Feb.1999
BCR3KM OUTLINE DRAWING Dimensions in mm
TO-220FN
MITSUBISHI SEMICONDUCTOR TRIAC
BCR3KM
LOW POWER USE
INSULATED TYPE, PLANAR PASSIVATION TYPE
APPLICATION
Control of heater such as electric rice cooker, electric pot
IT (RMS) .................................................................. 3A
VDRM ......................................................400V / 600V
IFGT !, IRGT ! , IRGT #................... 15mA (10mA) 2
UL Recognized : File No. E80271
1. Gate open.
IT (RMS)
ITSM
I2t
PGM
PG (AV)
VGM
IGM
Tj
Tstg
Viso
Symbol A
A
A2s
W
W
V
A
°C
°C
g
V
3
30
3.7
3
0.3
6
0.5
–40 ~ +125
–40 ~ +125
2.0
2000
Symbol 8
400
500 V
V
MAXIMUM RATINGS
Value corresponding to 1 cycle of half wave 60Hz, surge on-state
current
VDRM
VDSM
RMS on-state current
Surge on-state current
I2t for fusing
Peak gate power dissipation
Average gate power dissipation
Peak gate voltage
Peak gate current
Junction temperature
Storage temperature
Weight
Isolation voltage
Parameter
Parameter
Voltage class Unit
Ratings Unit
Conditions
Commercial frequency, sine full wave 360° conduction, Tc=111°C
60Hz sinewave 1 full cycle, peak value, non-repetitive
T
a
=25°C, AC 1 minute, T
1
· T
2
· G terminal to case
Repetitive peak off-state voltage
1
Non-repetitive peak off-state voltage
1
Measurement point of
case temperature
T
1
TERMINAL
T
2
TERMINAL
GATE TERMINAL
15 ± 0.314 ± 0.5
10 ± 0.3 2.8 ± 0.2
φ3.2 ± 0.2
1.1 ± 0.2
1.1 ± 0.2
0.75 ± 0.15
2.54 ± 0.252.54 ± 0.25
2.6 ± 0.2
4.5 ± 0.2
0.75 ± 0.15
3 ± 0.33.6 ± 0.3
6.5 ± 0.3
➀➁
E
12
600
720
Feb.1999
2.High sensitivity (IGT 10mA) is also available. (IGT item )
3.The contact thermal resistance Rth (c-f) in case of greasing is 0.5°C/W.
IDRM
VTM
VFGT !
VRGT !
VRGT #
IFGT !
IRGT !
IRGT #
VGD
Rth (j-c)
Rth (j-a)
Tj=125°C, VDRM applied
Tc=25°C, ITM=4.5A, Instantaneous measurement
Tj=25°C, VD=6V, RL=6, RG=330
Tj=25°C, VD=6V, RL=6, RG=330
Tj=125°C, VD=1/2VDRM
Junction to case 3
Junction to ambient
Unit
Repetitive peak off-state current
On-state voltage
Gate trigger voltage 2
Gate trigger current 2
Gate non-trigger voltage
Thermal resistance
Thermal resistance
Limits Max.
2.0
1.5
1.5
1.5
1.5
152
152
152
4.0
50
!
@
#
!
@
#
Typ.
Min.
0.2
mA
V
V
V
V
mA
mA
mA
V
°C/W
°C/W
Symbol Parameter Test conditions
ELECTRICAL CHARACTERISTICS
MITSUBISHI SEMICONDUCTOR TRIAC
BCR3KM
LOW POWER USE
INSULATED TYPE, PLANAR PASSIVATION TYPE
PERFORMANCE CURVES
MAXIMUM ON-STATE
CHARACTERISTICS
ON-STATE CURRENT (A)
ON-STATE VOLTAGE (V)
RATED SURGE ON-STATE
CURRENT
SURGE ON-STATE CURRENT (A)
CONDUCTION TIME
(CYCLES AT 60Hz)
3.80.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4
10
2
7
5
3
2
10
1
7
5
3
2
10
0
7
5
3
2
10
–1
T
C
= 25°C
10
0
23 5710
1
23 5710
2
44
30
35
20
25
10
15
5
40
0
Feb.1999
10
1
10
3
7
5
3
2
–60 –20 20
10
2
7
5
3
2
60 100 140
4
4
–40 0 40 80 120
MAXIMUM TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(JUNCTION TO CASE)
TRANSIENT THERMAL IMPEDANCE (°C/W)
CONDUCTION TIME
(CYCLES AT 60Hz)
TRANSIENT THERMAL IMPEDANCE (°C/W)
CONDUCTION TIME
(CYCLES AT 60Hz)
GATE CHARACTERISTICS
(Ι, ΙΙ AND ΙΙΙ)
GATE VOLTAGE (V)
GATE CURRENT (mA)
GATE TRIGGER CURRENT VS.
