© 2014 IXYS CORPORATION, All Rights Reserved
650V XPTTM IGBT
GenX3TM
VCES = 650V
IC110 = 100A
VCE(sat) 


1.80V
tfi(typ) = 122ns
Symbol Test Conditions Maximum Ratings
VCES TJ = 25°C to 175°C 650 V
VCGR TJ = 25°C to 175°C, RGE = 1M 650 V
VGES Continuous ±20 V
VGEM Transient ±30 V
IC25 TC = 25°C 170 A
IC110 TC = 110°C 100 A
ICM TC = 25°C, 1ms 460 A
IATC = 25°C 50 A
EAS TC = 25°C 600 mJ
SSOA VGE = 15V, TVJ = 150°C, RG = 2 ICM = 200 A
(RBSOA) Clamped Inductive Load VCE VCES
tsc VGE = 15V, VCE = 360V, TJ = 150°C 8 μs
(SCSOA) RG = 82, Non Repetitive
PCTC = 25°C 600 W
TJ-55 ... +175 °C
TJM 175 °C
Tstg -55 ... +175 °C
VISOL 50/60Hz t = 1min 2500 V~
IISOL 1mA t = 1s 3000 V~
MdMounting Torque 1.5/13 Nm/lb.in
Terminal Connection Torque 1.3/11.5 Nm/lb.in
Weight 30 g
DS100547A(7/14)
Symbol Test Conditions Characteristic Values
(TJ = 25C, Unless Otherwise Specified) Min. Typ. Max.
BVCES IC = 250μA, VGE = 0V 650 V
VGE(th) IC= 250μA, VCE = VGE 3.5 6.0 V
ICES VCE = VCES, VGE = 0V 25 μA
TJ = 150°C 500 μA
IGES VCE = 0V, VGE = ±20V ±200 nA
VCE(sat) IC= 70A, VGE = 15V, Note 1 1.44 1.80 V
TJ = 150°C 1.62 V
Features
Optimized for Low Conduction Losses
miniBLOC, with Aluminium Nitride
Isolation
International Standard Package
Isolation Voltage 2500V~
Optimized for up to 5kHz Switching
Square RBSOA
Avalanche Rated
Short Circuit Capability
High Current Handling Capability
Advantages
High Power Density
Low Gate Drive Requirement
Applications
UPS
Motor Drives
SMPS
Battery Chargers
Low Frequency Power Inverters
Ultra Low-Vsat PT IGBT
for up to 5kHz Switching
IXYN100N65A3
SOT-227B, miniBLOC
G = Gate, C = Collector, E = Emitter
either emitter terminal can be used as
Main or Kelvin Emitter
G
E
E
C
E153432
E
Preliminary Technical Information
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYN100N65A3
IXYS MOSFETs and IGBTs are covered 4,835,592 4,931,844 5,049,961 5,237,481 6,162,665 6,404,065 B1 6,683,344 6,727,585 7,005,734 B2 7,157,338B2
by one or more of the following U.S. patents: 4,860,072 5,017,508 5,063,307 5,381,025 6,259,123 B1 6,534,343 6,710,405 B2 6,759,692 7,063,975 B2
4,881,106 5,034,796 5,187,117 5,486,715 6,306,728 B1 6,583,505 6,710,463 6,771,478 B2 7,071,537
Symbol Test Conditions Characteristic Values
(TJ = 25C, Unless Otherwise Specified) Min. Typ. Max.
gfs IC = 60A, VCE = 10V, Note 1 32 52 S
Cies 4920 pF
Coes VCE = 25V, VGE = 0V, f = 1MHz 290 pF
Cres 100 pF
Qg(on) 166 nC
Qge IC = 70A, VGE = 15V, VCE = 0.5 • VCES 35 nC
Qgc 73 nC
td(on) 30 ns
tri 39 ns
Eon 2.0 mJ
td(off) 155 ns
tfi 122 ns
Eoff 1.6 mJ
td(on) 28 ns
tri 40 ns
Eon 2.6 mJ
td(off) 200 ns
tfi 160 ns
Eoff 2.4 mJ
RthJC 0.25 °C/W
RthCS 0.05 °C/W
Notes:
1. Pulse test, t 300μs, duty cycle, d 2%.
2. Switching times & energy losses may increase for higher VCE(clamp), TJ or RG.
Inductive load, TJ = 150°C
C = 50A, VGE = 15V
VCE = 400V, RG = 2
Note 2
Inductive load, TJ = 25°C
IC = 50A, VGE = 15V
VCE = 400V, RG = 2
Note 2
SOT-227B miniBLOC (IXYN)
PRELIMANARY TECHNICAL INFORMATION
The product presented herein is under development. The Technical Specifications offered are
derived from a subjective evaluation of the design, based upon prior knowledge and experi-
ence, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right
to change limits, test conditions, and dimensions without notice.
