This is information on a product in full production.
September 2017 DocID029161 Rev 7 1/209
STM32F423xH
Arm
®
-Cortex
®
-M4 32b MCU+FPU, 125 DMIPS, 1.5MB Flash,
320KB RAM, USB OTG FS, 1 ADC, 2 DACs, 2 DFSDMs, AES
Datasheet - production data
Features
Dynamic Efficiency Line with eBAM (enhanced
Batch Acquisition Mode)
1.7 V to 3.6 V power supply
-40 °C to 85/105/125 °C temperature range
Core: Arm® 32-bit Cortex®-M4 CPU with FPU,
Adaptive real-time accelerator (ART
Accelerator™) allowing 0-wait state execution
from Flash memory, frequency up to 100 MHz,
memory protection unit, 125 DMIPS/
1.25 DMIPS/MHz (Dhrystone 2.1), and DSP
instructions
Memories
1.5 Mbytes of Flash memory
320 Kbytes of SRAM
Flexible external static memory controller
with up to 16-bit data bus: SRAM, PSRAM,
NOR Flash memory
Dual mode Quad-SPI interface
LCD parallel interface, 8080/6800 modes
Clock, reset and supply management
1.7 to 3.6 V application supply and I/Os
POR, PDR, PVD and BOR
4-to-26 MHz crystal oscillator
Internal 16 MHz factory-trimmed RC
32 kHz oscillator for RTC with calibration
Internal 32 kHz RC with calibration
Power consumption
Run: 112 µA/MHz (peripheral off)
Stop (Flash in Stop mode, fast wakeup
time): 42 µA Typ.; 80 µA max @25 °C
Stop (Flash in Deep power down mode,
slow wakeup time): 15 µA Typ.;
46 µA max @25 °C
Standby without RTC: 1.1 µA Typ.;
14.7 µA max at @85 °C
– V
BAT supply for RTC: 1 µA @25 °C
2x12-bit D/A converters
1×12-bit, 2.4 MSPS ADC: up to 16 channels
6x digital filters for sigma delta modulator,
12x PDM interfaces, with stereo microphone
and sound source localization support
General-purpose DMA: 16-stream DMA
Up to 18 timers: up to twelve 16-bit timers, two
32-bit timers up to 100 MHz each with up to
four IC/OC/PWM or pulse counter and
quadrature (incremental) encoder input, two
watchdog timers (independent and window),
one SysTick timer, and a low-power timer
Debug mode
Serial wire debug (SWD) & JTAG
–Cortex
®-M4 Embedded Trace Macrocell™
Up to 114 I/O ports with interrupt capability
Up to 109 fast I/Os up to 100 MHz
Up to 114 five V-tolerant I/Os
Up to 24 communication interfaces
Up to 4x I2C interfaces (SMBus/PMBus)
Up to 10 UARTS: 4 USARTs / 6 UARTs
(2 x 12.5 Mbit/s, 2 x 6.25 Mbit/s), ISO 7816
interface, LIN, IrDA, modem control)
Up to 5 SPI/I2Ss (up to 50 Mbit/s, SPI or
I2S audio protocol), out of which 2 muxed
full-duplex I2S interfaces
SDIO interface (SD/MMC/eMMC)
Advanced connectivity: USB 2.0 full-speed
device/host/OTG controller with PHY
3x CAN (2.0B Active)
1xSAI
True random number generator
CRC calculation unit
96-bit unique ID
RTC: subsecond accuracy, hardware calendar
128/256-bit hardware encryption accelerator
(AES)
All packages are ECOPACK®2
Table 1. Device summary
Reference Part number
STM32F423xH STM32F423CH STM32F423MH STM32F423RH
STM32F423VH STM32F423ZH
)%*$
UFQFPN48
(7x7 mm)
UFBGA100
(7x7mm)
UFBGA144
(10x10mm)
LQFP100 (14x14mm)
LQFP144 (20x20mm)
LQFP64 (10x10mm)
WLCSP81
(4.039x3.951 mm)
www.st.com
Contents STM32F423xH
2/209 DocID029161 Rev 7
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1 Compatibility with STM32F4 series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1 Arm® Cortex®-M4 with FPU core with embedded Flash and SRAM . . . . 19
3.2 Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . . . 19
3.3 Enhanced Batch Acquisition mode (eBAM) . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.6 CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . . 20
3.7 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.8 Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.9 DMA controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.10 Flexible static memory controller (FSMC) . . . . . . . . . . . . . . . . . . . . . . . . 22
3.11 Quad-SPI memory interface (QUAD-SPI) . . . . . . . . . . . . . . . . . . . . . . . . 23
3.12 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . . 23
3.13 External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.14 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.15 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.16 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.17 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.17.1 Internal reset ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.17.2 Internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.18 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.18.1 Regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.18.2 Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.18.3 Regulator ON/OFF and internal reset ON/OFF availability . . . . . . . . . . 31
3.19 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 31
3.20 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.21 VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
DocID029161 Rev 7 3/209
STM32F423xH Contents
5
3.22 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.22.1 Advanced-control timers (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.22.2 General-purpose timers (TIMx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.22.3 Basic timer (TIM6, TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.22.4 Low-power timer (LPTIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.22.5 Independent watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.22.6 Window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.22.7 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.23 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.24 Universal synchronous/asynchronous receiver transmitters (USART) . . 36
3.25 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.26 Inter-integrated sound (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.27 Serial Audio interface (SAI1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.28 Audio PLL (PLLI2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.29 Digital filter for sigma-delta modulators (DFSDM) . . . . . . . . . . . . . . . . . . 39
3.30 Dynamic tuning of PDM delays for sound source localization . . . . . . . . . 39
3.31 Secure digital input/output interface (SDIO) . . . . . . . . . . . . . . . . . . . . . . . 40
3.32 Controller area network (bxCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.33 Universal serial bus on-the-go full-speed (USB_OTG_FS) . . . . . . . . . . . 40
3.34 Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.35 Advanced encryption standard hardware accelerator (AES) . . . . . . . . . . 41
3.36 General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.37 Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.38 Digital to analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.39 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.40 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.41 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.1 WLCSP81 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 UFQFPN48 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3 LQFP64 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4 LQFP100 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.5 LQFP144 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Contents STM32F423xH
4/209 DocID029161 Rev 7
4.6 UFBGA100 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.7 UFBGA144 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.8 Pins definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.9 Alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.3.2 VCAP_1/VCAP_2 external capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.3.3 Operating conditions at power-up/power-down (regulator ON) . . . . . . . 86
6.3.4 Operating conditions at power-up / power-down (regulator OFF) . . . . . 87
6.3.5 Embedded reset and power control block characteristics . . . . . . . . . . . 87
6.3.6 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.3.7 Wakeup time from low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.3.8 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.3.9 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.3.10 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.3.11 PLL spread spectrum clock generation (SSCG) characteristics . . . . . 117
6.3.12 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.3.13 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.3.14 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . 122
6.3.15 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.3.16 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.3.17 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.3.18 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
DocID029161 Rev 7 5/209
STM32F423xH Contents
5
6.3.19 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.3.20 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.3.21 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.3.22 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.3.23 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.3.24 DAC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.3.25 DFSDM characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
6.3.26 FSMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.3.27 SD/SDIO MMC/eMMC card host interface (SDIO) characteristics . . . 173
6.3.28 RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
7 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
7.1 WLCSP81 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
7.2 UFQFPN48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
7.3 LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
7.4 LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
7.5 LQFP144 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
7.6 UFBGA100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
7.7 UFBGA144 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
7.8 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
7.8.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
8 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Appendix A Recommendations when using the internal reset OFF . . . . . . . . 202
Appendix B Application block diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
B.1 Sensor Hub application example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
B.2 Display application example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
B.3 USB OTG full speed (FS) interface solutions . . . . . . . . . . . . . . . . . . . . . 205
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
List of tables STM32F423xH
6/209 DocID029161 Rev 7
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. STM32F423xH features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 3. Embedded bootloader interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 4. Regulator ON/OFF and internal power supply supervisor availability. . . . . . . . . . . . . . . . . 31
