austriamicrosystems AG
is now
ams AG
The technical content of this austriamicrosystems datasheet is still valid.
Contact information:
Headquarters:
ams AG
Tobelbaderstrasse 30
8141 Unterpremstaetten, Austria
Tel: +43 (0) 3136 500 0
e-Mail: ams_sales@ams.com
Please visit our website at www.ams.com
AS3693
B
austria
micro
systems
www.austriamicrosystems.com Revision 1.21 / 2011-09-30 1 - 32
1 General Description
The AS3693B is a 16 channels high precision LED
controller with build in PWM generators for driving
external FETs in LCD-backlight panels.
External clock and synchronizing inputs allow the
synchronization of the LCD backlight with the TV
picture. Local dimming and scan dimming is
supported by 16 independent PWM generators with
programmable delay, period and duty cycle. Three
free configurable dynamic power feedback circuits
make the device usable for white LED as well as
RGB backlights. Build in safety features include
thermal shutdown as well as open and short LED
detection. All circuit parameters are programmable
via I2C or SPI interface.
2 Key Features
16 Channel LED driver
Output current only limited by external
transistor
Output voltage 0.4V to 50V
Absolute current accuracy +/- 0.5%
Output slew rate programmable
Current programmable with external resistor
Linear current control with 8 - bit DAC
Linear current control with external analog
voltage
Digital current control with 16 independent
PWM generators
Free programmable 12 bit resolution ( period,
high time and delay )
Overvoltage detection ( short LED )
Undervoltage detection ( open LED )
Temperature shutdown
Fault interrupt output
H-Sync, V-Sync inputs to synchronize with TV-
set
Internal or external PWM – clock
I2C interface
SPI interface
5 bit device - address (sets device address
and interface mode)
Automatic supply regulation feedback
Each output can be assigned to red, green or
blue feedback.
Package epTQFP64 and QFN64
3 Applications
LED backlighting for LCD – TV sets and
monitors
Product Specification, Confidential
AS3693B–16 Channel high precision LED driver for
LCD Backlight
ams AG
Technical content still valid
AS3693
B
austria
mi cro
systems
www.austriamicrosystems.com Revision 1.21 / 2011-09-30 2 - 32
4 Block Diagram
SPI / I2C
Interface
Vreg
Vsupply
Hsync
Vsync
SCL
SDA
SDO
CS
V2_5
REF
FBR
FBB
FBG
AS3693B
V2_5
Addr2
Addr1
Fault
86 byte
registers
Reference,
DAC
Fault detectors
SMPS
feedback
PWM
PWM
PWM
PWM
PWM
PWM
PWM
PWM
PWM
PWM
PWM
PWM
PWM
PWM
PWM
PWM
Typical application
GND
FBB
Vreg
SDI
V2_5 AGND
Power Supply
AS3693B
16 output
SCLK
xCS
SDO
Fault
Rvreg
Hsync
Vsync
Vdcdc
Cfb
Rfb
V2_5
2.2uF
2.2uF
channels
10uF
ADDR1ADDR2
( Exposed Pad )
100k100k
10k
10k
10k
10k
10k
Ref(EXT)
2.2uF
FBG
FBR
Cfb
10uF
Cfb
10uF
Micro
controller
Curr1 Rfb1
Gate1
Curr2 Rfb2
Gate2
Curr15 Rfb15
Gate15
Curr16 Rfb16
Gate16
ams AG
Technical content still valid
AS3693
B
austria
mi cro
systems
www.austriamicrosystems.com Revision 1.21 / 2011-09-30 3 - 32
Table of Contents
1 General Description ....................................................................................................................................... 1
2 Key Features .................................................................................................................................................. 1
3 Applications .................................................................................................................................................... 1
4 Block Diagram ................................................................................................................................................ 2
5 Characteristics ............................................................................................................................................... 4
5.1 Absolute Maximum Ratings .................................................................................................................... 4
5.2 Operating Conditions .............................................................................................................................. 5
5.3 Electrical Characteristics ......................................................................................................................... 6
6 Typical Operation Characteristics .................................................................................................................. 8
6.1 Output current vs Output Voltage ........................................................................................................... 8
6.2 Vsupply vs VREG and V2.5 at startup .................................................................................................... 8
6.3 9us Slew Rate ......................................................................................................................................... 9
6.4 Supply Regulation ................................................................................................................................... 9
7 Block Description ......................................................................................................................................... 10
7.1 Feedback Circuit ................................................................................................................................... 10
7.1.1 Feedback Selection ....................................................................................................................... 11
7.1.2 Voltage fault registers .................................................................................................................... 12
7.2 Curreg 1-16 ........................................................................................................................................... 12
7.3 PWM – modes ...................................................................................................................................... 14
7.3.1 SYNC mode (PWM_MODE = 00) .................................................................................................. 14
7.3.2 ASYNC – mode (PWM_MODE = 01) ............................................................................................ 16
7.4 PWM – high time, period and delay registers ....................................................................................... 17
7.5 Shunt Regulator .................................................................................................................................... 18
7.5.1 Undervoltage lockout ..................................................................................................................... 18
7.6 Over temperature control ...................................................................................................................... 18
7.7 Device address setup ........................................................................................................................... 19
7.7.1 I2C Device Address setup ............................................................................................................. 19
7.7.2 SPI Device Address setup ............................................................................................................. 19
7.8 Digital interface ..................................................................................................................................... 20
7.8.1 I2C interface .................................................................................................................................. 20
7.8.2 SPI interface .................................................................................................................................. 22
8 Register map ................................................................................................................................................ 24
9 Pinout and Packaging .................................................................................................................................. 27
9.1 Pinout.................................................................................................................................................... 27
9.2 Package drawing epTQFP64 ............................................................................................................... 29
9.3 Package drawing QFN64 ...................................................................................................................... 30
10 Ordering Information .................................................................................................................................... 31
Copyright ............................................................................................................................................................. 32
Disclaimer ........................................................................................................................................................... 32
Contact Information ............................................................................................................................................. 32
ams AG
Technical content still valid
AS3693
B
austria
mi cro
systems
www.austriamicrosystems.com Revision 1.21 / 2011-09-30 4 - 32
5 Characteristics
5.1 Absolute Maximum Ratings
Stresses beyond those listed in Table 1 may cause permanent damage to the device. These are stress ratings
only and functional operation of the device at these or any other conditions beyond those indicated in Section 5
Electrical Characteristics is not implied.
Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Table 1 – Absolute Maximum Ratings
Symbol
Parameter Min Max Unit Note
VDDMAX
Supply for LED’s -0.3 >50 V See notes1
VINVREG
VREG supply voltage -0.3 7.0 V Applicable for pin VREG
IINVREG Maximum Vreg current 100 mA Maximum Current flowing into
Vreg
VIN2.5V 2.5 V Pins -0.3 V2_5+0.3V
V Applicable for 2.5V pins4
VIN5V 5V Pins -0.3 VREG+
0.3V V Applicable for 5V pins2
VIN50V 50V Pins -0.3 55 V Applicable for CURR1, CURR2,
CURR3 up to CURR16
IIN Input Pin Current -25 +25 mA At 25ºC, Norm: Jedec 17
TSTRG Storage Temperature Range -55 150 °C
Humidity 5 85 % Non condensing
VESD Electrostatic Discharge on Pins
Curr1 – Curr16 -4000 4000 V Norm: MIL 883 E Method 3015
VESD Electrostatic Discharge on all Pins
-2000 2000 V Norm: MIL 883 E Method 3015
PT Total Power Dissipation 3.8W W
At Ta = 25ºC, no airflow for
ePTQFP64 on two layer FR4-Cu
PCB3
PDERATE
PT Derating Factor 40 mW/
°C See notes3
TBODY Body Temperature during
Soldering 260 °C according to IPC/JEDEC J-STD-
020C
Notes:
1, As the AS3693B is not directly connected to this supply. Only the parameters VINVREG, VIN5V and
VIN50V have to be guaranteed by the application
2, All pins except CURR1 to CURR16 and 2.5V
3, Copper area > 9 cm², thermal vias
4, 2.5V Pins are Fault, SDO, ADDR1 and ADDR2
ams AG
Technical content still valid
AS3693
B
austria
mi cro
systems
www.austriamicrosystems.com Revision 1.21 / 2011-09-30 5 - 32
5.2 Operating Conditions
Test circuit
Vcurr
V2_5
2.2uF
10k
10k
2.2uF
Vreg
GND
FBB
Vreg
SDI
V2_5 AGND
AS3693B
SCLK
xCS
SDO
Fault
Hsync
Vsync
ADDR1ADDR2
( Exposed Pad )
Ref(EXT)
FBG
FBR
Curr1 Rfb1
Gate1
Curr2 Rfb2
Gate2
Curr15 Rfb15
Gate15
Curr16 Rfb16
Gate16
Table 2 – Operating Conditions
Symbol
Parameter Min Typ Max Unit Note
VDD Main Supply Not
Limited
V
Supply is not directly connected to
the AS3693B – see section ‘Shunt
Regulator’
VDDTOL
Main Supply Voltage Tolerance
-20 +20 % Applies only for supply VREG is
connected via Rvdd
VREGINT
Supply (shunt regulated by
AS3693B) 5.0 5.2 5.4 V If internally (shunt-)regulated by
ZD1
VREGEXT
3 4.5 4.9 V If externally supplied
VUVL Untervoltage lockout voltage 2.4 2.7 3 V
If Vreg < UVUL current sources
are turned off
( Addr 0x01,Addr 0x02 = 0x00 )
IVREG Supply Current (Chip current
consumption) 20 mA
Excluding current through shunt
regulator (ZD1) – see section
‘Shunt Regulator’
. Note: Take care
of the Power dissipation of the
external Resistor.
IVREG_M
AX Maximum Supply current 30 mA
Maximum Current Into VREG –
PIN (Supply current + shunt
regulator current).
IVREG
EXT_OFF 350 uA
Condition: externally supplied
Curr_reg1-16 off (register 01h =
00h, register 02h = 00h)
Igate Gate driving capability 0.5 1 2 mA Gate1 – Gate16 output current
ams AG
Technical content still valid
AS3693
B
austria
mi cro
systems
www.austriamicrosystems.com Revision 1.21 / 2011-09-30 6 - 32
5.3 Electrical Characteristics
Table 3 – Analog Electrical Characteristics
Symbol
Parameter Min Typ Max Unit Note
VCURR Voltage at CURR1 to CURR16
50.0 V
ICURR,
TOL Current Source Tolerance
-0.5 +0.5 %
Using 250mV reference
@25C TJUNCTION, excluding
variation of external resistors
-1.5 +1.5 %
Using 250mV reference
-20°C to +100°C(1) TJUNCTION,
-20°C to +85°C TAMB, excluding
variation of external resistors;
V(CURRx) <= 4.0V
-1.6 +1.6 %
Using DAC reference
VDAC =250mV ( Data = 0x80 )
@25C TJUNCTION, excluding
variation of external resistors
DAC_INL
DAC INL -4 +4 LSB DAC integral nonlinearity
VC
Automatic Supply Regulation trip
point 0.5 1 V See section ‘Feedback Circuit
(DCDC_Regulation_Trip_Point)’.
VC,GAIN
Automatic Supply Regulation
gain 2.0 mA/V
Voltage to current ratio; output
current range typ. 0 to 200uA
TOVTEMP
Over temperature Limit 130 140 150 °C Maximum junction temperature(2)
Thyst Over temperature hysteresis 10 °C
CLK Internal Clock for PWM 400 500 600 KHz Clock for internal PWM generation
Notes:
1, Accuracy at +100°C guaranteed by design and verified by laboratory characterization
2, If the temperature exceeds the over temperature limit, the PWM will be turned off. If the temperature
decreases, the PWM is activated again. The register settings are not reset.
Table 4 – Digital Input pins characteristics (SDI,VSYNC,HSYNC,SCL,CS)
Symbol
Parameter Min Typ Max Unit Note
VIH High Level Input voltage 1.3 VREG
V
VIL Low Level Input voltage -0.3 0.4 V
f_SCL Maximum SCL Frequency 10 MHz
f_HSYNC
Maximum HSYNC Frequency 10 MHz
Output driver is slew rate limited
( Register: Curreg_Control 0x0D )
ts_VH Vsync setup time before rising
edge of Hsync 15 ns
SYNC-mode:
PWM values are updated with first
rising edge of Hsync while Vsync = 1
( see 7.3.1.1 )
th_VH
Vsync hold time after rising edge
of Hsync 15 ns
ts_SCISCL
Setup time SDI,SCL 15 ns SPI interface mode
th_SCLSCI
Hold time SCL,SDI 15 ns SPI interface mode
ts_CSSCL
Setup time CS,SCL 15 ns SPI interface mode
ams AG
Technical content still valid
AS3693
B
austria
mi cro
systems
www.austriamicrosystems.com Revision 1.21 / 2011-09-30 7 - 32
Symbol
Parameter Min Typ Max Unit Note
th_SCLCS
Hold time SCL, CS 15 ns SPI interface mode
tBUF Bus free time between
Stop and Start conditions 1.3 us I2C interface mode
Tsetupstart
Setup time for repeated
Start condition 100 ns I2C interface mode
Tholdstart
Hold time for repeated
Start condition 160 ns I2C interface mode
Tsetupstop
Setup time for
Stop condition 160 ns I2C interface mode
Table 5 – Digital output pins characteristics (SDO)
Symbol
Parameter Min Typ Max Unit Note
VOH High Level Output voltage 2.4 2.5 V
VOL Low Level Output voltage -0.3 0.4 V
ams AG
Technical content still valid
AS3693
B
austria
mi cro
systems
www.austriamicrosystems.com Revision 1.21 / 2011-09-30 8 - 32
6 Typical Operation Characteristics
6.1 Output current vs Output Voltage
0
0,02
0,04
0,06
0,08
0,1
0,12
0,14
0,16
0 5 10 15 20 25
150mA
75mA
25mA
6.2 Vsupply vs VREG and V2.5 at startup
Channel 1 = VREG
Channel 2 = V2_5
Channel3 = Vsupply
ams AG
Technical content still valid
AS3693
B
austria
mi cro
systems
www.austriamicrosystems.com Revision 1.21 / 2011-09-30 9 - 32
6.3 9us Slew Rate
trr
Channel 1 = Voltage on Current Source
Channel 2 + Voltage on RES Pin
6.4 Supply Regulation
Channel 1 = DCDC VOUT (30V)
Channel 2 = Voltage on RES Pin
Channel 3 = Voltage on Curr Pin
ams AG
Technical content still valid
AS3693
B
austria
mi cro
systems
www.austriamicrosystems.com Revision 1.21 / 2011-09-30 10 - 32
7 Block Description
7.1 Feedback Circuit
The AS3693B supports a flexible feedback selection for external DCDC – supplies. Beside the default setup for
RGGB lighting, each channel can be assigned to an external DCDC feedback loop. This feedback circuit is
important to reduce power dissipation of the device.