© 2014 IXYS CORPORATION, All Rights Reserved
IXYN100N65A3
Fig. 1. Output Characteristics @ T
J
= 25ºC
0
20
40
60
80
100
120
140
0 0.4 0.8 1.2 1.6 2 2.4 2.8
V
CE
- Volts
I
C
- Amperes
V
GE
= 15V
13V
12V
11V
10V
9V
7V
8V
Fig. 2. Extended Output Characteristics @ T
J
= 25ºC
0
50
100
150
200
250
300
350
0 2 4 6 8 10 12 14 16 18 20
V
CE
- Volts
I
C
-
Amperes
V
GE
= 15V
10V
11V
12V
8V
7V
9V
13V
Fig. 3. Output Characteristics @ T
J
= 150ºC
0
20
40
60
80
100
120
140
00.511.5 22.5 33.5
V
CE
- Volts
I
C
- Amperes
V
GE
= 15V
13V
12V
11V
10V
8V
9V
7V
6V
Fig. 4. Dependence of V
CE(sat)
on
Junction Temperature
0.6
0.8
1.0
1.2
1.4
1.6
1.8
-50 -25 0 25 50 75 100 125 150 175
T
J
- Degrees Centigrade
V
CE(sat)
- Normalized
V
GE
= 15V
I
C
= 70A
I
C
= 35A
I
C
= 140A
Fig. 5. Collector-to-Emitter Voltage vs.
Gate-to-Em itter Vo ltage
1.0
1.5
2.0
2.5
3.0
3.5
4.0
8 9 10 11 12 13 14 15
V
GE
- Volts
V
CE
- Volts
I
C
= 140A
T
J
= 25ºC
70A
35A
Fig. 6. Input Admittance
0
20
40
60
80
100
120
140
160
180
567891011
V
GE
- Volts
I
C
-
Amperes
T
J
= 150ºC
25ºC
- 40ºC
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYN100N65A3
Fig. 7. Transcondu ctance
0
10
20
30
40
50
60
70
80
90
0 20 40 60 80 100 120 140 160 180 200 220
I
C
- Amperes
g
f s
-
Siemens
T
J
= - 40ºC
25ºC
150ºC
Fig. 10. Reverse-Bias Safe Operating Area
0
20
40
60
80
100
120
140
160
180
200
220
100 200 300 400 500 600 700
V
CE
- Volts
I
C
- Amperes
T
J
= 150ºC
R
G
= 2
dv / dt < 10V / ns
Fig. 8. Gate Charge
0
2
4
6
8
10
12
14
16
0 20 40 60 80 100 120 140 160
Q
G
- NanoCoulombs
V
GE
- Volts
V
CE
= 325V
I
C
= 70A
I
G
= 10mA
Fig. 9. Capacitance
10
100
1,000
10,000
0 5 10 15 20 25 30 35 40
V
CE
- Volts
Capacitance - PicoFarad
s
f
= 1 MH
z
Cies
Coes
Cres
Fig. 12. Maximum Transient Thermal Impedance
0.001
0.01
0.1
1
0.00001 0.0001 0.001 0.01 0.1 1 10
Pulse Width - Seconds
Z
(th)JC
- ºC / W
Fig. 11. Forward-Bias Safe Operating Area
0.01
0.1
1
10
100
1000
1 10 100 1000
V
DS
- Volts
I
D
- Amperes
T
J
= 175ºC
T
C
= 25ºC
Single Pulse
25µs
1ms
10ms
V
CE(sat)
Limi
t
100µs
100ms
© 2014 IXYS CORPORATION, All Rights Reserved
IXYN100N65A3
Fig. 13. Inductive Switching Energy Loss vs.