Table 5. Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 6. Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 7. USART feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 8. DFSDM feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 9. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 10. STM32F423xH pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 11. FSMC pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 12. STM32F423xH alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 13. STM32F423xH register boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 14. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Table 15. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 16. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 17. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 18. Features depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 19. VCAP_1/VCAP_2 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 20. Operating conditions at power-up / power-down (regulator ON) . . . . . . . . . . . . . . . . . . . . 86
Table 21. Operating conditions at power-up / power-down (regulator OFF). . . . . . . . . . . . . . . . . . . . 87
Table 22. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 87
Table 23. Typical and maximum current consumption, code with data processing (ART
accelerator disabled) running from SRAM - VDD = 1.7 V . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 24. Typical and maximum current consumption, code with data processing (ART
accelerator disabled) running from SRAM - VDD = 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 25. Typical and maximum current consumption in run mode, code with data processing
(ART accelerator enabled except prefetch) running from Flash memory- VDD = 1.7 V. . . 91
Table 26. Typical and maximum current consumption in run mode, code with data processing
(ART accelerator enabled except prefetch) running from Flash memory - VDD = 3.6 V . . 92
Table 27. Typical and maximum current consumption in run mode, code with data processing
(ART accelerator disabled) running from Flash memory - VDD = 3.6 V. . . . . . . . . . . . . . . 93
Table 28. Typical and maximum current consumption in run mode, code with data processing
(ART accelerator disabled) running from Flash memory - VDD = 1.7 V. . . . . . . . . . . . . . . 94
Table 29. Typical and maximum current consumption in run mode, code with data processing
(ART accelerator enabled with prefetch) running from Flash memory - VDD = 3.6 V . . . . . 95
Table 30. Typical and maximum current consumption in run mode, code with data processing
(ART accelerator enabled with prefetch) running from Flash memory - VDD = 1.7 V . . . . . 96
Table 31. Typical and maximum current consumption in Sleep mode - VDD = 3.6 V . . . . . . . . . . . . . 97
Table 32. Typical and maximum current consumption in Sleep mode - VDD = 1.7 V . . . . . . . . . . . . . 98
Table 33. Typical and maximum current consumptions in Stop mode - VDD = 1.7 V . . . . . . . . . . . . . 99
Table 34. Typical and maximum current consumption in Stop mode - VDD=3.6 V. . . . . . . . . . . . . . . 99
Table 35. Typical and maximum current consumption in Standby mode - VDD= 1.7 V . . . . . . . . . . . 99
Table 36. Typical and maximum current consumption in Standby mode - VDD= 3.6 V . . . . . . . . . . 100
Table 37. Typical and maximum current consumptions in VBAT mode. . . . . . . . . . . . . . . . . . . . . . . 100
Table 38. Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Table 39. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Table 40. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
DocID029161 Rev 7 7/209
STM32F423xH List of tables
8
Table 41. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Table 42. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Table 43. HSE 4-26 MHz oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Table 44. LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Table 45. HSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Table 46. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Table 47. Main PLL characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Table 48. PLLI2S (audio PLL) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Table 49. SSCG parameter constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Table 50. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Table 51. Flash memory programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Table 52. Flash memory programming with VPP voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Table 53. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Table 54. EMS characteristics for LQFP144 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Table 55. EMI characteristics for LQFP144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Table 56. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Table 57. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Table 58. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Table 59. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Table 60. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Table 61. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Table 62. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Table 63. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Table 64. I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Table 65. SCL frequency (fPCLK1= 50 MHz, VDD = VDD_I2C = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . 132
Table 66. FMPI2C characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Table 67. SPI dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Table 68. I2S dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Table 69. SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Table 70. QSPI dynamic characteristics in SDR mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Table 71. QSPI dynamic characteristics in DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Table 72. USB OTG FS startup time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Table 73. USB OTG FS DC electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Table 74. USB OTG FS electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Table 75. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Table 76. ADC accuracy at fADC = 18 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Table 77. ADC accuracy at fADC = 30 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Table 78. ADC accuracy at fADC = 36 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Table 79. ADC dynamic accuracy at fADC = 18 MHz - limited test conditions . . . . . . . . . . . . . . . . . 147
Table 80. ADC dynamic accuracy at fADC = 36 MHz - limited test conditions . . . . . . . . . . . . . . . . . 147
Table 81. Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Table 82. Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Table 83. VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Table 84. Embedded internal reference voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Table 85. Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Table 86. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Table 87. DFSDM characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Table 88. Asynchronous non-multiplexed SRAM/PSRAM/NOR -
read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Table 89. Asynchronous non-multiplexed SRAM/PSRAM/NOR read -
NWAIT timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Table 90. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 162
List of tables STM32F423xH
8/209 DocID029161 Rev 7
Table 91. Asynchronous non-multiplexed SRAM/PSRAM/NOR write -
NWAIT timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Table 92. Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Table 93. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings . . . . . . . . . . . . . . . . . . . . 164
Table 94. Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Table 95. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings . . . . . . . . . . . . . . . . . . . . 166
Table 96. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Table 97. Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Table 98. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 171
Table 99. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Table 100. SD / MMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Table 101. eMMC characteristics VDD = 1.7 V to 1.9 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Table 102. RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Table 103. WLCSP81 - 81-ball, 4.039 x 3.951 mm, 0.4 mm pitch wafer level chip scale
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Table 104. WLCSP81 recommended PCB design rules (0.4 mm pitch) . . . . . . . . . . . . . . . . . . . . . . 178
Table 105. UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Table 106. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Table 107. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Table 108. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Table 109. UFBGA100 - 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball
grid array package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Table 110. UFBGA100 recommended PCB design rules (0.5 mm pitch BGA) . . . . . . . . . . . . . . . . . 195
Table 111. UFBGA144 - 144-ball, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball grid
array package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Table 112. UFBGA144 recommended PCB design rules (0.80 mm pitch BGA) . . . . . . . . . . . . . . . . 198
Table 113. Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Table 114. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Table 115. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
DocID029161 Rev 7 9/209
STM32F423xH List of figures
11
List of figures
Figure 1. Compatible board design for LQFP100 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 2. Compatible board design for LQFP64 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 3. Compatible board design for LQFP144 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 4. STM32F423xH block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 5. Multi-AHB matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 6. VDDUSB connected to an external independent power supply . . . . . . . . . . . . . . . . . . . . . 26
Figure 7. Power supply supervisor interconnection with internal reset OFF . . . . . . . . . . . . . . . . . . . 27
Figure 8. Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 9. Startup in regulator OFF: slow VDD slope
power-down reset risen after VCAP_1/VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 10. Startup in regulator OFF mode: fast VDD slope
power-down reset risen before VCAP_1/VCAP_2 stabilization. . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 11. STM32F423xH WLCSP81 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 12. STM32F423xH UFQFPN48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 13. STM32F423xH LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 14. STM32F423xH LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 15. STM32F423xH LQFP144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 16. STM32F423xH UFBGA100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 17. STM32F423xH UFBGA144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 18. Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 19. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Figure 20. Input voltage measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Figure 21. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Figure 22. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Figure 23. External capacitor CEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Figure 24. Typical VBAT current consumption (LSE and RTC ON/LSE oscillator