Table 6 – Feedback Control
Addr: 04h Feedback control
Enables and Disables the Different Feedback modes
Bit Bit Name Default Access Description
0 Feedback on 1 R/W 1 = Feedback Circuit is active
0 = The entire Feedback Loop is disabled
1 Feedback on PWM 0 R/W 0 = The Feedback Regulator is always active
1 = The Feedback Regulator is only active, if PWM = 1
2 Open_Led_Det_on 0 R/W
Enables open Led Detection Comparators
0 = Open Led Detection Disabled
1 = Open Led Detection Enabled, Level: Ucurrx = 50mV
3 Short_det_on 0 R/W
Enables Short detection
0 = Short detection off
1 = Sort detection on.
5:4 Short Led Detect
Voltage(VSL) R/W
Short led Detection Trip Voltage ( debounced 3mS )
00 = 2V
01 = 3V
7:6 DCDC_Regulation_tri
p Point (VC) 00 R/W
Trip Point voltage of the DCDC-Feedback Regulation
Circuit. (NOTE: This value has to be adjusted if Analog
Ref select Bit is changed.)
00 = 0.5V (Note use for Currents up to 70 mA)
01 = 0.6V (Note use for Currents up to 80 mA)
10 = 0.8V (Note use for Currents up to 110 mA)
11 = 1.0V (Note use for Currents up to 150 mA)
ams AG
Technical content still valid
AS3693
B
austria
mi cro
systems
www.austriamicrosystems.com Revision 1.21 / 2011-09-30 11 - 32
7.1.1 Feedback Selection
In the AS3693B, each led – string feedback can be assigned to the specific led-supply, to minimize the power
consumption in the system. It can be chosen in between FBR, FBG and FBB.
FB R
FB G
FB B
NOFB
VC
SHORTLED
REF
OPENLED
VSL
VOL
1
2
3...16
R5
AS3693B
ANALOG REGULATION
CIRCUIT
16 REGULATORS
Feedback resistor divider
(part of DCDC converter circuit)
Voltage Feedback
input for DCDC
From main
supply R1
R2
R3
C1
Vfb
Voltage Feedback
input for DCDC
DCDC Converter
for VDD
(Internal or externa)l
Table 7 – Feedback Selection
Addr: 05h,06h,07h,08h Feedback Select 1-4
This register controls the Feedback of the Automatic feedback loop
Bit Bit Name Default Access Description
1:0
FB1_Select
FB5_Select
FB9_Select
FB13_Select
00 R/W
Selects the feedback of the voltage regulators
00= regulator on FBR
01= regulator on FBG
10= regulator on FBB
11= regulator not connected to FB
3:2
FB2_Select
FB6_Select
FB10_Select
FB14_Select
01 R/W
Selects the feedback of the voltage regulators
00= regulator on FBR
01= regulator on FBG
10= regulator on FBB
11= regulator not connected to FB
5:4
FB3_Select
FB7_Select
FB11_Select
FB15_Select
01 R/W
Selects the feedback of the voltage regulators
00= regulator on FBR
01= regulator on FBG
10= regulator on FBB
11= regulator not connected to FB
7:6
FB4_Select
FB8_Select
FB12_Select
FB16_Select
10 R/W
Selects the feedback of the voltage regulators
00= regulator on FBR
01= regulator on FBG
10= regulator on FBB
11= regulator not connected to FB
ams AG
Technical content still valid
AS3693
B
austria
mi cro
systems
www.austriamicrosystems.com Revision 1.21 / 2011-09-30 12 - 32
7.1.2 Voltage fault registers
In this registers an open or short led fault can be detected. If an open or short led error occurs, pin fault is pulled
to 0 (3 ms debounced ).
Remark: At 100% PWM duty cycle, short led fault detection is not available. Please set PWM to 99% duty cycle.
Open led fault detection is available at 100% PWM duty cycle.
Table 8 – Fault Registers
Addr: 09h-0ch Voltage Fault 1,2,3,4
This register shows a fault on any led string
Bit Bit Name Default Access Description
1:0
Fault_Reg 1
Fault_Reg 5
Fault_Reg 9
Fault_Reg 13
00 R
Shows a error on any led string
00 = no fault
01 = open led
10 = short led
3:2
Fault_Reg 2
Fault_Reg 6
Fault_Reg 10
Fault_Reg 14
00 R
Shows a error on any led string
00 = no fault
01 = open led
10 = short led
5:4
Fault_Reg 3
Fault_Reg 7
Fault_Reg 11
Fault_Reg 15
00 R
Shows a error on any led string
00 = no fault
01 = open led
10 = short led
7:6
Fault_Reg 4
Fault_Reg 8
Fault_Reg 12
Fault_Reg 16
00 R
Shows a error on any Led string
00 = no Fault
01 = open Led
10 = short Led
7.2 Curreg 1-16
Each current source can be turned on and off separately.
Table 9 –Reg. Control 1
Addr: 01h Reg. Control1
This register enables or disables the curreg 1 - 8
Bit Bit Name Default Access Description
7:0 Curreg 1-8_ON
00000000
R/W
Enables or disables the current regulators
0 = regulator off
1 = regulator on
Table 10– Reg.Control 2
Addr: 02h Reg. Control2
This Register enables or disables the curreg 9-16
Bit Bit Name Default Access Description
7:0 Curreg 9 -16_ON
00000000
R/W
Enables or disables the current regulators
0 = regulator off
1 = regulator on
ams AG
Technical content still valid
AS3693
B
austria
mi cro
systems
www.austriamicrosystems.com Revision 1.21 / 2011-09-30 13 - 32
Table 11 –CURREG_CONTROL
Addr: 0dh Curreg Control
Controls Rise, Fall times and References of the Curreg.
