHz sample rate, tx voice filter selected signal from Mic input.
-0.5
-0.4
-0.3
-0.2
-0.1
0
0.1
0.2
0.3
0.4
0.5
500 1k 1500 2k 2500 3k 3500 4k
Gain [dB]
Frequency [Hz]
8 kHz sample rate, rx voice filter
-70
-60
-50
-40
-30
-20
-10
0
100 1k 10k
Gain [dB]
Frequency [Hz]
8 kHz sample rate, rx voice filter
-0.5
-0.4
-0.3
-0.2
-0.1
0
0.1
0.2
0.3
0.4
0.5
500 1k 1500 2k 2500 3k 3500 4k
Gain [dB]
Frequency [Hz]
Typical performance plots STw5095
68/85
Figure 26. ADC path FFT Figure 27. ADC S/N versus input-level
Figure 28. DAC path FFT Figure 29. DAC S/N versus input-level
Figure 30. Analog path FFT Figure 31. Analog path S/N versus input-level
-120
-100
-80
-60
-40
-20
0
0 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k
Amplitude [dBFS]
Frequency [Hz]
12 MHz master clock.
Differential input at Mic preamplifier, 21 dB gain.
48 kHz sampling rate.
Both channels active
20
30
40
50
60
70
80
90
100
-60 -50 -40 -30 -20 -10 0
S/N [dB]
Input Level [dBFS]
12 MHz master clock
Differential input at Line-In Amplifier, 0 dB Gain.
48 kHz Sampling Rate
A-Weighted, Both channels active
12 MHz master clock.
48 kHz sampling rate
Differential output at line-out, 1kΩ load.
Both channels active
-120
-100
-80
-60
-40
-20
0
0 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k
Amplitude [dBFS]
Frequency [Hz]
20
30
40
50
60
70
80
90
100
-60 -50 -40 -30 -20 -10 0
S/N [dB]
Input Level [dBFS]
12 MHz master clock.
48 kHz Sampling Rate
Differential output at Line-Out, 1kΩ load.
A-Weighted, Both channels active
-120
-100
-80
-60
-40
-20
0
0 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k
Amplitude [dBFS]
Frequency [Hz]
Differential input at Mic Preamplifier, 21 dB Gain.
Direct Mic to Line-Out connection (MICLO=1)
Differential output at Line-Out, 20kΩ load. Both channels active
20
30
40
50
60
70
80
90
100
-60 -50 -40 -30 -20 -10 0
S/N [dB]
Input Level [dBFS]
Differential input at Line-In Amplifier, 0 dB Gain.
Line-In to DA-Mixer to Line-Out connection.
Differential output at Line-Out, 20kΩ load. A-weighted, both channels
active
STw5095 Application schematics
69/85
18 Application schematics
Figure 32. STw5095 application schematics
AS/CSB
200nF
CAPMIC
0.47μF
AUX2RN
AUX2RP
AUX1L
OCKDA
VCCIO
GND
VCC
GNDCM
VCCP
GNDP
GNDA
VCCA
10μF
VCMHP
DA_CK
AMCK
DA_SYNC
DA_DATA
SDA/SDIN
SCLK
100nF
100nF
8Ω typ
LSP
LSN
10μFCAPLINEIN
HPR
HPL
0.47μF
AUX3R
0.47μF
AUX3L
MIC1LN
10μF
2.7kΩ
750Ω
100nF
100nF
750Ω
2.7kΩ
MIC1LP
MBIAS
FM IN
VCCA
1μF
100nF 100nF VCCD
STw5095
Electret
System Clock
[4MHz-32MHz]
Clock
Data
DA_Data
DA_Data Clock
Audio Data
Interface
I2C compat. Bus
VCCP
0.47μF
0.47μF
AUX1R
Voice IN
AUX2LP
Melody IN
MIC1RN
10μF
2.7kΩ
750Ω
100nF
100nF
750Ω
2.7kΩ
MIC1RP
Electret
CAPLS
10μF
LSPS
LSNS
SENSE
SENSE
AUX2LN
DA_Fs
[8kHz-48kHz]
[88kHz-96kHz]
AD_CK
AD_SYNC
AD_DATA AD_Data
AD_Data Clock
AD_Fs
[8kHz-48kHz]
[88kHz-96kHz]
OCKAD
MasterClocks for
Other Digital Device
VCMHPS
100nF
Line IN
100nF LINEINL
LINEINR
500mW Max.