“low power” mode selection) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Figure 25. Typical VBAT current consumption (LSE and RTC ON/LSE oscillator
“high drive” mode selection) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Figure 26. Low-power mode wakeup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Figure 27. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Figure 28. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Figure 29. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Figure 30. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Figure 31. ACCHSI versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Figure 32. ACCLSI versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Figure 33. PLL output clock waveforms in center spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Figure 34. PLL output clock waveforms in down spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Figure 35. FT/TC I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Figure 36. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Figure 37. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Figure 38. I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Figure 39. FMPI2C timing diagram and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Figure 40. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Figure 41. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Figure 42. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Figure 43. I2S slave timing diagram (Philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Figure 44. I2S master timing diagram (Philips protocol). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
List of figures STM32F423xH
10/209 DocID029161 Rev 7
Figure 45. SAI master timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Figure 46. SAI slave timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Figure 47. USB OTG FS timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . 144
Figure 48. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Figure 49. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Figure 50. Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 150
Figure 51. Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . 151
Figure 52. 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Figure 53. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 160
Figure 54. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 162
Figure 55. Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 163
Figure 56. Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . 165
Figure 57. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Figure 58. Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Figure 59. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 171
Figure 60. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Figure 61. SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Figure 62. SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Figure 63. WLCSP81 - 81-ball, 4.039 x 3.951 mm, 0.4 mm pitch wafer level chip scale
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Figure 64. WLCSP81- 81-ball, 4.039 x 3.951 mm, 0.4 mm pitch wafer level chip scale
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Figure 65. WLCSP81 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Figure 66. UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Figure 67. UFQFPN48 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Figure 68. UFQFPN48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Figure 69. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . 183
Figure 70. LQFP64 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Figure 71. LQFP64 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Figure 72. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline . . . . . . . . . . . . . . 187
Figure 73. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Figure 74. LQFP100 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Figure 75. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package outline . . . . . . . . . . . . . . 190
Figure 76. LQFP144 - 144-pin,20 x 20 mm low-profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Figure 77. LQFP144 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Figure 78. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball
grid array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Figure 79. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball
grid array package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Figure 80. UFBGA100 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Figure 81. UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball
grid array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Figure 82. UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball
grid array recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Figure 83. UFBGA144 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Figure 84. Sensor Hub application example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Figure 85. Display application example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
Figure 86. USB controller configured as peripheral-only and used in Full speed mode . . . . . . . . . . 205
Figure 87. USB peripheral-only Full speed mode with direct connection
DocID029161 Rev 7 11/209
STM32F423xH List of figures
11
for VBUS sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Figure 88. USB peripheral-only Full speed mode, VBUS detection using GPIO . . . . . . . . . . . . . . . . 206
Figure 89. USB controller configured as host-only and used in full speed mode. . . . . . . . . . . . . . . . 206
Introduction STM32F423xH
12/209 DocID029161 Rev 7
1 Introduction
This datasheet provides the description of the STM32F423xH microcontrollers.
For information on the Cortex®-M4 core, please refer to the Cortex®-M4 programming
manual (PM0214) available from www.st.com.
DocID029161 Rev 7 13/209
STM32F423xH Description
43
2 Description
The STM32F423XH devices are based on the high-performance Arm® Cortex®-M4 32-bit
RISC core operating at a frequency of up to 100 MHz. Their Cortex®-M4 core features a
Floating point unit (FPU) single precision which supports all Arm single-precision data-
processing instructions and data types. It also implements a full set of DSP instructions and
a memory protection unit (MPU) which enhances application security.
The STM32F423XH devices belong to the STM32F423xH access product lines (with
products combining power efficiency, performance and integration) while adding a new
innovative feature called Batch Acquisition Mode (BAM) allowing to save even more power
consumption during data batching.
The STM32F423XH devices incorporate high-speed embedded memories (1.5 Mbytes of
Flash memory, 320 Kbytes of SRAM), and an extensive range of enhanced I/Os and
peripherals connected to two APB buses, three AHB buses and a 32-bit multi-AHB bus
matrix.
All devices offer a 12-bit ADC, two 12-bit DACs, a low-power RTC, twelve general-purpose
16-bit timers including two PWM timer for motor control, two general-purpose 32-bit timers
and a low power timer.
They also feature standard and advanced communication interfaces.
Up to four I2Cs, including one I2C supporting Fast-Mode Plus
Five SPIs
Five I2Ss out of which two are full duplex. To achieve audio class accuracy, the I2S
peripherals can be clocked via a dedicate internal audio PLL or via an external clock to
allow synchronization.
Four USARTs and six UARTs
An SDIO/MMC interface
An USB 2.0 OTG full-speed interface
Three CANs
An SAI.
In addition, the STM32F423xH devices embed advanced peripherals:
A flexible static memory control interface (FSMC)
A Quad-SPI memory interface
Two digital filter for sigma modulator (DFSDM) supporting microphone MEMs and
sound source localization, one with two filters and up to four inputs, and the second
one with four filters and up to eight inputs
The STM32F423xH devices embed an AES hardware accelerator.
They are offered in 7 packages ranging from 48 to 144 pins. The set of available peripherals
depends on the selected package. The STM32F423xH operate in the – 40 to + 125 °C
temperature range from a 1.7 (PDR OFF) to 3.6 V power supply. A comprehensive set of
power-saving mode allows the design of low-power applications.
Description STM32F423xH
14/209 DocID029161 Rev 7
These features make the STM32F423xH microcontrollers suitable for a wide range of
applications:
Motor drive and application control
Medical equipment
Industrial applications: PLC, inverters, circuit breakers
Printers, and scanners
Alarm systems, video intercom, and HVAC
Home audio appliances
Mobile phone sensor hub
Wearable devices
Connected objects
Wifi modules
DocID029161 Rev 7 15/209
STM32F423xH Description
43
Table 2. STM32F423xH features and peripheral counts
Peripherals STM32F423xH
Flash memory (Kbyte) 1536
SRAM (Kbyte) System 320 (256 + 64)
FSMC memory controller - 1(1) 1(1) 1(1) 1
FSMC LCD parallel interface
Data bus size -8 16
Quad-SPI memory interface - 1
Timers
General-purpose 10(2) 10 10(3) 10
Advanced-control 2(4) 2
Basic 2
Low-power timer 1
Random number generator 1
AES 1
Comm. interfaces
SPI/ I2S 5/5 (2 full duplex)
I2C3
I2CFMP 1
USART/UART 3/3 4/3 4/6
SDIO/MMC 1
USB/OTG FS
Dual power rail
1
No
1
Yes
1
No
1
Yes
CAN 3
SAI 1
Number of digital Filtersfor Sigma-
delta modulator
Number of channels
6
711 12
GPIOs 36 50 60 81 114
12-bit ADC
Number of channels
1
10 16
12-bit DAC
Number of channels
Yes
2
Maximum CPU frequency 100 MHz
Operating voltage 1.7 to 3.6 V
Operating temperatures Ambient temperatures: – 40 to + 85 °C/– 40 to + 105 °C / – 40 to + 125 °C
Junction temperature: – 40 to + 130 °C
Package UFQFPN48 LQFP64 WLCSP81 UFBGA100
LQFP100
UFBGA144
LQFP144
1. 64 pins packages support only 8 bits multiplexed mode interface
81 pins packages support 1 external memory of up to 64KB in multiplexed mode
100 pins packages support 2 external memories of up to 64MB in multiplexed mode
Refer to Table 11: FSMC pin definition for more detailed information.
2. 48 pins packages: TIM3 and TIM4: ETR pin not available.
Description STM32F423xH
16/209 DocID029161 Rev 7
2.1 Compatibility with STM32F4 series
The STM32F423xH are fully software and feature compatible with the STM32F4 series
(STM32F42x, STM32F401, STM32F43x, STM32F41x, STM32F405 and STM32F407)
The STM32F423xH can be used as drop-in replacement of the other STM32F4 products but
some slight changes have to be done on the PCB board.
Figure 1. Compatible board design for LQFP100 package
3. 81 pins packages: TIM4: ETR pin not available.
4. 48 pins packages: TIM8:CH1, CH2, CH3 and CH4 pins not available.
06Y9