Bit Bit Name Default Access Description
1:0 Analog Ref Select 00 R/W
Voltage reference for the current regulators can be
chosen with these options.
00 = 250mV reference
01 = external reference
10 = DAC reference
11 = do not use
3:2 SLEW_RATE_CONT
ROL 00 R/W
SLEW – RATE – Control. Adjusts the rise and fall time of
the current switching
00 = typ. 9us
01 = typ. 6us
10 = typ. 3us
11 = typ. 1us
5:4 PWM_LOW_LEVEL 00 R/W Note: Test bits for internal use only
7 boost mode 0 R/W Gives +30% current.
only available in internal reference mode.
0,5% VREF 250mV
8Bit DAC
0...500mV
External Reference
AS3693B
Reference Sources
Analog Ref Select
PWM
Curreg
1
2
3-16
Table 12 – Ref_DAC_Voltage
Addr: 0eh Ref_DAC_Voltage
The Regulation Voltage can be chosen in this register
Bit Bit Name Default Access Description
7…0 Ref_DAC_Voltage 00 R/W
Reference voltage for current regulators. (Note: If Analog
Ref Select = 10, the regulation voltage can be adjusted
here.
00000000 = 0mV
00000001
01111111 = 250 mV
..
11111111= 500mV
ams AG
Technical content still valid
AS3693
B
austria
mi cro
systems
www.austriamicrosystems.com Revision 1.21 / 2011-09-30 14 - 32
7.3 PWM – modes
Table 14– PWM CONTROL
Addr: 0fh PWM_MODE
Controls the different PWM modes and Internal or external PWM
Bit Bit Name Default Access Description
1:0 PWM_MODE 01 R/W
00 Sync mode
01 Async - mode
10 not used
11 not used
NOTE: Sync mode can only be used with
PWM INT = 0.
2 PWM INT/EXT 1 R/W 0 PWM generator uses external H and Vsync clock
1 PWM generator uses internal 500kHz clock.
3 VSYNC_INVERT 0 R/W 0 VSYNC active high (PWM triggers on rising edge)
1 VSYNC active low (PWM triggers on falling edge)
4 PWMINVERT 0 R/W 0 PWM normal (PWM starts with “1” after delay)
1 PWM inverted(PWM starts with “0” after delay)
Note: If Vsync or Hsync is not used, connect it to GND.
7.3.1 SYNC mode (PWM_MODE = 00)
In this mode the PWM is synchronized with VSYNC and HSYNC.
Delay
Reg: N
Counter
Reg: M
Compare
R
Reset
Vsync
Hsync
Compare
Reg: P
Or
PWM
PWMINVERT( Register 0x0F )
Setup options:
Delay (N) = registers 0h32 to 0h51
High Time (M) = registers 0h12 to 0h31
PWM Period (P) = register 0h10
ams AG
Technical content still valid
AS3693
B
austria
mi cro
systems
www.austriamicrosystems.com Revision 1.21 / 2011-09-30 15 - 32
V sync
Hsync
Delay =N * t hsync
P WM
P WM P eriode = t vsyunc
P WM duration = t vsync
P WM
Res et
P WM s ignal: High time = M * t hsync
P * t
hsync
> t
vsync
reset with Vsync
P WM
P WM P eriode = P * t hsync
P WM s ignal: High time = M * t hsync
P * t
hsync
< t
vsync
Repetitive PWM
reset with
P * t hsync
Restart
Example: Two PWM output channels with fixed delays and variable high times (HT)
PWMINVERT = 0
PWMINVERT = 1
7.3.1.1 SYNC – mode PWM – generator update cycle.
VSYNC
Delayed
VSYNC
(internal)
PWM
-Store new values from serial interface
-Update delay immediately
Update HighTime, Period
-Store new values from serial interface
-Update delay immediately -no new data -new data
ams AG
Technical content still valid
AS3693
B
austria
mi cro
systems
www.austriamicrosystems.com Revision 1.21 / 2011-09-30 16 - 32
HSYNC
Shift new data
in PWM – State
maschine
Restart PWM
VSYNC
7.3.2 ASYNC – mode (PWM_MODE = 01)
This PWM is synchronized with Hsync or internal 500KHz clock. The registers are updated with each serial data.
Counter
Reg: M
Compare
R
Reset
Vsync
Hsync
Compare
Reg: P
PWM
PWMINVERT( Register 0x0F )
High time (M) = registers 0h12 to 0h 31
PWM period (P) = register 0h10
Hsync
P WM
P WM P er iode = P * t hsync
P WM s ignal: High time = M * t hsync
AsyncMode
Repetitive PWM
no Reset
Syncronized on Hsync or
internal
Clock
ams AG
Technical content still valid
AS3693
B
austria
mi cro
systems
www.austriamicrosystems.com Revision 1.21 / 2011-09-30 17 - 32
7.4 PWM – high time, period and delay registers
Table 15 – Curreg1-16_DELAY_LSB
Addr: 32h – 50h CURREGX_DELAY_LSB
Defines delay of the different PWM’s
Bit Bit Name Default Access Description
7:0 CurregX_DELAY_LSB
00000000
R/W Defines the delay time of the PWM
Table 16 – Curreg1-16_DELAY_MSB
Addr: 32h-51h CURREGX_DELAY_LSB
Defines delay of the different PWM’s
Bit Bit Name Default Access Description
3:0 CurregX_DELAY_MSB 0000 R/W Defines the delay time of the PWM
Table 17– PWM_PERIOD_LSB
Addr: 10h PWM – Period – LSB
Defines PWM Periode
Bit Bit Name Default Access Description
7:0 PWM_PERIOD_LSB
11111111
R/W Defines the period of the PWM
Table 18– PWM_PERIOD_MSB
Addr: 11h PWM – Period – MSB
Defines PWM Periode
Bit Bit Name Default Access Description
3:0 PWM_PERIOD_MSB 0000 R/W Defines the period of the PWM
Table 19– Curreg1-16_HT_LSB
Addr: 12h-30h CURREGX_HT_LSB
Defines High Time of PWM
Bit Bit Name Default Access Description
7:0 Curreg1_HT_LSB 0 R/W Defines PWM high time
ams AG
Technical content still valid
AS3693
B
austria
mi cro
systems
www.austriamicrosystems.com Revision 1.21 / 2011-09-30 18 - 32
Table 20– Curreg1-16_HT_MSB
Addr: 13h-31h CURREGX_HT_MSB
Defines High Time of PWM
Bit Bit Name Default Access Description
3:0 Curreg1_HT_MSB 0000 R/W Defines PWM high time
7.5 Shunt Regulator
The supply of the AS3693B is generated from the high voltage supply. To obtain a 5V regulated supply, a series
resistor Rvdd is used together with an internal zener diode (ZD1). An external capacitor Cvdd is used to filter the
supply on the pin VREG.