JUNCTION TEMPERATURE
JUNCTION TEMPERATURE (°C)
100 (%)
GATE TRIGGER CURRENT (T
j
= C)
GATE TRIGGER CURRENT (T
j
= 25°C)
GATE TRIGGER VOLTAGE VS.
JUNCTION TEMPERATURE
JUNCTION TEMPERATURE (°C)
100 (%)
GATE TRIGGER VOLTAGE (T
j
= C)
GATE TRIGGER VOLTAGE (T
j
= 25°C)
MAXIMUM TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(JUNCTION TO AMBIENT)
10
–1
10
0
2
3
5
7
10
1
2
3
5
7
10
2
2
3
5
7
10
0
2
10
1
357 2
10
2
357 2
10
3
357
IGM =
0.5A
VGT
IRGT I
PGM = 3W
PG(AV) = 0.3W
IFGM I , IRGM III VGD = 0.2V 10
1
10
3
7
5
3
2
–60 –20 20
10
2
7
5
3
2
60 100 140
4
4
–40 0 40 80 120
TYPICAL EXAMPLE
IRGT III
IFGT I , IRGT I
10
1
10
3
7
5
3
2
–60 –20 20
10
2
7
5
3
2
60 100 140
4
4
–40 0 40 80 120
TYPICAL EXAMPLE
2310
–1
5710
0
23 5710
1
23 5710
2
4.0
4.5
5.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0
2310
2
5710
3
23 57
10
2
2
10
3
357 2
10
4
357 2
10
5
357
10
0
10
1
2
3
4
5
7
10
2
2
3
4
5
7
0
1.0
2.0
3.0
4.0
5.0
4.5
3.5
2.5
1.5
0.5
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
360°
CONDUCTION
RESISTIVE,
INDUCTIVE
LOADS
MAXIMUM ON-STATE POWER
DISSIPATION
ON-STATE POWER DISSIPATION (W)
RMS ON-STATE CURRENT (A)
MITSUBISHI SEMICONDUCTOR TRIAC
BCR3KM
LOW POWER USE
INSULATED TYPE, PLANAR PASSIVATION TYPE
Feb.1999
MITSUBISHI SEMICONDUCTOR TRIAC
BCR3KM
LOW POWER USE
INSULATED TYPE, PLANAR PASSIVATION TYPE
ALLOWABLE CASE TEMPERATURE
VS. RMS ON-STATE CURRENT
CASE TEMPERATURE (°C)
RMS ON-STATE CURRENT (A)
30
40
50
60
70
80
90
100
110
120
130
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
CURVES APPLY
REGARDLESS
OF CONDUCTION
ANGLE
360°
CONDUCTION
RESISTIVE,
INDUCTIVE
LOADS
ALLOWABLE AMBIENT TEMPERATURE
VS. RMS ON-STATE CURRENT
AMBIENT TEMPERATURE (°C)
RMS ON-STATE CURRENT (A)
0
20
40
60
80
100
120
140
160
024681357
ALL FINS ARE BLACK PAINTED
ALUMINUM AND GREASED
100 100 t2.3
120 120 t2.3
60 60 t2.3
CURVES APPLY
REGARDLESS OF
CONDUCTION ANGLE
RESISTIVE,
INDUCTIVE LOADS
NATURAL CONVECTION
ALLOWABLE AMBIENT TEMPERATURE
VS. RMS ON-STATE CURRENT
AMBIENT TEMPERATURE (°C)
RMS ON-STATE CURRENT (A)
0
20
40
60
80
100
120
140
160
0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2
NATURAL CONVECTION
NO FINS
CURVES APPLY REGARDLESS
OF CONDUCTION ANGLE
RESISTIVE, INDUCTIVE LOADS
REPETITIVE PEAK OFF-STATE
CURRENT VS. JUNCTION
TEMPERATURE
JUNCTION TEMPERATURE (°C)
100 (%)
REPETITIVE PEAK OFF-STATE CURRENT (T
j
= t°C)
REPETITIVE PEAK OFF-STATE CURRENT (T
j
= 25°C)
10
2
10
3
2
3
5
7
10
4
2
3
5
7
10
5
2
3
5
7
–60 –20 20 60 100 140–40 0 40 80 120
TYPICAL EXAMPLE
JUNCTION TEMPERATURE
(
°C
)
100 (%)
HOLDING CURRENT
(T
j
= t°C)
HOLDING CURRENT
(T
j
= 25°C)
HOLDING CURRENT VS.