3'
3'
3'
3'
3%
3%
3%
3%
3(
3(
3(
3(
3(
3(
3%
9&$3B
966
9''







3% QRW DYDLODEOHDQ\PRUH
5HSODFHG E\ 9&$3B








3'
3'
3'
3'
3%
3%
3%
3%
3(
3(
3(
3(
3(
3(
3%
9&$3B
9''








670)670)OLQH
670)670)OLQH
670)670)OLQH
670)670)OLQH
9''966
3%





670)[[
670)[[
670)[[
670)[[
670)[[
670)[[
670)[[
9''966
DocID029161 Rev 7 17/209
STM32F423xH Description
43
Figure 2. Compatible board design for LQFP64 package
Figure 3. Compatible board design for LQFP144 package
06Y9
9&$3BLQFUHDVHGWRI
(65RUEHORZ
670)670)OLQH
966
966
9''
9''
 
















 


3&
3&
3&
3$
3$
9''
9&$3B
3$
3$
3$
3$
3$
3$
3&
3&
3&
3&
3%
3%
3%
3%
3%
3%
9&$3B
9''
3%
3%QRWDYDLODEOHDQ\PRUH
5HSODFHGE\9&$3B
 


















3&
3&
3&
3$
3$
9''
966
3$
3$
3$
3$
3$
3$
3&
3&
3&
3&
3%
3%
3%
3%
3%
3%
9&$3B
9''
966
9''
966
966
9''
670)[[
670)[[
670)[[
670)[[
670)[[
670)[[
670)[[

06Y9
670)670)OLQH
670)670)OLQH
670)670)OLQH
670)670)OLQH
670)[
670)[
670)[
670)[[
9''
966
9&$3B
3$
3$
3$
3$
3$
3$
3&
3&
3&
3&
966
3*
3&
3&
3$
3$
3'




3'

3&

















9''
9''
966
9&$3B
3$
3$
3$
3$
3$
3$
3&
3&
3&
3&
966
3*
3&
3&
3$
3$
3'




3'

