HGT1S14N37G3VLS, HGTP14N37G3VL Data Sheet July 2000 14A, 370V N-Channel, Logic Level, Voltage Clamping IGBTs This N-Channel IGBT is a MOS gated, logic level device which is intended to be used as an ignition coil driver in automotive ignition circuits. Unique features include an active voltage clamp between the collector and the gate which provides Self Clamped Inductive Switching (SCIS) capability in ignition circuits. Internal diodes provide ESD protection for the logic level gate. Both a series resistor and a shunt resister are provided in the gate circuit. Formerly Developmental Type TA49169. 4857 Features * Logic Level Gate Drive * Internal Voltage Clamp * ESD Gate Protection * TJ = 175oC * Internal Series and Shunt Gate Resistors * Low Conduction Loss * Ignition Energy Capable Packaging Ordering Information PART NUMBER File Number JEDEC TO-263AB PACKAGE BRAND HGT1S14N37G3VLS TO-263AB 14N37GVL HGTP14N37G3VL TO-220AB 14N37GVL COLLECTOR (FLANGE) G E NOTE: When ordering, use the entire part number. Add the suffix 9A to obtain the TO-263AB in tape and reel, i.e. HGT1S14N37G3VLS9A Symbol COLLECTOR JEDEC TO-220AB E R1 C G GATE R2 COLLECTOR (FLANGE) EMITTER INTERSIL CORPORATION IGBT PRODUCT IS COVERED BY ONE OR MORE OF THE FOLLOWING U.S. PATENTS 4,364,073 4,417,385 4,430,792 4,443,931 4,466,176 4,516,143 4,532,534 4,587,713 4,598,461 4,605,948 4,620,211 4,631,564 4,639,754 4,639,762 4,641,162 4,644,637 4,682,195 4,684,413 4,694,313 4,717,679 4,743,952 4,783,690 4,794,432 4,801,986 4,803,533 4,809,045 4,809,047 4,810,665 4,823,176 4,837,606 4,860,080 4,883,767 4,888,627 4,890,143 4,901,127 4,904,609 4,933,740 4,963,951 4,969,027 (c)2001 Fairchild Semiconductor Corporation HGT1S14N37G3VLS, HGTP14N37G3VL Rev. A HGT1S14N37G3VLS, HGTP14N37G3VL Absolute Maximum Ratings TC = 25oC, Unless Otherwise Specified Collector to Emitter Breakdown Voltage at 10mA . . . . . . . . . . . . . . . . . . . . . . . . . . . . BVCER Emitter to Collector Breakdown Voltage at 10mA . . . . . . . . . . . . . . . . . . . . . . . . . . . . .BVECS Collector Current Continuous at VGE = 5V, TC = 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . IC25 HGT1S14N37G3VLS, HGTP14N37G3VL 380 24 25 UNITS V V A at VGE = 5V, TC = 110oC. . . . . . . . . . . . . . . . . . . . . . . . . IC110 Gate to Emitter Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGEM Inductive Switching Current at L = 3mH, TC = 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . ISCIS at L = 3mH, TC = 150oC . . . . . . . . . . . . . . . . . . . . . . . . . . . ISCIS Collector to Emitter Avalanche Energy at L = 3 mH, TC = 25oC . . . . . . . . . . . . . . . . . . . . EAS 18 10 15 11.5 340 A V A A mJ Power Dissipation Total at TC = 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Power Dissipation Derating TC > 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Storage Junction Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TSTG Operating Junction Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ Electrostatic Voltage HBM at 250pF, 1500 All Pin Configurations . . . . . . . . . . . . . . . . . .ESD 136 0.91 -55 to 175 -55 to 175 5 W W/oC oC oC kV Electrostatic Voltage MM at 200pF, 0 All Pin Configurations . . . . . . . . . . . . . . . . . . . . . .ESD Maximum Lead Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TPKG 2 kV 300 260 oC oC CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTE: 1. May be exceeded if IGEM is limited to 10mA. Electrical Specifications TJ = 25oC, Unless Otherwise Specified PARAMETER Collector to Emitter Breakdown Voltage Gate to Emitter Plateau Voltage Gate Charge Collector to Emitter Clamp Breakdown Voltage Emitter to Collector Breakdown Voltage Collector to Emitter Leakage Current Emitter to Collector Leakage Current Collector to Emitter On-State Voltage SYMBOL BVCER VGEP QG(ON) BVCE(CL) BVECS ICES IECS VCE(ON) TEST CONDITIONS MIN TYP MAX UNITS 320 350 380 V IC = 6.5A, VCE = 12V - 2.76 - V IC = 6.5A, VCE = 12V, VGE = 5V (Figure 16) - 27 - nC 320 350 380 V IC = 10mA, RG = 1k, VGE = 0V, TJ = -55oC to 175oC (Figure 16) IC = 15A, RG = 1k 24 28 - V VCE = 300V, VGE = 0V (Figure 13) IC = 10mA TJ = 25oC - - 40 A TJ = 175oC - - 250 A VCE = 250V, VGE = 0V (Figure 13) TJ = 25oC TJ = 175oC TJ = 25oC TJ = 175oC TJ = -55oC TJ = 25oC TJ = 25oC TJ = 175oC TJ = 25oC TJ = 175oC - - 10 A - - 75 A - - 10 mA - - 50 mA VEC = -24V, VGE = 0V (Figure 13) IC = 6A, VGE = 4.0V (Figures 3 through 9) IC = 10A, VGE = 4.5V (Figures 3 through 9) IC = 14A, VGE = 5V (Figures 3 through 9) Gate to Emitter Threshold Voltage VGE(TH) IC = 1mA, VCE = VGE (Figure 12) - 1.3 1.45 V - 1.25 1.6 V - 1.45 1.75 V - 1.5 1.9 V - 1.6 2 V - 1.7 2.3 V 1.3 1.8 2.2 V Gate Series Resistance R1 - 70 150 Gate to Emitter Resistance R2 10 18 26 k 310 500 1000 A Gate to Emitter Leakage Current (c)2001 Fairchild Semiconductor Corporation IGES VGE = 10V HGT1S14N37G3VLS, HGTP14N37G3VL Rev. A HGT1S14N37G3VLS, HGTP14N37G3VL Electrical Specifications TJ = 25oC, Unless Otherwise Specified (Continued) PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS Gate to Emitter Breakdown Voltage BVGES IGES = 2mA 12 14 - V Current Turn-On Delay Time Resistive Load td(ON)I IC = 6.5A, RG = 1k, VGE = 5V, RL = 2.1, VDD = 14V, TJ = 150oC (Figure 14) - 1 4 s Current Turn-On Rise Time Resistive Load trI IC = 6.5A, RG = 1k VGE = 5V, RL = 2.1 VDD = 14V, TJ = 150oC (Figure 14) - 3 7 s - 10 30 s TC = 150oC 11.5 - - A TC = 25oC 15 - - A - - 1.1 oC/W Current Turn-Off Time Inductive Load td(OFF)I + tfI IC = 6.5A, RG = 1k VGE = 5V, L = 300H VDD = 300V, TJ = 150oC (Figure 14) Inductive Use Test ISCIS Thermal Resistance RJC (Figure 18) Unless Otherwise Specified 60 RG = 1k, VGE = 5V 52 44 ISCIS CAN BE LIMITED BY gfs at VGE = 5V 36 28 TJ = 25oC 20 12 4 40 TJ = 150oC 80 120 160 200 ISCIS, INDUCTIVE SWITCHING CURRENT (A) ISCIS , INDUCTIVE SWITCHING CURRENT (A) Typical Performance Curves L = 3mH, VG = 5V, RG = 1k (Figures 1 and 2) 56 RG = 1k, VGE = 5V 48 ISCIS CAN BE LIMITED