Gate Resistance
1
2
3
4
5
6
2468101214
R
G
- Ohms
E
off
- MilliJoules
1
3
5
7
9
11
E
on
- MilliJoules
E
off
E
on
- - - -
T
J
= 150ºC , V
GE
= 15V
V
CE
= 400V
I
C
= 50A
I
C
= 100A
Fig. 16. Inductive Turn-off Switching Time s vs.
Gate Resistance
80
100
120
140
160
180
200
220
23456789101112131415
R
G
- Ohms
t
f i
- Nanoseconds
140
180
220
260
300
340
380
420
t
d(off)
- Nanoseconds
t
f i
t
d(off)
- - - -
T
J
= 150ºC, V
GE
= 15V
V
CE
= 400V
I
C
= 100A
I
C
= 50A
Fig. 14. Inductive Switching Energy Loss vs.
Collector Current
0
1
2
3
4
5
6
7
50 55 60 65 70 75 80 85 90 95 100
I
C
- Amperes
E
off
- MilliJoules
1
2
3
4
5
6
7
8
E
on
- MilliJoules
E
off
E
on
- - - -
R
G
= 2 , V
GE
= 15V
V
CE
= 400V
T
J
= 150ºC
T
J
= 25ºC
Fig. 15. Inductive Switching Energy Loss vs.
Junction Temperature
0
1
2
3
4
5
6
7
25 50 75 100 125 150
T
J
- Degrees Centigrade
E
off
- MilliJoules
1
2
3
4
5
6
7
8
E
on
- MilliJoules
E
off
E
on
- - - -
R
G
= 2 , V
GE
= 15V
V
CE
= 400V
I
C
= 50A
I
C
= 100A
Fig. 17 . Inductive Turn-off Switching Times vs.
Collector Current
40
60
80
100
120
140
160
180
200
220
240
50 55 60 65 70 75 80 85 90 95 100
I
C
- Amperes
t
f i
- Nanosecond
s
60
100
140
180
220
260
t
d(off)
- Nanoseconds
t
f i
t
d(off)
- - - -
R
G
= 2
, V
GE
= 15V
V
CE
= 400V
T
J
= 150ºC
T
J
= 25ºC
Fig. 18 . Inductive Turn-off Switching Times vs .
Junction Tempe rature
60
80
100
120
140
160
180
200
220
25 50 75 100 125 150
T
J
- Degrees Centigrade
t
f i
- Nanosecond
s
80
100
120
140
160
180
200
220
240
t
d(off)
- Nanoseconds
t
f i
t
d(off)
- - - -
R
G
= 2
, V
GE
= 15V
V
CE
= 400V
I
C
= 100A
I
C
= 50A
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYN100N65A3
IXYS REF: IXY_100N65A3(7D) 7-16-13
Fig. 20. Inductive Turn-on Switching Tim es vs.
Collector Current
0
20
40
60
80
100
120
140
50 55 60 65 70 75 80 85 90 95 100
IC - Amperes
t
r i
- Nanosecond
s
24
26
28
30
32
34
36
38
t
d(on)
- Nanoseconds
t
r i
t
d(on)
- - - -
R
G
= 2 , V
GE
= 15V
V
CE
= 400V T
J
= 25ºC
T
J
= 150ºC
Fig. 21. Inductive Turn-on Switching Times vs.
Junc tion Tempera ture
0
20
40
60
80
100
120
140
160
25 50 75 100 125 150
TJ - Degrees Centigrade
t
r i
- Nanosecond
s
22
24
26
28
30
32
34
36
38
t
d(on)
- Nanoseconds
t
r i
t
d(on)
- - - -
R
G
= 2 , V
GE
= 15V
V
CE
= 400V
I
C
= 100A
I
C
= 50A
Fig. 19. Inductive Turn-on Switching Times vs.
Gate Resistance
20
40
60
80
100
120
140
160
180
23456789101112131415
RG - Ohms
t
r i
- Nanosecond
s
20
28
36
44
52
60
68
76
84
t
d(on)
- Nanoseconds
t
r i
t
d(on)
- - - -
T
J
= 150ºC, V
GE
= 15V
V
CE
= 400V
I
C
= 50A
I
C
= 100A
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.