16/32Ω Typ
40mW Max.
VCCLS
L
OLP
OLN
R
ORP
ORN
Line OUT
L
R
L
R
CMOD I2C compat. Bus selected
To have a single bidirectional interface
connect:
AD_SYNC to DA_SYNC
AD_CK to DA_CK
Differential
Connector
Standard HP
Connection
D/A
Audio Data
Interface
A/D
VCCIO
SENSE
HDET
IRQ
As Close as
possible to
the pins
As Close as
possible to
the pins
Needed if IRQ
VCCIO
or for Digital Audio
Data Source
Leave the negative pins
unconnected when used in
Single-Ended Configuration
100pF
See application example in
Section 4.16 on page 21
is not set to CMOS
Package outline STw5095
70/85
19 Package outline
Figure 33. Package mechanical data
Note: 1 The terminal A1 corner must be identified on the top surface by using a corner chamfer, ink
or metallized markings, or other feature of package body or integral heatslug. A
distinguishing feature is allowable on the bottom surface of the package to identify the
terminal A1 corner. Exact shape of each corner is optional.
Table 29. Package dimensions (mm)
Ref. Min. Typ. Max. Outline and mechanical data
A (1)
1. The total profile height is measured from the seating plane to the top of the component.
1.010 1.200 (2)
2. Max mounted height is 1.12mm.Based on a 0.28mm ball pad diameter. Solder paste is 0.15mm thickness and 0.28mm
diameter.
A1 0.150
A2 0.820
b 0.250 0.300 0.350
D 4.850 5.000 5.150
D1 3.500
E 4.850 5.000 5.150
E1 3.500
e 0.450 0.500 0.550
f 0.600 0.750 0.900 TFBGA 5x5x1.20 64 F8x8 0.50
Thin Profile Fine Pitch Ball Grid Array
ddd 0.080
f
ddd C
C
A1
A
A2
ef
D1
E1
E
e
D
H
G
F
E
D
C
B
A
12345678
A1 CORNER INDEX AREA Øb (64 BALLS)
PLANE
SEATING
BOTTOM VIEW
See
Note 1
STw5095 Ordering information
71/85
20 Ordering information
21 Revision history
Table 30. Order codes
Part Number Package Packing
STw5095 TFBGA 64 Tray
STw5095T TFBGA 64 Tape and reel
Table 31. Document revision history
Date Revision Changes
0.8-Nov-2005 1 Initial release.
16-May-2006 2
Document status update to final datasheet.
Section 4.3: Power up
- Added details about general power up bit.
Table 25: Stereo audio DAC specifications
- Update of minimum
value for dynamic range at differential line out.
23-Apr-2007 3
Updated PAD, PDA and PDAAD in
Table 8: Power dissipation
.
Updated PSRpos, PSRpod and PSRal in
Table 16: Power supply
ratio
.
Updated IMBIAS value in
Table 15: Microphone bias
.
Added Electrostatic discharge voltage and updated the minimum
storage temperature value in
Table 6: Absolute maximum ratings
.
21-Aug-2009 4 Re-branding to ST-Ericsson
26-Aug-2009 5 Additional changes related to re-branding to ST-Ericsson
STw5095
72/72
Please Read Carefully:
The contents of this document are subject to change without prior notice. ST-Ericsson makes no representation or warranty of any nature
whatsoever (neither expressed nor implied) with respect to the matters addressed in this document, including but not limited to warranties of
merchantability or fitness for a particular purpose, interpretability or interoperability or, against infringement of third party intellectual property
rights, and in no event shall ST-Ericsson be liable to any party for any direct, indirect, incidental and or consequential damages and or loss
whatsoever (including but not limited to monetary losses or loss of data), that might arise from the use of this document or the information in it.
ST-Ericsson and the ST-Ericsson logo are trademarks of the ST-Ericsson group of companies or used under a license from
STMicroelectronics NV or Telefonaktiebolaget LM Ericsson.
All other names are the property of their respective owners.
© ST-Ericsson, 2009 - All rights reserved
Contact information at www.stericsson.com under Contacts
www.stericsson.com