AOD4286/AOI4286 100V N-Channel MOSFET General Description Product Summary The AOD4286, AOI4286 uses trench MOSFET technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of RDS(ON), Ciss and Coss. This device is ideal for boost converters and synchronous rectifiers for consumer, telecom, industrial power supplies and LED backlighting. VDS 100V 14A ID (at VGS=10V) RDS(ON) (at VGS=10V) < 68m RDS(ON) (at VGS=4.5V) < 92m 100% UIS Tested TopView TO252 DPAK Bottom View Top View TO-251A IPAK D D D S G AOD4286 D G S Gate-Source Voltage G Pulsed Drain Current Continuous Drain Current Units V 20 V A 25 4 IDSM TA=70C S D Maximum 100 10 IDM TA=25C S 14 ID TC=100C C G AOI4286 VGS TC=25C G S D Absolute Maximum Ratings TA=25C unless otherwise noted Parameter Symbol Drain-Source Voltage VDS Continuous Drain Current D Bottom View A 3 Avalanche Current C IAS 4 A Avalanche energy L=0.1mH C TC=25C EAS 0.8 mJ Power Dissipation B TA=25C Power Dissipation A Junction and Storage Temperature Range Rev.1. 0: October 2013 2.5 Steady-State Steady-State RJA RJC W 1.6 TJ, TSTG Symbol t 10s W 15 PDSM TA=70C Thermal Characteristics Parameter Maximum Junction-to-Ambient A Maximum Junction-to-Ambient A D Maximum Junction-to-Case 30 PD TC=100C -55 to 175 Typ 15 41 4 www.aosmd.com C Max 20 50 5 Units C/W C/W C/W Page 1 of 6 AOD4286/AOI4286 Electrical Characteristics (TJ=25C unless otherwise noted) Symbol Parameter STATIC PARAMETERS BVDSS Drain-Source Breakdown Voltage Conditions Min ID=250A, VGS=0V 100 1 Zero Gate Voltage Drain Current IGSS Gate-Body leakage current VDS=0V, VGS=20V VGS(th) Gate Threshold Voltage VDS=VGSID=250A 1.7 ID(ON) On state drain current VGS=10V, VDS=5V 25 TJ=55C VGS=10V, ID=5A Static Drain-Source On-Resistance TJ=125C VGS=4.5V, ID=3A 100 nA 2.25 2.9 V 55.5 68 104 126 72.5 92 m 1 V 14 A A Forward Transconductance VDS=5V, ID=5A 14 VSD Diode Forward Voltage IS=1A,VGS=0V 0.76 IS Maximum Body-Diode Continuous Current DYNAMIC PARAMETERS Input Capacitance Ciss Output Capacitance Crss Reverse Transfer Capacitance Rg Gate resistance Units A 5 gFS Coss Max V VDS=100V, VGS=0V IDSS RDS(ON) Typ m S 390 pF VGS=0V, VDS=50V, f=1MHz 30 pF 3 pF f=1MHz 7 SWITCHING PARAMETERS Qg(10V) Total Gate Charge 5.8 10 nC Qg(4.5V) Total Gate Charge 2.8 5 nC Qgs Gate Source Charge Qgd Gate Drain Charge tD(on) Turn-On DelayTime tr Turn-On Rise Time tD(off) Turn-Off DelayTime VGS=10V, VDS=50V, ID=5A VGS=10V, VDS=50V, RL=10, RGEN=3 1.1 nC 1.2 nC 6 ns 2.5 ns 18 ns tf Turn-Off Fall Time 2.5 ns trr Body Diode Reverse Recovery Time IF=5A, dI/dt=500A/s 15 Qrr Body Diode Reverse Recovery Charge IF=5A, dI/dt=500A/s 53 ns nC A. The value of RJA is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with TA =25C. The Power dissipation PDSM is based on R JA and the maximum allowed junction temperature of 150C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175C may be used if the PCB allows it. B. The power dissipation PD is based on TJ(MAX)=175C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=175C. Ratings are based on low frequency and duty cycles to keep initial TJ =25C. D. The RJA is the sum of the thermal impedance from junction to case RJC and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300s pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of TJ(MAX)=175C. The SOA curve provides a single pulse rating. G. The maximum current rating is package limited. H. These tests are performed with the device mounted on 1 in2 FR-4 board with 2oz. Copper, in a still air environment with TA=25C. THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE. Rev.1. 