BY gfs at VGE = 5V 40 32 24 TJ = 25oC 16 TJ = 150oC 8 0 0 tAV, TIME IN AVALANCHE (ms) 1.24 1.20 VGE = 4.0V 1.12 VGE = 4.5V VGE = 5.0V 1.00 -50 25 100 175 TJ, JUNCTION TEMPERATURE (oC) FIGURE 3. COLLECTOR TO EMITTER ON-STATE VOLTAGE vs JUNCTION TEMPERARURE (c)2001 Fairchild Semiconductor Corporation VCE, COLLECTOR TO EMITTER VOLTAGE (V) VCE, COLLECTOR TO EMITTER VOLTAGE (V) ICE = 6A 1.04 6 8 10 FIGURE 2. SELF CLAMPED INDUCTIVE SWITCHING CURRENT vs INDUCTANCE 1.28 1.08 4 L, INDUCTANCE (mH) FIGURE 1. SELF CLAMPED INDUCTIVE SWITCHING CURRENT vs TIME IN AVALANCHE 1.16 2 1.50 ICE = 10A 1.46 VGE = 4.0V 1.42 1.38 VGE = 4.5V 1.34 VGE = 5.0V 1.30 -50 25 100 175 TJ, JUNCTION TEMPERATURE (oC) FIGURE 4. COLLECTOR TO EMITTER ON-STATE VOLTAGE vs JUNCTION TEMPERATURE HGT1S14N37G3VLS, HGTP14N37G3VL Rev. A HGT1S14N37G3VLS, HGTP14N37G3VL 45 DUTY CYCLE < 0.5%, TJ = 175oC PULSE DURATION = 250s Unless Otherwise Specified (Continued) VGE = 5.0V VGE = 4.5V 30 VGE = 4.0V 15 0 0 1 2 3 4 5 ICE, COLLECTOR TO EMITTER CURRENT (A) ICE, COLLECTOR TO EMITTER CURRENT (A) Typical Performance Curves 45 DUTY CYCLE < 0.5%, TJ = 150oC PULSE DURATION = 250s VGE = 4.5V 30 VGE = 4.0V 15 0 0 VCE , COLLECTOR TO EMITTER VOLTAGE (V) VGE = 5.0V 50 VGE = 4.5V 40 VGE = 4.0V 30 20 10 0 0 1 2 3 4 5 70 4.5V 4.0V 3.5V 30 3.0V 2.5V 20 10 0 0 1 2 3 4 VCE , COLLECTOR TO EMITTER VOLTAGE (V) FIGURE 9. COLLECTOR TO EMITTER ON-STATE VOLTAGE (c)2001 Fairchild Semiconductor Corporation 5 ICE, COLLECTOR TO EMITTER CURRENT (A) ICE, COLLECTOR TO EMITTER CURRENT (A) TJ = 25oC 5.0V 40 5 VGE = 5.0V VGE = 4.5V 50 40 VGE = 4.0V 30 20 10 0 0 1 2 3 4 5 FIGURE 8. COLLECTOR TO EMITTER ON-STATE VOLTAGE 8.0V 50 4 VCE, COLLECTOR TO EMITTER VOLTAGE (V) FIGURE 7. COLLECTOR TO EMITTER ON-STATE VOLTAGE VGE 3 DUTY CYCLE < 0.5%, TJ = -40oC PULSE DURATION = 250s 60 VCE, COLLECTOR TO EMITTER VOLTAGE (V) 60 2 FIGURE 6. COLLECTOR TO EMITTER ON-STATE VOLTAGE ICE, COLLECTOR TO EMITTER CURRENT (A) ICE, COLLECTOR TO EMITTER CURRENT (A) DUTY CYCLE < 0.5%, TJ = 25oC PULSE DURATION = 250s 1 VCE , COLLECTOR TO EMITTER VOLTAGE (V) FIGURE 5. COLLECTOR TO EMITTER ON-STATE VOLTAGE 60 VGE = 5.0V 40 DUTY CYCLE < 0.5%, VCE = 5V PULSE DURATION = 250s 32 TJ = 150oC 24 16 TJ = 25oC 8 TJ = -40oC 0 1 2 3 4 5 VGE, GATE TO EMITTER VOLTAGE (V) FIGURE 10. TRANSFER CHARACTERISTIC HGT1S14N37G3VLS, HGTP14N37G3VL Rev. A HGT1S14N37G3VLS, HGTP14N37G3VL Typical Performance Curves Unless Otherwise Specified (Continued) 2.0 VGE = 5V VGE(TH) , THRESHOLD VOLTAGE (V) ICE , DC COLLECTOR CURRENT (A) 28 24 20 16 12 8 4 0 25 50 75 100 125 150 ICE = 1mA VCE = VGE 1.8 1.6 1.4 1.2 1.0 0.8 -50 175 25 TC , CASE TEMPERATURE (oC) 100 175 TJ , JUNCTION TEMPERATURE (oC) FIGURE 11. DC COLLECTOR CURRENT vs CASE TEMPERATURE FIGURE 12. THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE 10000 16 VECS = 24V 1000 RESISTIVE tOFF SWITCHING TIME (s) LEAKAGE CURRENTS (A) ICE = 6.5A, VGE = 5V, RG = 1k 14 100 VCES = 300V 10 VCES = 250V 1 12 INDUCTIVE tOFF 10 8 6 RESISTIVE