JUNCTION TEMPERATURE
10
1
10
2
2
3
4
5
7
10
3
2
3
4
5
7
–60–40 0 40 80 120–20 20 60 100 140
TYPICAL EXAMPLE
10
0
10
1
2
3
5
7
10
2
2
3
5
7
10
3
2
3
5
7
–60 –20 20 60 100 140–40 0 40 80 120
,,,,,,,,,,,
,,,,,,,,,,,
,,,,,,,,,,,
,,,,,,,,,,,
,,,,,,,,,,,
,,,,,,,,,,,
,,,,,,,,,,,
,,,,,,,,,,,
,,,,,,,,,,,
T
2
+
, G
+
T
2
, G
TYPICAL
EXAMPLE
T
2
+
, G
TYPICAL
EXAMPLE
DISTRIBUTION
LACHING CURRENT VS.
JUNCTION TEMPERATURE
LACHING CURRENT (mA)
JUNCTION TEMPERATURE
(
°C
)
Feb.1999
MITSUBISHI SEMICONDUCTOR TRIAC
BCR3KM
LOW POWER USE
INSULATED TYPE, PLANAR PASSIVATION TYPE
0
20
40
60
80
100
120
140
160
–60–40 0 40 80 120–20 20 60 100 140
TYPICAL EXAMPLE
0
20
40
60
80
160
100
120
140
10
1
2
10
2
357 2
10
3
357 2
10
4
357
TYPICAL EXAMPLE
I QUADRANT
III QUADRANT
T
j
= 125°C
10
0
10
1
23457
10
2
23457
10
1
10
2
2
3
4
5
7
10
3
2
3
4
5
7
I
FGT I
I
RGT I
I
RGT III
TYPICAL EXAMPLE
BREAKOVER VOLTAGE VS.
JUNCTION TEMPERATURE
JUNCTION TEMPERATURE (°C)
100 (%)
BREAKOVER VOLTAGE (T
j
= t°C)
BREAKOVER VOLTAGE (T
j
= 25°C)
BREAKOVER VOLTAGE VS.
RATE OF RISE OF
OFF-STATE VOLTAGE
RATE OF RISE OF OFF-STATE VOLTAGE (V/µs)
100 (%)
BREAKOVER VOLTAGE (dv/dt = xV/µs)
BREAKOVER VOLTAGE (dv/dt = 1V/µs)
GATE TRIGGER CURRENT VS.
GATE CURRENT PULSE WIDTH
GATE CURRENT PULSE WIDTH (µs)
100 (%)
GATE TRIGGER CURRENT (tw)
GATE TRIGGER CURRENT (DC)
GATE TRIGGER CHARACTERISTICS TEST CIRCUITS
R
G
6V
6
A
V
R
G
6V
6
A
V
R
G
6V
6
A
V
TEST PROCEDURE TEST PROCEDURE
TEST PROCEDURE