2013-09-091
BFP620F
1
2
4
3
Low Noise SiGe:C Bipolar RF Transistor
High gain low noise RF transistor
Based on Infineon's reliable high volume
Silicon Germanium technology
Outstanding noise figure NFmin = 0.7 dB at 1.8 GHz
Outstanding noise figure NFmin = 1.3 dB at 6 GHz
Maximum stable gain
Gms = 21 dB at 1.8 GHz
Gma = 10 dB at 6 GHz
Pb-free (RoHS compliant) and halogen-free thin small
flat package (1.4 x 0.8 x 0.59 mm) with visible leads
Qualification report according to AEC-Q101 available
1
34
2
Direction of Unreeling
Top View
XYs
ESD (Electrostatic discharge) sensitive device, observe handling precaution!
Type Marking Pin Configuration Package
BFP620F R2s 1=B 2=E 3=C 4=E - - TSFP-4
Maximum Ratings at T
A
= 25 °C, unless otherwise specified
Parameter Symbol Value Unit
Collector-emitter voltage
TA = 25 °C
T
A
= -55 °C
VCEO
2.3
2.1
V
Collector-emitter voltage VCES 7.5
Collector-base voltage VCBO 7.5
Emitter-base voltage VEBO 1.2
Collector current IC80 mA
Base current IB3
Total power dissipation1)
TS 96°C
Ptot 185 mW
Junction temperature TJ150 °C
Storage temperature TSt
g
-55 ... 150
1TS is measured on the emitter lead at the soldering point to the pcb
2013-09-092
BFP620F
Thermal Resistance
Parameter Symbol Value Unit
Junction - soldering point1) RthJS 290 K/W
Electrical Characteristics at TA = 25 °C, unless otherwise specified
Parameter Symbol Values Unit
min. typ. max.
DC Characteristics
Collector-emitter breakdown voltage
IC = 1 mA, IB = 0
V(BR)CEO 2.3 2.8 - V
Collector-emitter cutoff current
VCE = 7.5 V, VBE = 0
ICES - - 10 µA
Collector-base cutoff current
VCB = 5 V, IE = 0
ICBO - - 100 nA
Emitter-base cutoff current
VEB = 0.5 V, IC = 0
IEBO - - 3 µA
DC current gain
IC = 50 mA, VCE = 1.5 V, pulse measured
hFE 110 180 270 -
1For the definition of RthJS please refer to Application Note AN077 (Thermal Resistance Calculation)
2013-09-093
BFP620F
Electrical Characteristics at T
A
= 25 °C, unless otherwise specified
Parameter Symbol Values Unit
min. typ. max.
AC Characteristics (verified by random sampling)
Transition frequency
IC = 50 mA, VCE = 1.5 V, f = 1 GHz
fT- 65 - GHz
Collector-base capacitance
VCB = 2 V, f = 1 MHz, VBE = 0 ,
emitter grounded
Ccb - 0.12 0.2 pF
Collector emitter capacitance
VCE = 2 V, f = 1 MHz, VBE = 0 ,
base grounded
Cce - 0.2 -
Emitter-base capacitance
VEB = 0.5 V, f = 1 MHz, VCB = 0 ,
collector grounded
Ceb - 0.45 -
Minimum noise figure
IC = 5 mA, VCE = 1.5 V, f = 1.8 GHz, ZS = ZSopt
IC = 5 mA, VCE = 1.5 V, f = 6 GHz, ZS = ZSopt
NFmin
-
-
0.7
1.3
-
-
dB
Power gain, maximum stable1)
IC = 50 mA, VCE = 1.5 V, ZS = ZSopt,
ZL = ZLopt , f = 1.8 GHz
Gms - 21 - dB
Power gain, maximum available1)
IC = 50 mA, VCE = 1.5 V, ZS = ZSopt,
ZL = ZLopt, f = 6 GHz
Gma - 10 - dB
Transducer gain
IC = 50 mA, VCE = 1.5 V, ZS = ZL = 50 ,
f = 1.8 GHz
f = 6 GHz
|S21e|2
-
-
19.5
9.5
-
-
dB
Third order intercept point at output2)
VCE = 2 V, IC = 50 mA, ZS=ZL=50 , f = 1.8 GHz
IP3 - 25 - dBm
1dB compression point at output
IC = 50 mA, VCE = 2 V, ZS=ZL=50 , f = 1.8 GHz
P-1dB - 14 -
1Gma = |S21e / S12e| (k-(k²-1)1/2), Gms = |S21e / S12e|
2IP3 value depends on termination of all intermodulation frequency components.