tON 4 0.1 25 50 75 125 100 150 2 175 25 50 TJ, JUNCTION TEMPERATURE (oC) FIGURE 13. LEAKAGE CURRENT vs JUNCTION TEMPERATURE 8 VGE , GATE TO EMITTER VOLTAGE (V) FREQUENCY = 1MHz C, CAPACITANCE (pF) 2000 1600 CIES 1200 CRES 400 0 COES 0 5 10 15 20 VCE, COLLECTOR TO EMITTER VOLTAGE (V) FIGURE 15. CAPACITANCE vs COLLECTOR TO EMITTER VOLTAGE (c)2001 Fairchild Semiconductor Corporation 100 125 150 175 FIGURE 14. SWITCHING TIME vs JUNCTION TEMPERATURE 2400 800 75 TJ , JUNCTION TEMPERATURE (oC) 25 IG(REF) = 1mA, RL = 1.865, TJ = 25oC 6 VCE = 12V 4 2 VCE = 6V 0 0 8 16 24 32 40 48 56 QG, GATE CHARGE (nC) FIGURE 16. GATE CHARGE WAVEFORMS HGT1S14N37G3VLS, HGTP14N37G3VL Rev. A HGT1S14N37G3VLS, HGTP14N37G3VL Typical Performance Curves Unless Otherwise Specified (Continued) BVCER , BREAKDOWN VOLTAGE (V) 360 TJ (oC) ICER = 10mA -55 350 25 150 175 340 330 320 0 2 4 6 8 10 RG , GATE SERIES RESISTANCE (k) ZJC , NORMALIZED THERMAL RESPONSE FIGURE 17. BREAKDOWN VOLTAGE vs SERIES GATE RESISTANCE 100 0.5 0.2 0.1 10-1 0.05 0.02 0.01 10-2 t1 DUTY FACTOR, D = t1 / t2 PEAK TJ = (PD X ZJC X RJC) + TC SINGLE PULSE 10-5 10-4 10-3 10-2 PD t2 10-1 100 t1 , RECTANGULAR PULSE DURATION (s) FIGURE 18. IGBT NORMALIZED TRANSIENT THERMAL RESPONSE, JUNCTION TO CASE Test Circuits R or L 3mH VDD C C PULSE GEN LOAD RG = 1k RG G DUT DUT G FIGURE 19. INDUCTIVE SWITCHING TEST CIRCUIT (c)2001 Fairchild Semiconductor Corporation - 5V E + VDD E FIGURE 20. tON AND tOFF SWITCHING TEST CIRCUIT HGT1S14N37G3VLS, HGTP14N37G3VL Rev. A HGT1S14N37G3VLS, HGTP14N37G3VL TO-263AB SURFACE MOUNT JEDEC TO-263AB PLASTIC PACKAGE E A A1 H1 TERM. 4 D SYMBOL A A1 b b1 b2 c D L2 L1 L 1 b b1 e c J1 e1 0.450 (11.43) TERM. 4 L3 b2 3 E e e1 H1 J1 L L1 3 0.350 (8.89) 0.700 (17.78) 0.150 (3.81) 1 0.080 TYP (2.03) 0.062 TYP (1.58) MINIMUM PAD SIZE RECOMMENDED FOR SURFACE-MOUNTED APPLICATIONS 1.5mm DIA. HOLE INCHES MIN MAX 0.170 0.180 0.048 0.052 0.030 0.034 0.045 0.310 0.018 0.405 0.055 0.022 0.425 0.395 0.405 0.100 TYP 0.200 BSC 0.045 0.055 0.095 0.105 0.175 0.195 MILLIMETERS MIN MAX 4.32 4.57 1.22 1.32 0.77 0.86 1.15 7.88 0.46 10.29 NOTES 4, 5 4, 5 1.39 0.55 10.79 4, 5 2 4, 5 - 10.04 10.28 2.54 TYP 5.08 BSC 1.15 1.39 2.42 2.66 4.45 4.95 7 7 - 0.090 0.110 2.29 2.79 4, 6 0.050 0.070 1.27 1.77 3 L2 L3 0.315 8.01 2 NOTES: 1. These dimensions are within allowable dimensions of Rev. C of JEDEC TO-263AB outline dated 2-92. 2. L3 and b2 dimensions established a minimum mounting surface for terminal 4. 3. Solder finish uncontrolled in this area. 4. Dimension (without solder). 5. Add typically 0.002 inches (0.05mm) for solder plating. 6. L1 is the terminal length for soldering. 7. Position of lead to be measured 0.120 inches (3.05mm) from bottom of dimension D. 8. Controlling dimension: Inch. 9. Revision 10 dated 5-99. 4.0mm USER DIRECTION OF FEED 2.0mm TO-263AB 1.75mm C L 24mm TAPE AND REEL 24mm 16mm COVER TAPE 40mm MIN. ACCESS HOLE 30.4mm 13mm 330mm 100mm GENERAL INFORMATION 1. 