0: October 2013 www.aosmd.com Page 2 of 6 AOD4286/AOI4286 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 25 20 10V 6V VDS=5V 4.5V 20 15 15 10 ID(A) ID (A) 4V 10 3.5V 125C 5 5 25C VGS=3V 0 0 0 1 2 3 4 0 5 100 2 3 4 5 6 Normalized On-Resistance 2.6 90 VGS=4.5V RDS(ON) (m ) 1 VGS(Volts) Figure 2: Transfer Characteristics (Note E) VDS (Volts) Fig 1: On-Region Characteristics (Note E) 80 70 60 50 VGS=10V 2.4 2.2 VGS=10V ID=5A 2 17 5 2 10 =4.5V 1.8 1.6 1.4 VGS ID=3A 1.2 1 0.8 40 0 2 0 4 6 8 10 ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E) 25 50 75 100 125 150 175 200 0 Temperature (C) Figure 4: On-Resistance vs. Junction 18Temperature (Note E) 180 1.0E+01 ID=5A 160 1.0E+00 40 125C 120 125C 1.0E-01 IS (A) RDS(ON) (m ) 140 100 80 1.0E-02 25C 1.0E-03 60 40 1.0E-04 25C 20 1.0E-05 2 4 6 8 10 VGS (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage (Note E) Rev.1. 0: October 2013 www.aosmd.com 0.0 0.2 0.4 0.6 0.8 1.0 1.2 VSD (Volts) Figure 6: Body-Diode Characteristics (Note E) Page 3 of 6 AOD4286/AOI4286 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 10 500 VDS=50V ID=5A 450 Ciss 400 Capacitance (pF) VGS (Volts) 8 6 4 2 350 300 250 200 Coss 150 100 Crss 50 0 0 0 2 4 6 0 Qg (nC) Figure 7: Gate-Charge Characteristics 40 60 80 VDS (Volts) Figure 8: Capacitance Characteristics 100 200 100.0 10s10s 10.0 RDS(ON) limited 100s 1.0 1ms 10ms DC 0.1 TJ(Max)=175C TC=25C 160 Power (W) ID (Amps) 20 TJ(Max)=175C TC=25C 17 5 2 10 120 80 40 0.0 0 0.01 0.1 1 10 VDS (Volts) 100 1000 0.0001 0.001 0.01 0.1 1 0 10 100 Pulse Width (s) 18 Figure 10: Single Pulse Power Rating Junction-toCase (Note F) Figure 9: Maximum Forward Biased Safe Operating Area (Note F) Z JC Normalized Transient Thermal Resistance 10 In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse D=Ton/T TJ,PK=TC+PDM.ZJC.RJC 40 RJC=5C/W 1 PD 0.1 Single Pulse Ton T 0.01 1E-05 0.0001 0.001 0.01 0.1 1 10 100 Pulse Width (s) Figure 11: Normalized Maximum Transient Thermal Impedance (Note F) Rev.1. 0: October 2013 www.aosmd.com Page 4 of 6 AOD4286/AOI4286 40 20 30 15 Current rating ID(A) Power Dissipation (W) TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 20 10 10 0 5 0 0 25 50 75 100 125 150 TCASE (C) Figure 12: Power De-rating (Note F) 175 0 25 50 75 100 125 150 TCASE (C) Figure 13: Current De-rating (Note F) 175 10000 TA=25C Power (W) 1000 17 5 2 10 100 10 1 1E-05 0.001 0.1 10 1000 0 18 Pulse Width (s) Figure 14: Single Pulse Power Rating Junction-to-Ambient (Note H) Z JA Normalized Transient Thermal Resistance 10 D=Ton/T TJ,PK=TA+PDM.ZJA.RJA 1 In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 40 RJA=50C/W 0.1 PD 0.01 Single Pulse Ton T 0.001 1E-05 0.0001 0.001 0.01 0.1 1 10 100 1000 Pulse Width (s) Figure 15: Normalized Maximum Transient Thermal Impedance (Note H) Rev.1. 0: October 2013 www.aosmd.com Page 5 of 6 AOD4286/AOI4286 Gate Charge Test Circuit & Waveform Vgs Qg 10V + + Vds VDC - Qgs Qgd VDC - DUT Vgs Ig Charge Resistive Switching Test Circuit & Waveforms RL Vds Vds 90% + Vdd DUT Vgs VDC - Rg 10% Vgs Vgs t d(on) tr t d(off) t on tf toff Unclamped Inductive Switching (UIS) Test Circuit & Waveforms L 2 E AR = 1/2 LIAR Vds BVDSS Vds Id + Vdd Vgs Vgs I AR VDC - Rg Id DUT Vgs Vgs Diode Recovery Test Circuit & Waveforms Q rr = - Idt Vds + DUT Vds Isd Vgs Ig Rev.1. 0: October 2013 Vgs L Isd + Vdd t rr dI/dt I RM Vdd VDC - IF Vds www.aosmd.com Page 6 of 6