Termination used for this measurement is 50 from 0.1 MHz to 6 GHz
2013-09-094
BFP620F
Total power dissipation Ptot = ƒ(TS)
0 15 30 45 60 75 90 105 120 °C 150
TS
0
20
40
60
80
100
120
140
160
mW
200
Ptot
Permissible Pulse Load RthJS = ƒ(tp)
10 -7 10 -6 10 -5 10 -4 10 -3 10 -2 10 0
s
tp
1
10
2
10
3
10
K/W
RthJS
0.5
0.2
0.1
0.05
0.02
0.01
0.005
D = 0
Permissible Pulse Load
Ptotmax/PtotDC = ƒ(tp)
10 -7 10 -6 10 -5 10 -4 10 -3 10 -2 10 0
s
tp
0
10
1
10
Ptotmax/ PtotDC
D = 0
0.005
0.01
0.02
0.05
0.1
0.2
0.5
Collector-base capacitance Ccb= ƒ(VCB)
f = 1MHz
0 1 2 3 4 5 6 V8
VCB
0
0.05
0.1
0.15
0.2
0.25
0.3
pF
0.4
CCB
2013-09-095
BFP620F
Third order Intercept Point IP3=ƒ(IC)
(Output, ZS=ZL=50)
VCE = parameter, f =1.8GHz
0 10 20 30 40 50 60 70 mA 90
IC
-5
0
5
10
15
20
dBm
30
IP3
0.8V 1.1V
1.4V
1.7V
2.3V
Transition frequency fT= ƒ(IC)
f = 1GHz
VCE = Parameter in V
0 10 20 30 40 50 60 70 80 mA 100
IC
0
5
10
15
20
25
30
35
40
45
50
55
60
GHz
70
fT
1 to 2.3
0.8
0.5
0.3
Power gain Gma, Gms = ƒ(IC)
VCE = 1.5V
f = Parameter in GHz
0 10 20 30 40 50 60 70 mA 90
IC
6
8
10
12
14
16
18
20
22
24
26
dB
30
G
0.9
1.8
2.4
3
4
5
6
Power Gain Gma, Gms = ƒ(f),
|S21|² = f (f)
VCE = 1.5V, IC = 50mA
01234GHz 6
f
5
10
15
20
25
30
35
40
dB
50
G
Gms
Gma
|S21|²
2013-09-096
BFP620F
Power gain Gma, Gms = ƒ (VCE)
IC = 50mA
f = Parameter in GHz
0.2 0.6 1 1.4 1.8 V2.6
VCE
-4
0
4
8
12
16
20
24
dB
30
G
0.9
1.8
2.4
3
4
5
6
Noise figure F = ƒ(IC)
VCE = 1.5V, ZS = ZSopt
0 10 20 30 40 50 60 70 80
0
0.5
1
1.5
2
2.5
3
f = 4GHz
f = 2.4GHz
f = 5GHz
f = 0.9GHz
f = 1.8GHz
f = 6GHz
f = 3GHz
I
c
[mA]
F [dB]
Noise figure F = ƒ(IC)
VCE = 1.5V, f = 1.8 GHz
0 10 20 30 40 50 60 70 80
0
0.5
1
1.5
2
2.5
3
I
c
[mA]
F [dB]
Z
S
= 50
Z
S
= Z
Sopt
Noise figure F = ƒ(f)
VCE = 1.5V, ZS = ZSopt
1 2 3 4 5 6 7
0
0.5
1
1.5
2
2.5
F [dB]
f [GHz]
I
C
= 50mA
I
C
= 5.0mA
2013-09-097
BFP620F
Source impedance for min.
noise figure vs. frequency
VCE = 1.5V, IC = 5.0mA/50.0mA
10.1 0.2 0.3 0.40.5 21.5 3 4 5
0
5
1
−5
−1
10
0.5
1.5
−0.5
−1.5
0.1
−0.1
0.2
2
−0.2
−2
0.3
−0.3
0.4 3
−0.4 −3
4
−4
−10
I
c
= 5.0mA
2.4GHz
3GHz
4GHz
1.8GHz
I
c
= 50mA
6GHz
5GHz
2013-09-098
BFP620F
Package TSFP-4
2013-09-099
BFP620F
Edition 2009-11-16
Published by
Infineon Technologies AG
81726 Munich, Germany
2009 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee
of conditions or characteristics. With respect to any examples or hints given herein,
any typical values stated herein and/or any information regarding the application of
the device, Infineon Technologies hereby disclaims any and all warranties and
liabilities of any kind, including without limitation, warranties of non-infringement of
intellectual property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices,
please contact the nearest Infineon Technologies Office (<www.infineon.com>).
Warnings
Due to technical requirements, components may contain dangerous substances.
For information on the types in question, please contact the nearest Infineon
Technologies Office.
Infineon Technologies components may be used in life-support devices or systems
only with the express written approval of Infineon Technologies, if a failure of such
components can reasonably be expected to cause the failure of that life-support
device or system or to affect the safety or effectiveness of that device or system.
Life support devices or systems are intended to be implanted in the human body or
to support and/or maintain and sustain and/or protect human life. If they fail, it is
reasonable to assume that the health of the user or other persons may be
endangered.