3&

















9''86%
6HSDUDWH86%SRZHUUDLO
&RQQHFWHGWR9''LIDGLIIHUHQW
SRZHUVXSSO\IRUWKH86%LVQRW
UHTXLUHG
Description STM32F423xH
18/209 DocID029161 Rev 7
Figure 4. STM32F423xH block diagram
1. The timers connected to APB2 are clocked from TIMxCLK up to 100 MHz, while the timers connected to APB1 are clocked
from TIMxCLK up to 50 MHz.
06Y9
0%
)ODVKPHPRU\
*3,23257$
$+%
$3%
(;7,7:.83
$)
3$>@
5;7;6&.
&76576DV$)
DQDORJLQSXWV
9''5()B$'&
$/$50B287
26&B,1
26&B287
9''$966$
1567
9%$7 WR9
'0$
6&/6'$60%$DV$)
,&)0360%86
-7$*6:
$50&RUWH[0
&RUWH[0
0+]
19,&
(70
038)38
'0$
6WUHDPV
),)2
$&&(/
&$&+(
$+%0+]
86$5 7 0%SV
,)
#9''$
3253'5
%25
6XSSO\
VXSHUYLVLRQ
#9''$
39'
,QW
325
UHVHW
;7$/N+]
0$1 $*7
57&
5& +6
5& / 6
3:5
LQWHUIDFH
:'*.
#9
%$7
#9''
$:8
5HVHW
FORFN
FRQWURO
3//3//
$3%&/.
9ROWDJH
UHJXODWRU
WR9
9'' WR9
966
9&$3B9&$3B
9'' 3RZHUPDQDJPW
#9''
67$03
%DFNXSUHJLVWHU
$+%EXVPDWUL[60
$3%0+]
/6
FKDQQHOVDV$)
7,0
,&60%86
'%86
$3%0+]PD[
-7567-7',
-7&.6:&/.
-7'26:'-7'2
75$&(&/.
75$&('>@ ,%86
6%86
'0$
6WUHDPV
),)2
3%>@
3&>@
*3,23257%
*3,23257&
FKDQQHODV$)
6&/6'$60%$DV$)
6&/6'$60%$DV$)
026,0,626&.
166:60&.DV$)
5;7;6&.
&76576DV$)
86$57 VPFDUG
LU'$
E FKDQQHOVDV$)
'0$
$+%
$3%
/6
26&B,1
26&B287
+&/.
;7$/26&
0+]
.%65$0
::'*
$3%&/.
$+%3&/.
$+%3&/.
&5&
3*>@ *3,23257*
51*
#9''$
3&/.
7,0 E FKDQQHOVDV$)
7,0(5 E
),)2
)60&
125)ODVK
65$0365$0
$+%
4XDG63,
&/.1(>@$>@
'>@12(11:(1
1%/>@1:$,7
&/.&6$&6%'>@
$+%0+]
86%
27*)6
),)2
3+<
'
'
6&/6'$,17,'9%86
#9'' #9''86%
7,0 E FKDQQHOVDV$)
7,0 E FKDQQHOVDV$)
7,0 E FKDQQHOVDV$)
7,0 E FKDQQHOVDV$)
7,0 E FKDQQHOVDV$)
5;7;6&.
&76576DV$)
86$57 VPFDUG
LU'$
63,,6
E
026,0,626&.
166:60&.DV$)
6&/6'$60%$DV$)
7,0(5
63,,6
7;5;
7;5;
&$1
&$1
')6'0
&.,1>@'$7,1>@
&.287
026,0,62
6&.166:6DV$)
FKDQQHODV$)
'>@
&0'&.DV$)
3+>@ *3,23257+
3'>@ *3,23257'
3(>@ *3,23257(
5;7;6&.
&76576DV$)
026,0,62
6&.166:6DV$)
026,0,62
6&.166:6DV$)
.%65$0
7LQ\$(6
),)2
8$57 5;7;DV$)
8$57 5;7;DV$)
8$57 5;7;DV$)
8$57 5;7;DV$)
,&60%86
,&60%86
8$57
5;7;DV$)
8$57
5;7;DV$)
/37,0 E ,1V287,,75DV$)
')6'0
&.,1>@'$7,1>@
&.287
6'6&.)6
0&/.DV$)
'$&
'$&
,7)
'$&
DV$)
'$&
DV$)
#9''$
7;5;
&$1
3:03:0
(75%.,1DV$)
3:03:0
(75%.,1DV$)
),)2
6',200&
E
7,03:0
E
7,03:0
7,0 E
7,0 E
7,0 E
86$57
VPFDUG
LU'$
VPFDUG
LU'$ 86$57
63,,6
63,,6
63,,6
6$,
),)2
7HPSHUDWXUHVHQVRU
$'&
DocID029161 Rev 7 19/209
STM32F423xH Functional overview
43
3 Functional overview
3.1 Arm® Cortex®-M4 with FPU core with embedded Flash and
SRAM
The Arm® Cortex®-M4 with FPU processor is the latest generation of Arm processors for
embedded systems. It was developed to provide a low-cost platform that meets the needs of
MCU implementation, with a reduced pin count and low-power consumption, while
delivering outstanding computational performance and an advanced response to interrupts.
The Arm® Cortex®-M4 with FPU 32-bit RISC processor features exceptional code-
efficiency, delivering the high-performance expected from an Arm core in the memory size
usually associated with 8- and 16-bit devices.
The processor supports a set of DSP instructions which allow efficient signal processing and
complex algorithm execution.
Its single precision FPU (floating point unit) speeds up software development by using
metalanguage development tools, while avoiding saturation.
The STM32F423xH devices are compatible with all Arm tools and software.
Figure 4 shows the general block diagram of the STM32F423xH.
Note: Cortex®-M4 with FPU is binary compatible with Cortex®-M3.
3.2 Adaptive real-time memory accelerator (ART Accelerator™)
The ART Accelerator™ is a memory accelerator which is optimized for STM32 industry-
standard Arm® Cortex®-M4 with FPU processors. It balances the inherent performance
advantage of the Arm® Cortex®-M4 with FPU over Flash memory technologies, which
normally requires the processor to wait for the Flash memory at higher frequencies.
To release the processor full 125 DMIPS performance at this frequency, the accelerator
implements an instruction prefetch queue and branch cache, which increases program
execution speed from the 128-bit Flash memory. Based on CoreMark benchmark, the
performance achieved thanks to the ART Accelerator is equivalent to 0 wait state program
execution from Flash memory at a CPU frequency up to 100 MHz.
3.3 Enhanced Batch Acquisition mode (eBAM)
The Batch acquisition mode allows enhanced power efficiency during data batching. It
enables data acquisition through any communication peripherals directly to memory using
the DMA in reduced power consumption as well as data processing while the rest of the
system is in low-power mode (including the Flash and ART). For example in an audio
system, a smart combination of PDM audio sample acquisition and processing from the
DFSDM directly to RAM (Flash and ART stopped) with the DMA using BAM followed by
some very short processing from Flash allows to drastically reduce the power consumption
of the application.
The BAM has been enhanced by adding SRAM2 that allows SRAM code to be executed
through the Ibus and Dbus, thus improving code execution performance.
Functional overview STM32F423xH
20/209 DocID029161 Rev 7
A dedicated application note (AN4515) describes how to implement the STM32F423xH
BAM to allow the best power efficiency.
3.4 Memory protection unit
The memory protection unit (MPU) is used to manage the CPU accesses to memory to
prevent one task to accidentally corrupt the memory or resources used by any other active
task. This memory area is organized into up to 8 protected areas that can in turn be divided
up into 8 subareas. The protection area sizes are between 32 byte and the whole 4 Gbyte of
addressable memory.
The MPU is especially helpful for applications where some critical or certified code has to be
protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-
time operating system). If a program accesses a memory location that is prohibited by the
MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can
dynamically update the MPU area setting, based on the process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.
3.5 Embedded Flash memory
The devices embed 1.5 Mbytes of Flash memory available for storing programs and data,
plus 512 bytes of one-time programmable (OTP) memory organized in 16 blocks of
32 bytes, each which can be independently locked.
The user Flash memory area can be protected against read operations by an entrusted
code (read protection or RDP). Different protection levels are available. The user Flash
memory is divided into sectors, which can be individually protected against write operation.
Flash sectors can also be protected individually against D-bus read accesses by using the
proprietary readout protection (PCROP).
Refer to the product line reference manual for additional information on OTP area and
protection features.
To optimize the power consumption the Flash memory can also be switched off in Run or in
Sleep mode (see Section 3.20: Low-power modes).
Two modes are available: Flash in Stop mode or in DeepSleep mode (trade off between
power saving and startup time.
Before disabling the Flash, the code must be executed from the internal RAM.
3.6 CRC (cyclic redundancy check) calculation unit
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit
data word and a fixed generator polynomial.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a software
signature during runtime, to be compared with a reference signature generated at link-time
and stored at a given memory location.
DocID029161 Rev 7 21/209
STM32F423xH Functional overview
43
3.7 Embedded SRAM
All devices embed 320 Kbytes of system SRAM which can be accessed (read/write) at CPU
clock speed with 0 wait states.
3.8 Multi-AHB bus matrix
The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs) and the slaves
(Flash memory, RAM, AHB and APB peripherals) and ensures a seamless and efficient
operation even when several high-speed peripherals work simultaneously.
Figure 5. Multi-AHB matrix
CPU can access SRAM1 memory via S-bus, when SRAM1 is mapped at the address range:
0x2000 0000 to 0x2003 FFFF.
CPU can access SRAM2 memory via S-bus, when SRAM2 is mapped at the address range:
