Preliminary Technical Information 650V XPTTM IGBT GenX3TM IXYN100N65A3 Ultra Low-Vsat PT IGBT for up to 5kHz Switching VCES = IC110 = VCE(sat) tfi(typ) = 650V 100A 1.80V 122ns E SOT-227B, miniBLOC E153432 Symbol Test Conditions VCES VCGR TJ = 25C to 175C TJ = 25C to 175C, RGE = 1M Maximum Ratings 650 650 V V VGES VGEM Continuous Transient 20 30 V V IC25 IC110 ICM TC = 25C TC = 110C TC = 25C, 1ms 170 100 460 A A A IA EAS TC = 25C TC = 25C 50 600 A mJ SSOA (RBSOA) VGE = 15V, TVJ = 150C, RG = 2 Clamped Inductive Load ICM = 200 VCE VCES A tsc (SCSOA) VGE = 15V, VCE = 360V, TJ = 150C RG = 82, Non Repetitive 8 s PC TC = 25C 50/60Hz IISOL 1mA Md Mounting Torque Terminal Connection Torque E C G = Gate, C = Collector, E = Emitter either emitter terminal can be used as Main or Kelvin Emitter Features TJ TJM Tstg VISOL E G t = 1min t = 1s Weight 600 W -55 ... +175 175 -55 ... +175 C C C 2500 3000 V~ V~ 1.5/13 1.3/11.5 Nm/lb.in Nm/lb.in 30 g Advantages Symbol Test Conditions (TJ = 25C, Unless Otherwise Specified) Characteristic Values Min. Typ. Max. BVCES IC = 250A, VGE = 0V 650 VGE(th) IC = 250A, VCE = VGE 3.5 ICES VCE = VCES, VGE = 0V IGES VCE = 0V, VGE = 20V VCE(sat) IC = 70A, VGE = 15V, Note 1 TJ = 150C (c) 2014 IXYS CORPORATION, All Rights Reserved 1.44 1.62 High Power Density Low Gate Drive Requirement Applications V TJ = 150C Optimized for Low Conduction Losses miniBLOC, with Aluminium Nitride Isolation International Standard Package Isolation Voltage 2500V~ Optimized for up to 5kHz Switching Square RBSOA Avalanche Rated Short Circuit Capability High Current Handling Capability 6.0 V 25 500 A A 200 nA 1.80 V V UPS Motor Drives SMPS Battery Chargers Low Frequency Power Inverters DS100547A(7/14) IXYN100N65A3 Symbol Test Conditions (TJ = 25C, Unless Otherwise Specified) gfs Characteristic Values Min. IC = 60A, VCE = 10V, Note 1 32 Cies Coes Cres VCE = 25V, VGE = 0V, f = 1MHz Qg(on) Qge Qgc IC = 70A, VGE = 15V, VCE = 0.5 * VCES td(on) tri Eon td(off) tfi Eoff td(on) tri Eon td(off) tfi Eoff Inductive load, TJ = 25C IC = 50A, VGE = 15V VCE = 400V, RG = 2 Note 2 Inductive load, TJ = 150C C = 50A, VGE = 15V VCE = 400V, RG = 2 Note 2 RthJC RthCS Notes: Typ. SOT-227B miniBLOC (IXYN) Max. 52 S 4920 290 100 pF pF pF 166 35 73 nC nC nC 30 39 2.0 155 122 1.6 ns ns mJ ns ns mJ 28 40 2.6 200 160 2.4 ns ns mJ ns ns mJ 0.05 0.25 C/W C/W 1. Pulse test, t 300s, duty cycle, d 2%. 2. Switching times & energy losses may increase for higher VCE(clamp), TJ or RG. PRELIMANARY TECHNICAL INFORMATION The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice. IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions. IXYS MOSFETs and IGBTs are covered 4,835,592 by one or more of the following U.S. patents: 4,860,072 4,881,106 4,931,844 5,017,508 5,034,796 5,049,961 5,063,307 5,187,117 5,237,481 5,381,025 5,486,715 6,162,665 6,259,123 B1 6,306,728 B1 6,404,065 B1 6,534,343 6,583,505 6,683,344 6,727,585 7,005,734 B2 6,710,405 B2 6,759,692 7,063,975 B2 6,710,463 6,771,478 B2 7,071,537 7,157,338B2 IXYN100N65A3 Fig. 1. Output Characteristics @ TJ = 25C Fig. 2. Extended Output Characteristics @ TJ = 25C 140 350 VGE = 15V 13V 12V 11V 120 VGE = 15V 100 80 9V 60 12V 250 10V I C - Amperes I C - Amperes 13V 300 40 11V 200 150 10V 100 9V 8V 20 50 7V 0 8V 7V 0 0 0.4 0.8 1.2 1.6 2 2.4 2.8 0 2 4 6 8 140 1.8 VGE = 15V 13V 12V 11V 1.6 VCE(sat) - Normalized I C - Amperes 80 9V 60 40 8V 0 1.5 20 2 2.5 3 I C = 140A 1.4 1.2 I C = 70A 1.0 0.6 -50 3.5 -25 0 VCE - Volts 25 50 75 100 125 150 175 TJ - Degrees Centigrade Fig. 5. Collector-to-Emitter Voltage vs. Gate-to-Emitter Voltage 4.0 18 I C = 35A 7V 6V 1 16 0.8 20 0.5 14 VGE = 15V 10V 100 0 12 Fig. 4. Dependence of VCE(sat) on Junction Temperature Fig. 3. Output Characteristics @ TJ = 150C 120 10 VCE - Volts VCE - Volts Fig. 6. Input Admittance 180 TJ = 25C 160 