The external resistor Rvdd has to be choosen according to the following formula:
This ensures enough supply current (IVREGMAX) for the AS3693B under minimum supply voltage VDDMIN.
If a stable 5V supply within the operating conditions limits of VREGEXT
is already existing in the system it is
possible to supply the AS3693B directly. In this case remove the resistor Rvdd and connected this supply
directly to VREG.
7.5.1 Undervoltage lockout
The undervoltage lockout is an additional safety feature to prevent LED-current under abnormal Vreg conditions.
If the supply voltage Vreg is below 2.7V (e.g. device is supplied only by the voltage of the serial interface ) the
registers Reg.Control1 and RegControl2 (0x01 and 0x02) are reset. This turns off all current sinks.
Vreg
2.7V
Register 0x01
Reset
Register 0x02
Reset
3V to 5.4V
7.6 Over temperature control
Table 14– Overtemp Control
Addr:55h Over temperature Control
Controls the temperature functions
Bit Bit Name Default Access Description
0 overtemp_on 1 R/W
Enables the over temperature protection
0 = Protection off
1 = Protection on
1 ov_temp 0 R/W
Displays temperature status
0 = Normal operation
1 = Over temperature shutdown
mA
VVDD
Rvdd
MIN
20
4,5
=VDD
MIN
is the minimum voltage of the
supply, where Rvdd is connected
ams AG
Technical content still valid
AS3693
B
austria
mi cro
systems
www.austriamicrosystems.com Revision 1.21 / 2011-09-30 19 - 32
7.7 Device address setup
The I2C and SPI – Device address can be set via PIN ADDR1 and ADDR2. The AS3693B offers 31 I2C or 32
SPI addresses, which can be set via external resistor. ADDR2 bit 2 decides if I2C or SPI interface is used.
Digital Registers
PWM - Generator
ADDR1
AS3693
Flexible 6- Bit Address Programming
with 2 external resistors.
Digital
6 Bit I2C ADDRESS
ADDR2ADDR1
ADC
R1 R2
Table 13– Device Address
Device Adress Setup: I2C ADDRESS
I2C ADDRESS Options
Bit Bit Name Default Access Description
2:0 Device ADDR1 000 R
Lower 3 bits of device address
000 open Note: don’t use address 00h
001 320k
010 160k
011 80k
100 40k
101 20k
110 10k
111 0
5:3 Device ADDR2 000 R
Upper 3 bits of device address
000 open Note: activates I2C - mode
001 320k Note: activates I2C - mode
010 160k Note: activates I2C - mode
011 80k Note: activates I2C - mode
100 40k Note: activates SPI - mode
101 20k Note: activates SPI - mode
110 10k Note: activates SPI - mode
111 0 Note: activates SPI – mode
7.7.1 I2C Device Address setup
BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
0 0 (ADDR2<2>) ADDR2<1> ADDR2<0> ADDR1<2> ADDR1<1> ADDR1<0> R/W
7.7.2 SPI Device Address setup
BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
0 0 1 (ADDR2<2>) ADDR2<1> ADDR2<0> ADDR1<2> ADDR1<1> ADDR1<0>
ams AG
Technical content still valid
AS3693
B
austria
mi cro
systems
www.austriamicrosystems.com Revision 1.21 / 2011-09-30 20 - 32
7.8 Digital interface
The AS3693B can be controlled with two types of interfaces.
7.8.1 I2C interface
7.8.1.1 Feature List
Fast-mode capability (max. SCL-frequency is 400 kHz)
Write formats: Single-Byte-Write, Page-Write
Read formats: Current-Address-Read, Random-Read, Sequential-Read
SDA input delay and SCL spike filtering by integrated RC-components
7.8.1.2 Transfer Formats
Figure 1 – I2C Byte-Write:
S DW A WA A reg_data A P
write register,
WA++
S START condition after STOP
Sr repeated START
DW device address for write
DR device address for read
WA word address
A acknowledge
N
no acknowledge
P stop condition
white field slave as receiver
grey field slave as transmitter
WA++
increment word address internally
Figure 2 – I2C Page-Write:
S DW A WA A reg_data 1 AA reg_data 2
write register
WA++
PAreg_data n
write register
WA++
write register
WA++
Byte-Write and Page-Write are used to write data to the slave.
The transmission begins with the START condition, which is generated by the master when the bus is in IDLE
state (the bus is free). The device-write address is followed by the word address. After the word address any
number of data bytes can be send to the slave. The word address is incremented internally, in order to write
subsequent data bytes on subsequent address locations.
For reading data from the slave device, the master has to change the transfer direction. This can be done either
with a repeated START condition followed by the device-read address, or simply with a new transmission START
followed by the device-read address, when the bus is in IDLE state. The device-read address is always followed
by the 1
st
register byte transmitted from the slave. In Read-Mode any number of subsequent register bytes can
be read from the slave. The word address is incremented internally.
The diagrams below show various read formats available:
Figure 3 – I2C Random-Read:
AS DW A WA A data NP
read register
WA++
Sr DR
WA++
Random-Read and Sequential-Read are combined formats. The repeated START condition is used to change
the direction after the data transfer from the master.
The word address transfer is initiated with a START condition issued by the master while the bus is idle. The
START condition is followed by the device-write address and the word address.
ams AG
Technical content still valid
AS3693
B
austria
mi cro
systems
www.austriamicrosystems.com Revision 1.21 / 2011-09-30 21 - 32
In order to change the data direction a repeated START condition is issued on the 1
st
SCL pulse after the
acknowledge bit of the word address transfer. After the reception of the device-read address, the slave becomes
the transmitter. In this state the slave transmits register data located by the previous received word address
vector. The master responds to the data byte with a not-acknowledge, and issues a STOP condition on the bus.
Figure 4 – I2C Sequential-Read:
AS DW A WA A data 1
NP
Sr DR
WA++
data 2
data n
A
A
read register
WA++
Sequential-Read is the extended form of Random-Read, as more than one register-data bytes are transferred
subsequently. In difference to the Random-Read, for a sequential read the transferred register-data bytes are
responded by an acknowledge from the master. The number of data bytes transferred in one sequence is
unlimited (consider the behavior of the word-address counter). To terminate the transmission the master has to
send a not-acknowledge following the last data byte and generate the STOP condition subsequently.