0x2004 0000 to 0x2004 FFFF.
CPU can access SRAM1 memory via I-bus and D-bus, when SRAM1 is remapped at
address 0x0000 0000 either by booting from RAM memory or by the remap mode.
CPU can access SRAM2 memory via I-bus and D-bus, when SRAM2 is mapped at the
address range: 0x1000 0000 to 0x1000 FFFF.
Performance boosts up, when the CPU access SRAM memory via the I-bus.
06Y9
$50
&RUWH[0
*3
'0$
*3
'0$
)ODVK
0%
%XVPDWUL[6
6 6 6 6 6 6 ,&2'(
'&2'(
$&&(/
0
0
0
,EXV
'EXV
6EXV
'0$B3,
'0$B0(0
'0$B0(0
'0$B3
$+%
SHULSK
0
$3%
$3%
$+%
SHULSK
0
)60&H[WHUQDO
0HP&WUO
4XDG63,
0
$FFHVVWKURXJKUHPDS
$FFHVVE\DOLDVLQJ
65$0
.%
0
65$0
.%
Functional overview STM32F423xH
22/209 DocID029161 Rev 7
3.9 DMA controller (DMA)
The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8
streams each. They are able to manage memory-to-memory, peripheral-to-memory and
memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals,
support burst transfer and are designed to provide the maximum peripheral bandwidth
(AHB/APB).
The two DMA controllers support circular buffer management, so that no specific code is
needed when the controller reaches the end of the buffer. The two DMA controllers also
have a double buffering feature, which automates the use and switching of two memory
buffers without requiring any special code.
Each stream is connected to dedicated hardware DMA requests, with support for software
trigger on each stream. Configuration is made by software and transfer sizes between
source and destination are independent.
The DMA can be used with the main peripherals:
SPI and I2S
I2C and I2CFMP
USART
General-purpose, basic and advanced-control timers TIMx
SD/SDIO/MMC/eMMC host interface
Quad-SPI
ADC
DAC
Digital Filter for sigma-delta modulator (DFSDM) with a separate stream for each filter
SAI.
3.10 Flexible static memory controller (FSMC)
The Flexible static memory controller (FSMC) includes a NOR/PSRAM memory controller. It
features four Chip Select outputs supporting the following modes: SRAM, PSRAM and NOR
Flash memory.
The main functions are:
8-,16-bit data bus width
Write FIFO
Maximum FSMC_CLK frequency for synchronous accesses is 90 MHz.
LCD parallel interface
The FSMC can be configured to interface seamlessly with most graphic LCD controllers. It
supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to
specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost-
effective graphic applications using LCD modules with embedded controllers or high
performance solutions using external controllers with dedicated acceleration.
DocID029161 Rev 7 23/209
STM32F423xH Functional overview
43
3.11 Quad-SPI memory interface (QUAD-SPI)
All devices embed a Quad-SPI memory interface, which is a specialized communication
interface targeting single, dual or quad-SPI Flash memories. It can work in direct mode
through registers, external Flash status register polling mode and memory mapped mode.
Up to 256 Mbyte of external Flash memory are mapped. They can be accessed in 8, 16 or
32-bit mode. Code execution is also supported. The opcode and the frame format are fully
programmable. Communication can be performed either in single data rate or dual data
rate.
3.12 Nested vectored interrupt controller (NVIC)
The devices embed a nested vectored interrupt controller able to manage 16 priority levels,
and handle up to 102 maskable interrupt channels plus the 16 interrupt lines of the
Cortex®-M4 with FPU.
Closely coupled NVIC gives low-latency interrupt processing
Interrupt entry vector table address passed directly to the core
Allows early processing of interrupts
Processing of late arriving, higher-priority interrupts
Support tail chaining
Processor state automatically saved
Interrupt entry restored on interrupt exit with no instruction overhead
This hardware block provides flexible interrupt management features with minimum interrupt
latency.
3.13 External interrupt/event controller (EXTI)
The external interrupt/event controller consists of 24 edge-detector lines used to generate
interrupt/event requests. Each line can be independently configured to select the trigger
event (rising edge, falling edge, both) and can be masked independently. A pending register
maintains the status of the interrupt requests. The EXTI can detect an external line with a
pulse width shorter than the Internal APB2 clock period. Up to 114 GPIOs can be connected
to the 16 external interrupt lines.
3.14 Clocks and startup
On reset the 16 MHz internal RC oscillator is selected as the default CPU clock. The
16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy at 25 °C. The
application can then select as system clock either the RC oscillator or an external 4-26 MHz
clock source. This clock can be monitored for failure. If a failure is detected, the system
automatically switches back to the internal RC oscillator and a software interrupt is
generated (if enabled). This clock source is input to a PLL thus allowing to increase the
frequency up to 100 MHz. Similarly, full interrupt management of the PLL clock entry is
available when necessary (for example if an indirectly used external oscillator fails).
Several prescalers allow the configuration of the three AHB buses, the high-speed APB
(APB2) and the low-speed APB (APB1) domains. The maximum frequency of the three AHB
Functional overview STM32F423xH
24/209 DocID029161 Rev 7
buses and high-speed APB domains is 100 MHz. The maximum allowed frequency of the
low-speed APB domain is 50 MHz.
The devices embed a dedicated PLL (PLLI2S) which allows to achieve audio class
performance. In this case, the I2S master clock can generate all standard sampling
frequencies from 8 kHz to 192 kHz.
3.15 Boot modes
At startup, boot pins are used to select one out of three boot options:
Boot from user Flash memory
Boot from system memory
Boot from embedded SRAM
The boot loader is located in system memory. It is used to reprogram the Flash memory by
using one of the interface listed in the Table 3 or the USB OTG FS in device mode through
DFU (device firmware upgrade).
For more detailed information on the bootloader, refer to Application Note: AN2606,
STM32™ microcontroller system memory boot mode.
Table 3. Embedded bootloader interfaces
Package
USART1
PA9/
PA10
USART2
PD6/
PD5
USART3
PB11/
PB10
I2C1
PB6/
PB7
I2C2
PF0/
PF1
I2C3
PA8/
PB4
I2C
FMP1
PB14/
PB15
SPI1
PA4/
PA5/
PA6/
PA7
SPI3
PA15/
PC10/
PC11/
PC12
SPI4
PE11/
PE12/
PE13/
PE14
CAN2
PB5/
PB13
USB
PA11
/P12
UFQFPN48 Y - - Y - Y Y Y - - Y Y
LQFP64 Y - - Y - Y Y Y Y - Y Y
WLCSP81 Y - - Y - Y Y Y Y Y Y Y
LQFP100Y Y - Y-YYYYYYY
LQFP144YYYYYYYYYYYY
UFBGA100 Y Y Y Y - Y Y Y Y Y Y Y
UFBGA144 Y Y Y Y Y Y Y Y Y Y Y Y
DocID029161 Rev 7 25/209
STM32F423xH Functional overview
43
3.16 Power supply schemes
VDD = 1.7 to 3.6 V: external power supply for I/Os with the internal supervisor
(POR/PDR) disabled, provided externally through VDD pins. Requires the use of an
external power supply supervisor connected to the VDD and NRST pins.
VSSA, VDDA = 1.7 to 3.6 V: external analog power supplies for ADC, Reset blocks, RCs
and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively, with
decoupling technique.
Note: The VDD/VDDA minimum value of 1.7 V is obtained with the use of an external power supply
supervisor (refer to Section 3.17.2: Internal reset OFF). Refer to Table 4: Regulator ON/OFF
and internal power supply supervisor availability to identify the packages supporting this
option.
VBAT = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and
backup registers (through power switch) when VDD is not present.
VDDUSB can be connected either to VDD or an external independent power supply (3.0
to 3.6 V) for USB transceivers.
For example, when device is powered at 1.8 V, an independent power supply 3.3V can
be connected to VDDUSB. When the VDDUSB is connected to a separated power supply,
it is independent from VDD or VDDA but it must be the last supply to be provided and the
first to disappear.
The following conditions VDDUSB must be respected:
During power-on phase (VDD < VDD_MIN), VDDUSB should be always lower than