800 PIECES PER REEL. 2. ORDER IN MULTIPLES OF FULL REELS ONLY. 3. MEETS EIA-481 REVISION "A" SPECIFICATIONS. (c)2001 Fairchild Semiconductor Corporation 24.4mm HGT1S14N37G3VLS, HGTP14N37G3VL Rev. A HGT1S14N37G3VLS, HGTP14N37G3VL TO-220AB 3 LEAD JEDEC TO-220AB PLASTIC PACKAGE A INCHES E OP A1 Q H1 TERM. 4 D 45o E1 D1 L1 b1 L b c 60o 1 2 3 e e1 LEAD Lead No. 1 Lead No. 2 Lead No. 3 Term. No. 4 Mounting Flange J1 TERMINAL Gate Collector Emitter Collector MILLIMETERS SYMBOL MIN MAX MIN MAX NOTES A 0.170 0.180 4.32 4.57 - A1 0.048 0.052 1.22 1.32 3, 4 b 0.030 0.034 0.77 0.86 b1 0.045 0.055 1.15 1.39 2, 3 c 0.014 0.019 0.36 0.48 2, 3, 4 14.99 15.49 - D 0.590 0.610 D1 - 0.160 E 0.395 0.410 E1 - 0.030 10.04 - 4.06 - 10.41 - 0.76 - e 0.100 TYP 2.54 TYP 5 e1 0.200 BSC 5.08 BSC 5 H1 0.235 0.255 5.97 6.47 6 J1 0.100 0.110 2.54 2.79 L 0.530 0.550 13.47 13.97 - L1 0.130 0.150 3.31 3.81 2 OP 0.149 0.153 3.79 3.88 - Q 0.102 0.112 2.60 2.84 - NOTES: 1. These dimensions are within allowable dimensions of Rev. J of JEDEC TO-220AB outline dated 3-24-87. 2. Lead dimension and finish uncontrolled in L1. 3. Lead dimension (without solder). 4. Add typically 0.002 inches (0.05mm) for solder coating. 5. Position of lead to be measured 0.250 inches (6.35mm) from bottom of dimension D. 6. Position of lead to be measured 0.100 inches (2.54mm) from bottom of dimension D. 7. Controlling dimension: Inch. 8. Revision 2 dated 7-97. (c)2001 Fairchild Semiconductor Corporation HGT1S14N37G3VLS, HGTP14N37G3VL Rev. A TRADEMARKS The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. ACExTM BottomlessTM CoolFETTM CROSSVOLTTM DenseTrenchTM DOMETM EcoSPARKTM E2CMOSTM EnSignaTM FACTTM FACT Quiet SeriesTM FAST FASTrTM GlobalOptoisolatorTM GTOTM HiSeCTM ISOPLANARTM LittleFETTM MicroFETTM MICROWIRETM OPTOLOGICTM OPTOPLANARTM PACMANTM POPTM PowerTrench QFETTM QSTM QT OptoelectronicsTM Quiet SeriesTM SILENT SWITCHER SMART STARTTM Star* PowerTM StealthTM SuperSOTTM-3 SuperSOTTM-6 SuperSOTTM-8 SyncFETTM TinyLogicTM UHCTM UltraFETTM VCXTM DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or 2. A critical component is any component of a life support device or system whose failure to perform can systems which, (a) are intended for surgical implant into be reasonably expected to cause the failure of the life the body, or (b) support or sustain life, or (c) whose support device or system, or to affect its safety or failure to perform when properly used in accordance with instructions for use provided in the labeling, can be effectiveness. reasonably expected to result in significant injury to the user. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Definition Advance Information Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Preliminary First Production This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. No Identification Needed Full Production This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. Obsolete Not In Production This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only. Rev. H