Figure 5 – I2C Current-Address-Read:
Adata 1
read register
WA++
S DR data 2A
read register
WA++
NP
WA++
data n
A
read register
WA++
To keep the access time as small as possible, this format allows a read access without the word address transfer
in advance to the data transfer. The bus is idle and the master issues a START condition followed by the Device-
Read address. Analogous to Random-Read, a single byte transfer is terminated with a not-acknowledge after the
1
st
register byte. Analogous to Sequential-Read an unlimited number of data bytes can be transferred, where the
data bytes has to be responded with an acknowledge from the master. For termination of the transmission the
master sends a not-acknowledge following the last data byte and a subsequent STOP condition.
ams AG
Technical content still valid
AS3693
B
austria
mi cro
systems
www.austriamicrosystems.com Revision 1.21 / 2011-09-30 22 - 32
7.8.2 SPI interface
SDI
SPI Interface Pins
Digital
SCL Control -Registers
PWM - Generator
OUTPUT
VSYNC
HSYNC
CS SDO
FAULT
ADDR2ADDR1
SPI Mode – Digital Interface Pins:
CS(N) Chip Select input
SDO Serial Data output
SDI Serial Data input
SCL Serial Clock input
VSYNC Video Sync signal input
HSYNC Video Sync signal input
ADDR1
ADDR2
Device Address pins (can be
set via resistor).
7.8.2.1 Read Sequence
SCK
SDI
(SDA)
SDO
6
0 1 2 83 4 5 6 7 9 10 11
5 4 3 1 0 1
13 2314 15 16 17 18 19 20 21 22
7 6 5 4 3 2 1 0
CS1
High Impedance
8 Bit Device Address 7 Bit Register Address
Data Out
R/W
76543210 2
12
7.8.2.2 Page Read Sequence
ams AG
Technical content still valid
AS3693
B
austria
mi cro
systems
www.austriamicrosystems.com Revision 1.21 / 2011-09-30 23 - 32
7.8.2.3 Write Sequence
SDI
(SDA)
SDO
7 6 5 210076543210
CS1
High Impedance
8 Bit Device Address
7 Bit Address
Data Byte
T
WC
R/W
543
43210
0 1 2 83 4 5 6 7 9 10 11 13 2314 15 16 17 18 19 20 21 22
SCL
6
12
7.8.2.4 Page Write Sequence
0 1 2 83 4 5 6 7 9 10 11 13 2314 15 16 17 18 19 20 21 22
6543 10076543210
8 Bit Device Address 7 Bit Register Address Data Byte 1
SCK
CS1
37363424 333231302928272625 35 38 39
76543210
Data Byte 2
76543210
Data Byte 3
SD
(SDA) 76543210
Data Byte n (32 max)
SCK
SDI
(SDA)
CS1
7 6 5 4 3 2 1 0
R/W
2
12
ams AG
Technical content still valid
AS3693
B
austria
mi cro
systems
www.austriamicrosystems.com Revision 1.21 / 2011-09-30 24 - 32
8 Register map
Name Addr Def
ault B7 b6 b5 B4 b3 b2 b1 b0
Reg. Control1 01h 00h Curreg
8_ON
Curreg7
_ON
Curreg6
_ON
Curreg5
_ON
Curreg4
_ON
Curreg
3_ON
Curreg
2_ON
Curreg1
_ON
Reg Control 2 02h 00h Curreg
16_ON
Curreg1
5_ON
Curreg1
4_ON
Curreg1
3_ON
Curreg1
2_ON
Curreg
11_ON
Curreg
10_ON
Curreg9
_ON
Feedback Control 04h 01h DCDC_REGULATI
ON_TRIP_POINT
Short_Led Detect
Voltage
SHORT
_DET_
ON
OPEN_
LED
_DET
_ON
Feedba
ck_on_
PWM
FEEDB
ACK_O
N
Fedback Select 1 05h 94h FB4_ Select FB3_ Select FB2_ Select FB1_Select
Fedback Select 2 06h 94h FB8_ Select FB7_ Select FB6_ Select FB5_ Select
Fedback Select 3 07h 94h FB12_ Select FB11_ Select FB10_ Select FB9_ Select
Fedback Select 4 08h 94h FB16_ Select FB15_ Select FB14_ Select FB13_ Select
Voltage_Fault 1 09h 00h Fault_Reg4 Fault_Reg3 Fault_Reg2 Fault_Reg1
Voltage_Fault 2 0Ah 00h Fault_Reg8 Fault_Reg7 Fault_Reg6 Fault_Reg5
Voltage_Fault 3 0Bh 00h Fault_Reg12 Fault_Reg11 Fault_Reg10 Fault_Reg9
Voltage_Fault 4 0Ch 00h Fault_Reg16 Fault_Reg15 Fault_Reg14 Fault_Reg13
CURREG_CONTR
OL 0Dh 00h boost
mode
switch_
output_
driver
PWM_LOW_LEVE