VDD
During power-down phase (VDD < VDD_MIN), VDDUSB should be always lower than
VDD
–V
DDUSB rising and falling time rate specifications must be respected.
In operating mode phase, VDDUSB could be lower or higher than VDD:
If USB is used, the associated GPIOs powered by VDDUSB are operating
between VDDUSB_MIN and VDDUSB_MAX.
If USB is not used, the associated GPIOs powered by VDDUSB are operating
between VDD_MIN and VDD_MAX.
Functional overview STM32F423xH
26/209 DocID029161 Rev 7
Figure 6. VDDUSB connected to an external independent power supply
3.17 Power supply supervisor
3.17.1 Internal reset ON
This feature is available for VDD operating voltage range 1.8 V to 3.6 V.
On packages embedding the PDR_ON pin, the power supply supervisor is enabled by
holding PDR_ON high. On the other package, the power supply supervisor is always
enabled.
The device has an integrated power-on reset (POR) / power-down reset (PDR) circuitry
coupled with a Brownout reset (BOR) circuitry. At power-on, POR is always active, and
ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is
reached, the option byte loading process starts, either to confirm or modify default
thresholds, or to disable BOR permanently. Three BOR thresholds are available through
option bytes.
The device remains in reset mode when VDD is below a specified threshold, VPOR/PDR or
VBOR, without the need for an external reset circuit.
The device also features an embedded programmable voltage detector (PVD) that monitors
the VDD/VDDA power supply and compares it to the VPVD threshold. An interrupt can be
generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is
higher than the VPVD threshold. The interrupt service routine can then generate a warning
message and/or put the MCU into a safe state. The PVD is enabled by software.
069
9
''86%B0,1
9
''B0,1
WLPH
9
''86%B0$;
86% IXQFWLRQDODUHD
9
''
9
''$
86% QRQ
IXQFWLRQDO
DUHD
9
''86%
3RZHURQ 3RZHUGRZQ
2SHUDWLQJPRGH
86%QRQ
IXQFWLRQDO
DUHD
DocID029161 Rev 7 27/209
STM32F423xH Functional overview
43
3.17.2 Internal reset OFF
This feature is available only on packages featuring the PDR_ON pin. The internal power-on
reset (POR) / power-down reset (PDR) circuitry is disabled by setting the PDR_ON pin to
low.
An external power supply supervisor should monitor VDD and should set the device in reset
mode when VDD is below 1.7 V. NRST should be connected to this external power supply
supervisor. Refer to Figure 7: Power supply supervisor interconnection with internal reset
OFF.
A comprehensive set of power-saving mode allows to design low-power applications.
When the internal reset is OFF, the following integrated features are no longer supported:
The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled.
The brownout reset (BOR) circuitry must be disabled.
The embedded programmable voltage detector (PVD) is disabled.
VBAT functionality is no more available and VBAT pin should be connected to VDD.
3.18 Voltage regulator
The regulator has three operating modes:
Main regulator mode (MR)
Low power regulator (LPR)
Power-down
Figure 7. Power supply supervisor interconnection with internal reset OFF(1)
1. The PRD_ON pin is available only on WLCSP81, UFBGA100, UFBGA144 and LQFP144 packages.
06Y9
3'5B21
9''
1567
([WHUQDO9''SRZHUVXSSO\VXSHUYLVRU
([WUHVHWFRQWUROOHUDFWLYHZKHQ
9''9
9''
Functional overview STM32F423xH
28/209 DocID029161 Rev 7
3.18.1 Regulator ON
On packages embedding the BYPASS_REG pin, the regulator is enabled by holding
BYPASS_REG low. On all other packages, the regulator is always enabled.
There are three power modes configured by software when the regulator is ON:
MR is used in the nominal regulation mode (With different voltage scaling in Run mode)
In Main regulator mode (MR mode), different voltage scaling are provided to reach the
best compromise between maximum frequency and dynamic power consumption.
LPR is used in the Stop mode
The LP regulator mode is configured by software when entering Stop mode.
Power-down is used in Standby mode.
The Power-down mode is activated only when entering in Standby mode. The regulator
output is in high impedance and the kernel circuitry is powered down, inducing zero
consumption. The contents of the registers and SRAM are lost.
Depending on the package, one or two external ceramic capacitors should be connected on
the VCAP_1 and VCAP_2 pins. The VCAP_2 pin is only available on 100- and 144-pin
packages.
All packages have the regulator ON feature.
3.18.2 Regulator OFF
This feature is available only on UFBGA100 and UFBGA144 packages, which feature the
BYPASS_REG pin. The regulator is disabled by holding BYPASS_REG high. The regulator
OFF mode allows to supply externally a V12 voltage source through VCAP_1 and VCAP_2
pins.
Since the internal voltage scaling is not managed internally, the external voltage value must
be aligned with the targeted maximum frequency.
The two 2.2 µF ceramic capacitors should be replaced by two 100 nF decoupling
capacitors.
When the regulator is OFF, there is no more internal monitoring on V12. An external power
supply supervisor should be used to monitor the V12 of the logic power domain. PA0 pin
should be used for this purpose, and act as power-on reset on V12 power domain.
In regulator OFF mode, the following features are no more supported:
PA0 cannot be used as a GPIO pin since it allows to reset a part of the V12 logic power
domain which is not reset by the NRST pin.
As long as PA0 is kept low, the debug mode cannot be used under power-on reset. As
a consequence, PA0 and NRST pins must be managed separately if the debug
connection under reset or pre-reset is required.
DocID029161 Rev 7 29/209
STM32F423xH Functional overview
43
Figure 8. Regulator OFF
The following conditions must be respected:
VDD should always be higher than VCAP_1 and VCAP_2 to avoid current injection
between power domains.
If the time for VCAP_1 and VCAP_2 to reach V12 minimum value is faster than the time for
VDD to reach 1.7 V, then PA0 should be kept low to cover both conditions: until VCAP_1
and VCAP_2 reach V12 minimum value and until VDD reaches 1.7 V (see Figure 9).
Otherwise, if the time for VCAP_1 and VCAP_2 to reach V12 minimum value is slower
than the time for VDD to reach 1.7 V, then PA0 could be asserted low externally (see
Figure 10).
If VCAP_1 and VCAP_2 go below V12 minimum value and VDD is higher than 1.7 V, then a
reset must be asserted on PA0 pin.
Note: The minimum value of V12 depends on the maximum frequency targeted in the application.
Functional overview STM32F423xH
30/209 DocID029161 Rev 7
Figure 9. Startup in regulator OFF: slow VDD slope
power-down reset risen after VCAP_1/VCAP_2 stabilization
1. This figure is valid whatever the internal reset mode (ON or OFF).
Figure 10. Startup in regulator OFF mode: fast VDD slope
power-down reset risen before VCAP_1/VCAP_2 stabilization
1. This figure is valid whatever the internal reset mode (ON or OFF).
06Y9
9''
WLPH
0LQ9
3'5 9 9&$3B9&$3B
9
1567
WLPH
3$
9''
WLPH
0LQ9
9&$3B9&$3B
9
3$DVVHUWHGH[WHUQDOO\
1567
WLPH 06Y9
3'5 9
DocID029161 Rev 7 31/209
STM32F423xH Functional overview
43
3.18.3 Regulator ON/OFF and internal reset ON/OFF availability
3.19 Real-time clock (RTC) and backup registers
The backup domain includes:
The real-time clock (RTC)
20 backup registers
The real-time clock (RTC) is an independent BCD timer/counter. Dedicated registers contain
the second, minute, hour (in 12/24 hour), week day, date, month, year, in BCD (binary-
coded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day of the month are
performed automatically. The RTC features a reference clock detection, a more precise
second source clock (50 or 60 Hz) can be used to enhance the calendar precision. The RTC
provides a programmable alarm and programmable periodic interrupts with wakeup from
Stop and Standby modes. The sub-seconds value is also available in binary format.
It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power
RC oscillator or the high-speed external clock divided by 128. The internal low-speed RC