3.5 140 120 I C - Amperes VCE - Volts 3.0 I C = 140A 2.5 2.0 70A TJ = 150C 25C - 40C 100 80 60 40 1.5 20 35A 1.0 0 8 9 10 11 12 VGE - Volts (c) 2014 IXYS CORPORATION, All Rights Reserved 13 14 15 5 6 7 8 VGE - Volts 9 10 11 IXYN100N65A3 Fig. 7. Transconductance Fig. 8. Gate Charge 90 16 TJ = - 40C 80 70 25C 60 I C = 70A I G = 10mA 12 150C V GE - Volts g f s - Siemens VCE = 325V 14 50 40 30 10 8 6 4 20 2 10 0 0 0 20 40 60 80 100 120 140 160 180 200 220 0 20 40 I C - Amperes 60 80 100 120 140 160 QG - NanoCoulombs Fig. 9. Capacitance Fig. 10. Reverse-Bias Safe Operating Area 220 10,000 200 180 Capacitance - PicoFarads Cies 160 I C - Amperes 1,000 Coes 100 140 120 100 80 60 Cres TJ = 150C 40 f = 1 MHz RG = 2 dv / dt < 10V / ns 20 0 10 0 5 10 15 20 25 30 35 100 40 200 300 VCE - Volts Fig. 11. Forward-Bias Safe Operating Area 1000 400 500 600 700 VCE - Volts 1 Fig. 12. Maximum Transient Thermal Impedance VCE(sat) Limit 100 100s 10 1 1ms Z(th)JC - C / W I D - Amperes 25s 0.1 0.01 0.1 TJ = 175C 10ms TC = 25C Single Pulse 100ms 0.01 1 10 100 1000 VDS - Volts IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions. 0.001 0.00001 0.0001 0.001 0.01 0.1 Pulse Width - Seconds 1 10 IXYN100N65A3 Fig. 13. Inductive Switching Energy Loss vs. Gate Resistance Eoff --- TJ = 150C , VGE = 15V 5 VCE = 400V Eoff 6 Eon ---- 7 VCE = 400V 5 4 7 3 5 6 4 3 4 TJ = 25C 2 I C = 50A 5 TJ = 150C 3 3 1 1 4 6 8 10 12 2 0 1 2 50 14 55 60 65 RG - Ohms ---- 7 200 6 180 3 4 2 I C = 50A 1 0 75 100 125 Eon - MilliJoules 5 50 220 tfi 200 RG = 2 , VGE = 15V 1 100 tfi 420 td(off) - - - - 380 VCE = 400V 340 160 300 140 260 120 2 100 1 150 80 220 I C = 100A 180 140 2 3 4 5 6 7 8 9 10 11 12 13 14 Fig. 18. Inductive Turn-off Switching Times vs. Junction Temperature 220 260 td(off) - - - - tfi 200 15 TJ = 25C t f i - Nanoseconds 140 120 200 I C = 50A 160 180 140 160 120 140 I C = 100A 100 120 100 80 80 60 40 50 55 60 65 70 75 80 85 I C - Amperes (c) 2014 IXYS CORPORATION, All Rights Reserved 90 95 60 100 100 60 25 50 75 100 TJ - Degrees Centigrade 125 80 150 t d(off) - Nanoseconds 140 t d(off) - Nanoseconds 180 220 VCE = 400V 180 TJ = 150C td(off) - - - - 240 RG = 2 , VGE = 15V 220 VCE = 400V t f i - Nanoseconds 95 I C = 50A 3 180 100 90 RG - Ohms Fig. 17. Inductive Turn-off Switching Times vs. Collector Current 160 85 TJ = 150C, VGE = 15V TJ - Degrees Centigrade 240 80 t d(off) - Nanoseconds 220 4 25 75 Fig. 16. Inductive Turn-off Switching Times vs. Gate Resistance I C = 100A VCE = 400V 5 Eoff - MilliJoules Eon RG = 2 , VGE = 15V 8 t f i - Nanoseconds Eoff 6 70 I C - Amperes Fig. 15. Inductive Switching Energy Loss vs. Junction Temperature 7 E on - MilliJoules I C = 100A 2 8 RG = 2 , VGE = 15V 9 E on - MilliJoules E off - MilliJoules Eon - 7 11 Eoff - MilliJoules 6 Fig. 14. Inductive Switching Energy Loss vs. Collector Current IXYN100N65A3 Fig. 19. Inductive Turn-on Switching Times vs. Gate Resistance 180 tri 160 td(on) - - - - 84 140 76 120 TJ = 150C, VGE = 15V VCE = 400V 60 I C = 100A 100 52 80 44 I C = 50A 60 36 40 28 20 3 4 5 6 7 8 9 10 11 12 13 14 tri 60 30 40 28 20 26 55 60 65 70 75 80 85 90 95 24 100 34 I C = 100A 32 80 30 60 28 I C = 50A 40 26 20 24 0 75 32 TJ = 150C 38 100 50 80 36 VCE = 400V 25 34 100 125 t d(on) - Nanoseconds t r i - Nanoseconds td(on) - - - - RG = 2 , VGE = 15V 120 TJ = 25C I C - Amperes Fig. 21. Inductive Turn-on Switching Times vs. Junction Temperature 140 36 VCE = 400V 100 50 15 RG - Ohms 160 td(on) - - - - RG = 2 , VGE = 15V 0 20 2 tri 38 t d(on) - Nanoseconds 120 t r i - Nanoseconds 68 t d(on) - Nanoseconds t r i - Nanoseconds 140 Fig. 20. Inductive Turn-on Switching Times vs. Collector Current 22 150 TJ - Degrees Centigrade IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions. IXYS REF: IXY_100N65A3(7D) 7-16-13 Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.