L RC_SEL Select Ref
Ref_DAC_Voltage 0Eh 00h Vref_DAC
PWMCONTROL 0Fh 04h
PWM
INVER
T
VSYNC
_INVER
T
PWM-
INT/EX
T
PWM - MODE
PWM-
PERIOD_LSB 10h FFh PWMPERIOD - LSB
PWM-PERIOD-
MSB 11h 00h PWM period - MSB
Curreg1_HT_LSB 12h 00h Curreg1_HT_LSB
Curreg1_HT_MSB 13h 00h Curreg1_HT_MSB
Curreg2_HT_LSB 14h 00h Curreg2_HT_LSB
Curreg2_HT_MSB 15h 00h Curreg2_HT_MSB
Curreg3_HT_LSB 16h 00h Curreg3_HT_LSB
Curreg3_HT_MSB 17h 00h Curreg3_HT_ MSB
Curreg4_HT_LSB 18h 00h Curreg4_HT_LSB
Curreg4_HT_MSB 19h 00h Curreg4_HT_ MSB
Curreg5_HT_LSB 1Ah 00h Curreg5_HT_LSB
Curreg5_HT_MSB 1Bh 00h Curreg5_HT_ MSB
Curreg6_HT_LSB 1Ch 00h Curreg6_HT_LSB
Curreg6_HT_MSB 1Dh 00h Curreg6_HT_ MSB
Curreg7_HT_LSB 1Eh 00h Curreg7_HT_LSB
Curreg7_HT_MSB 1Fh 00h Curreg7_HT_ MSB
Curreg8_HT_LSB 20h 00h Curreg8_HT_LSB
ams AG
Technical content still valid
AS3693
B
austria
mi cro
systems
www.austriamicrosystems.com Revision 1.21 / 2011-09-30 25 - 32
Name Addr Def
ault B7 b6 b5 B4 b3 b2 b1 b0
Curreg8_HT_MSB 21h 00h Curreg8_HT_ MSB
Curreg9_HT_LSB 22h 00h Curreg9_HT_LSB
Curreg9_HT_MSB 23h 00h Curreg9_HT_ MSB
Curreg10_HT_LSB 24h 00h Curreg10_HT_LSB
Curreg10_HT_MSB 25h 00h Curreg10_HT_ MSB
Curreg11_HT_LSB 26h 00h Curreg11_HT_LSB
Curreg11_HT_MSB 27h 00h Curreg11_HT_ MSB
Curreg12_HT_LSB 28h 00h Curreg12_HT_LSB
Curreg12_HT_MSB 29h 00h Curreg12_HT_MSB
Curreg13_HT_LSB 2Ah 00h Curreg13_HT_LSB
Curreg13_HT_MSB 2Bh 00h Curreg13_HT_MSB
Curreg14_HT_LSB 2Ch 00h Curreg14_HT_LSB
Curreg14_HT_MSB 2Dh 00h Curreg14_HT_MSB
Curreg15_HT_LSB 2Eh 00h Curreg15_HT_LSB
Curreg15_HT_MSB 2Fh 00h Curreg15_HT_MSB
Curreg16_HT_LSB 30h 00h Curreg16_HT_LSB
Curreg16_HT_MSB 31h 00h Curreg16_HT_MSB
Curreg1_DELAY_L
SB 32h 00h Curreg1_DELAY_LSB
Curreg1_ DELAY
_MSB 33h 00h Curreg1_DELAY_MSB
Curreg2_ DELAY
_LSB 34h 00h Curreg2_DELAY_LSB
Curreg2_ DELAY
_MSB 35h 00h Curreg2_DELAY_MSB
Curreg3_ DELAY
_LSB 36h 00h Curreg3_DELAY_LSB
Curreg3_ DELAY
_MSB 37h 00h Curreg3_DELAY_ MSB
Curreg4_ DELAY
_LSB 38h 00h Curreg4_DELAY_LSB
Curreg4_ DELAY
_MSB 39h 00h Curreg4_DELAY_ MSB
Curreg5_DELAY_L
SB 3Ah 00h Curreg5_DELAY_LSB
Curreg5_DELAY_M
SB 3Bh 00h Curreg5_DELAY_ MSB
Curreg6_DELAY_L
SB 3Ch 00h Curreg6_DELAY_LSB
Curreg6_DELAY_M
SB 3Dh 00h Curreg6_DELAY_ MSB
Curreg7_DELAY_L
SB 3Eh 00h Curreg7_DELAY_LSB
Curreg7_DELAY_M
SB 3Fh 00h Curreg7_DELAY_ MSB
Curreg8_DELAY_L
SB 40h 00h Curreg8_DELAY_LSB
ams AG
Technical content still valid
AS3693
B
austria
mi cro
systems
www.austriamicrosystems.com Revision 1.21 / 2011-09-30 26 - 32
Name Addr Def
ault B7 b6 b5 B4 b3 b2 b1 b0
Curreg8_DELAY_M
SB 41h 00h Curreg8_DELAY_ MSB
Curreg9_DELAY_L
SB 42h 00h Curreg9_DELAY_LSB
Curreg9_DELAY_M
SB 43h 00h Curreg9_DELAY_ MSB
Curreg10_DELAY_
LSB 44h 00h Curreg10_DELAY_LSB
Curreg10_DELAY_
MSB 45h 00h Curreg10_DELAY_ MSB
Curreg11_DELAY_
LSB 46h 00h Curreg11_DELAY_LSB
Curreg11_DELAY_
MSB 47h 00h Curreg11_DELAY_ MSB
Curreg12_DELAY_
LSB 48h 00h Curreg12_DELAY_LSB
Curreg12_DELAY_
MSB 49h 00h Curreg12_DELAY_MSB
Curreg13_DELAY_
LSB 4Ah 00h Curreg13_DELAY_LSB
Curreg13_DELAY_
MSB 4Bh 00h Curreg13_DELAY_MSB
Curreg14_DELAY_
LSB 4Ch 00h Curreg14_DELAY_LSB
Curreg14_DELAY_
MSB 4Dh 00h Curreg14_DELAY_MSB
Curreg15_DELAY_
LSB 4Eh 00h Curreg15_DELAY_LSB
Curreg15_DELAY_
MSB 4Fh 00h Curreg15_DELAY_MSB
Curreg16_DELAY_
LSB 50h 00h Curreg16_DELAY_LSB
Curreg16_DELAY_
MSB 51h 00h Curreg16_DELAY_LSB
Overtemp control 55h 01h ov_temp ov_temp
_on
ASIC ID1 5Ch CAh 1 1 0 0 1 0 1 0
ASIC ID2 5Dh 5Xh 0 1 0 1 REVISION
Revision code:
0x8… initial version November 2008
ams AG
Technical content still valid
AS3693
B
austria
mi cro
systems
www.austriamicrosystems.com Revision 1.21 / 2011-09-30 27 - 32
9 Pinout and Packaging
9.1 Pinout
Table 5 – Pinlist
Pin Name Type Description
1 GATE16 AIO Connect to Gate of External Transistor
2 RFB1 AIO Connect to Source of External Transistor and to Resistor RSET
3 GATE1 AIO Connect to Gate of External Transistor
4 CURR_sense1 AIO Connect to Drain of external Transistor (input for Open and Short led detection)
5 FBG AIO Automatic supply regulation for GREEN led strings; if not
used, leave open
6 FBB AIO Automatic supply regulation for BLUE led strings; if not
used, leave open
7 REF(EXT) AI Reference pin for PWM = 1 voltage, if not used leave open
8 GND(SENSE) AIO GND supply connection (sense)
9 VREG AIO Shunt regulator supply; connect to Rvdd and
Cvdd
10 V2_5 AIO Digital supply, connect 1uF blocking capacitor
11 ADDR2 AIO Connect to external resistor for serial interface address selection,
12 ADDR1 AIO Connect to external resistor for serial interface address selection.
13 CURR_sense2 AIO Connect to Drain of external Transistor (input for Open and Short led detection)
14 GATE2 AIO Connect to Gate of External Transistor
15 RFB2 AIO Connect to Source of External Transistor and to Resistor RSET
16 GATE3 AIO Connect to Gate of External Transistor
17 RFB3 AIO Connect to Source of External Transistor and to Resistor RSET
18 CURR_sense3 AIO Connect to Drain of external Transistor (input for Open and Short led detection)
19 GATE4 AIO Connect to Gate of External Transistor
20 RFB4 AIO Connect to Source of External Transistor and to Resistor RSET
21 CURR_sense4 AIO Connect to Drain of external Transistor (input for Open and Short led detection)
22 GATE5 AIO Connect to Gate of External Transistor
23 RFB5 AIO Connect to Source of External Transistor and to Resistor RSET
24 CURR_sense5 AIO Connect to Drain of external Transistor (input for Open and Short led detection)
25 CURR_sense6 AIO Connect to Drain of external Transistor (input for Open and Short led detection)
26 RFB6 AIO Connect to Source of External Transistor and to Resistor RSET
27 GATE6 AIO Connect to Gate of External Transistor
28 CURR_sense7 AIO Connect to Drain of external Transistor (input for Open and Short led detection)
29 RFB7 AIO Connect to Source of External Transistor and to Resistor RSET
30 GATE7 AIO Connect to Gate of External Transistor
31 CURR_sense8 AIO Connect to Drain of external Transistor (input for Open and Short led detection)
32 RFB8 AIO Connect to Source of External Transistor and to Resistor RSET
33 GATE8 AIO Connect to Gate of External Transistor
34 RFB9 AIO Connect to Source of External Transistor and to Resistor RSET
35 GATE9 AIO Connect to Gate of External Transistor
ams AG
Technical content still valid
AS3693
B
austria
mi cro
systems
www.austriamicrosystems.com Revision 1.21 / 2011-09-30 28 - 32
Table 5 – Pinlist
Pin Name Type Description
36 CURR_sense9 AIO Connect to Drain of external Transistor (input for Open and Short led detection)
37 FBR AIO Automatic supply regulation for RED led strings; if not
used, leave open
38 VSYNC DI Video sync signal , NOTE: Connect to GND in ASYNC MODE
39 HSYNC DI Video sync signal or external clock input in ASYNC mode
40 CS DI SPI : CS – function, I2C: connect to GND
41 SCL DI SPI/ I2C: Serial interface clock input.
42 SDA DI SPI/ I2C: Serial interface data I/O.
43 SDO DO SPI: digital data output, I2C: leave open
44 FAULT DO FAULT PIN, open drain output. Connect pull up resistor to V2_5
45 CURR_sense10
AIO Connect to Drain of external Transistor (input for Open and Short led detection)
46 GATE10 AIO Connect to Gate of External Transistor
47 RFB10 AIO Connect to Source of External Transistor and to Resistor RSET
48 GATE11 AIO Connect to Gate of External Transistor
49 RFB11 AIO Connect to Source of External Transistor and to Resistor RSET
50 CURR_sense11
AIO Connect to Drain of external Transistor (input for Open and Short led detection)
51 GATE12 AIO Connect to Gate of External Transistor
52 RFB12 AIO Connect to Source of External Transistor and to Resistor RSET
53 CURR_sense12
AIO Connect to Drain of external Transistor (input for Open and Short led detection)
54 GATE13 AIO Connect to Gate of External Transistor
55 RFB13 AIO Connect to Source of External Transistor and to Resistor RSET
56 CURR_sense13
AIO Connect to Drain of external Transistor (input for Open and Short led detection)
57 CURR_sense14
AIO Connect to Drain of external Transistor (input for Open and Short led detection)
58 RFB14 AIO Connect to Source of External Transistor and to Resistor RSET
59 GATE14 AIO Connect to Gate of External Transistor
60 CURR_sense15
AIO Connect to Drain of external Transistor (input for Open and Short led detection)
61 RFB15 AIO Connect to Source of External Transistor and to Resistor RSET
62 GATE15 AIO Connect to Gate of External Transistor
63 CURR_sense16
AIO Connect to Drain of external Transistor (input for Open and Short led detection)
64 RFB16 AIO Connect to Source of External Transistor and to Resistor RSET
65
(EP)
GND S VSS Supply connection; add as many vias to
ground plane as possible.
AIO…Analog pin
DI…Digital input. Protected with clamp to 2.5V
DO…Digital output. Protected with clamp to 2.5V
S… VSS supply
Note: Connect any unused output channel as follows:
- GATEx = open, RFbx = CURR_senseX = GND
ams AG
Technical content still valid
AS3693
B
austria
mi cro
systems
www.austriamicrosystems.com Revision 1.21 / 2011-09-30 29 - 32
9.2 Package drawing epTQFP64
ams AG
Technical content still valid
AS3693
B
austria
mi cro
systems
www.austriamicrosystems.com Revision 1.21 / 2011-09-30 30 - 32
9.3 Package drawing QFN64
ams AG
Technical content still valid
AS3693
B
austria
mi cro
systems
www.austriamicrosystems.com Revision 1.21 / 2011-09-30 31 - 32
10 Ordering Information
Table 6 – Ordering Information
Part Number Marking Package Type
Delivery Form Description
AS3693B-ZTQT AS3693B epTQFP64 Tape and Reel
in Dry Pack
Package size = 10x10mm, Exposed pad
size = 4.5x4.5mm, Pitch = 0.5mm, Pb-free;
AS3693B-ZQFT AS3693B QFN64 Tape and Reel
in Dry Pack
Package size = 9x9mm, Pitch = 0.5mm,
Pb-free;
AS3693B-ZMFT
AS3693B MLF64 Tape and Reel
in Dry Pack
Package size = 9x9mm, Pitch = 0.5mm,
Pb-free;
ams AG
Technical content still valid
AS3693
B
austria
mi cro
systems
www.austriamicrosystems.com Revision 1.21 / 2011-09-30 32 - 32
Copyright
Copyright © 1997-2006, austriamicrosystems AG, Schloss Premstaetten, 8141 Unterpremstaetten, Austria-
Europe. Trademarks Registered ®. All rights reserved. The material herein may not be reproduced, adapted,
merged, translated, stored, or used without the prior written consent of the copyright owner.
All products and companies mentioned are trademarks of their respective companies.
Disclaimer
Devices sold by austriamicrosystems AG are covered by the warranty and patent identification provisions
appearing in its Term of Sale. austriamicrosystems AG makes no warranty, express, statutory, implied, or by
description regarding the information set forth herein or regarding the freedom of the described devices from
patent infringement. austriamicrosystems AG reserves the right to change specifications and prices at any time
and without notice. Therefore, prior to designing this product into a system, it is necessary to check with
austriamicrosystems AG for current information. This product is intended for use in normal commercial
applications. Applications requiring extended temperature range, unusual environmental requirements, or high
reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not
recommended without additional processing by austriamicrosystems AG for each application.
The information furnished here by austriamicrosystems AG is believed to be correct and accurate. However,
austriamicrosystems AG shall not be liable to recipient or any third party for any damages, including but not
limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect,
special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing,
performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise
or flow out of austriamicrosystems AG rendering of technical or other services.
Contact Information
Headquarters:
austriamicrosystems AG
Business Unit Communications
A 8141 Schloss Premstätten, Austria
T. +43 (0) 3136 500 0
F. +43 (0) 3136 5692
info@austriamicrosystems.com
For Sales Offices, Distributors and Representatives, please visit:
www.austriamicrosystems.com
a u s t r i a m i c r o s y s t e m s – a leap ahead
ams AG
Technical content still valid
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
ams:
AS3693B-ZQFT AS3693B-ZTQW AS3693B DEMOBOARD AS3693B-ZTQT