has a typical frequency of 32 kHz. The RTC can be calibrated using an external 512 Hz
output to compensate for any natural quartz deviation.
Two alarm registers are used to generate an alarm at a specific time and calendar fields can
be independently masked for alarm comparison. To generate a periodic interrupt, a 16-bit
programmable binary auto-reload downcounter with programmable resolution is available
and allows automatic wakeup and periodic alarms from every 120 µs to every 36 hours.
A 20-bit prescaler is used for the time base clock. It is by default configured to generate a
time base of 1 second from a clock at 32.768 kHz.
The backup registers are 32-bit registers used to store 80 byte of user application data
when VDD power is not present. Backup registers are not reset by a system, a power reset,
or when the device wakes up from the Standby mode (see Section 3.20: Low-power
modes).
Table 4. Regulator ON/OFF and internal power supply supervisor availability
Package Regulator ON Regulator OFF Power supply
supervisor ON
Power supply
supervisor OFF
UFQFPN48 Yes No Yes No
LQFP64 Yes No Yes No
WLCSP81
Yes
BYPASS_REG
set to VSS
Yes
BYPASS_REG
set to VDD
Yes
PDR_ON
set to VDD
Yes
PDR_ON
set to VSS
LQFP100 Yes No Yes No
LQFP144 Yes No
Yes
PDR_ON
set to VDD
Yes
PDR_ON
set to VSS
UFBGA100
Yes
BYPASS_REG
set to VSS
Yes
BYPASS_REG
set to VDD
UFBGA144
Yes
BYPASS_REG
set to VSS
Yes
BYPASS_REG
set to VDD
Functional overview STM32F423xH
32/209 DocID029161 Rev 7
Additional 32-bit registers contain the programmable alarm subseconds, seconds, minutes,
hours, day, and date.
The RTC and backup registers are supplied through a switch that is powered either from the
VDD supply when present or from the VBAT pin.
3.20 Low-power modes
The devices support three low-power modes to achieve the best compromise between low
power consumption, short startup time and available wakeup sources:
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs.
To further reduce the power consumption, the Flash memory can be switched off
before entering in Sleep mode. Note that this requires a code execution from the RAM.
Stop mode
The Stop mode achieves the lowest power consumption while retaining the contents of
SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC
and the HSE crystal oscillators are disabled. The voltage regulator can also be put
either in normal or in low-power mode.
The device can be woken up from the Stop mode by any of the EXTI line (the EXTI line
source can be one of the 16 external lines, the PVD output, the RTC alarm/ wakeup/
tamper/ time stamp events).
Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal
voltage regulator is switched off so that the entire 1.2 V domain is powered off. The
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering
Standby mode, the SRAM and register contents are lost except for registers in the
backup domain when selected.
The device exits the Standby mode when an external reset (NRST pin), an IWDG reset,
a rising edge on one of the WKUP pins, or an RTC alarm/ wakeup/ tamper/time stamp
event occurs.
Standby mode is not supported when the embedded voltage regulator is bypassed and
the 1.2 V domain is controlled by an external power.
3.21 VBAT operation
The VBAT pin allows to power the device VBAT domain from an external battery, an external
super-capacitor, or from VDD when no external battery and an external super-capacitor are
present.
VBAT operation is activated when VDD is not present.
The VBAT pin supplies the RTC and the backup registers.
Note: When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events
do not exit it from VBAT operation. When PDR_ON pin is not connected to VDD (internal
Reset OFF), the VBAT functionality is no more available and VBAT pin should be connected
to VDD.
DocID029161 Rev 7 33/209
STM32F423xH Functional overview
43
3.22 Timers and watchdogs
The devices embed two advanced-control timer, ten general-purpose timers, two basic
timers, one low-power timer, two watchdog timers and a SysTick timer.
All timer counters can be frozen in debug mode.
Table 5 compares the features of the advanced-control and general-purpose timers.
Table 5. Timer feature comparison
Timer
type Timer Counter
resolution
Counter
type
Prescaler
factor
DMA
request
generation
Capture/
compare
channels
Complemen-
tary output
Max.
interface
clock
(MHz)
Max.
timer
clock
(MHz)
Advance
d-control
TIM1,
TIM8 16-bit
Up,
Down,
Up/down
Any
integer
between 1
and
65536
Yes 4 Yes 100 100
General
purpose
TIM2,
TIM5 32-bit
Up,
Down,
Up/down
Any
integer
between 1
and
65536
Yes 4 No 50 100
TIM3,
TIM4 16-bit
Up,
Down,
Up/down
Any
integer
between 1
and
65536
Yes 4 No 50 100
TIM9 16-bit Up
Any
integer
between 1
and
65536
No 2 No 100 100
TIM10,
TIM11 16-bit Up
Any
integer
between 1
and
65536
No 1 No 100 100
TIM12 16-bit Up
Any
integer
between 1
and
65536
No 2 No 50 100
TIM13,
TIM14 16-bit Up
Any
integer
between 1
and
65536
No 1 No 50 100
Functional overview STM32F423xH
34/209 DocID029161 Rev 7
3.22.1 Advanced-control timers (TIM1, TIM8)
The advanced-control timers (TIM1/8) can be seen as three-phase PWM generator
multiplexed on 4 independent channels. They have complementary PWM outputs with
programmable inserted dead times. They can also be considered as complete general-
purpose timers. Their 4 independent channels can be used for:
Input capture
Output compare
PWM generation (edge- or center-aligned modes)
One-pulse mode output
If configured as standard 16-bit timers, they have the same features as the general-purpose
TIMx timers. If configured as a 16-bit PWM generator, they have full modulation capability
(0-100%).
The advanced-control timers can work together with the TIMx timers via the Timer Link
feature for synchronization or event chaining.
TIM1 and TIM8 support independent DMA request generation.
3.22.2 General-purpose timers (TIMx)
There are elven synchronizable general-purpose timers embedded in the STM32F423xH
(see Table 5 for differences).
TIM2, TIM3, TIM4, TIM5
The STM32F423xH devices include 4 full-featured general-purpose timers: TIM2.
TIM3, TIM4 and TIM5. TIM2 and TIM5 timers are based on a 32-bit auto-reload
up/downcounter and a 16-bit prescaler while TIM3 and TIM4 timers are based on a 16-
bit auto-reload up/downcounter plus a 16-bit prescaler. They all features four
Basic
timers
TIM6,
TIM7 16-bit Up
Any
integer
between 1
and
65536
Yes 0 No 50 100
Low-
power
timer
LPTIM1 16-bit Up Between
1 and 128 No 2 No 50 100
Table 5. Timer feature comparison (continued)
Timer
type Timer Counter
resolution
Counter
type
Prescaler
factor
DMA
request
generation
Capture/
compare
channels
Complemen-
tary output
Max.
interface
clock
(MHz)
Max.
timer
clock
(MHz)
DocID029161 Rev 7 35/209
STM32F423xH Functional overview
43
independent channels for input capture/output compare, PWM or one-pulse mode
output. This gives up to 15 input capture/output compare/PWMs
TIM2. TIM3, TIM4 and TIM5 general-purpose timers can operate together or in
conjunction with the other general-purpose timers and TIM1 advanced-control timer via
the Timer Link feature for synchronization or event chaining.
Any of these general-purpose timers can be used to generate PWM output.
TIM2. TIM3, TIM4 and TIM5 channels have independent DMA request generation.
They are capable of handling quadrature (incremental) encoder signals and the digital
outputs from 1 to 4 hall-effect sensors.
TIM9, TIM10, TIM11, TIM12, TIM13 and TIM14
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.
TIM10, TIM11, TIM13 and TIM14 feature one independent channel, whereas TIM9 and
TIM12 have two independent channels for input capture/output compare, PWM or one-
pulse mode output. They can be synchronized with TIM2. TIM3, TIM4 and TIM5 full-
featured general-purpose timers or used as simple time bases.
3.22.3 Basic timer (TIM6, TIM7)
TIM6 and TIM7 timers are basic 16-bit timers. They support independent DMA request
generation.
3.22.4 Low-power timer (LPTIM1)
The low-power timer (LPTIM1) features an independent clock and runs in Stop mode if it is
clocked by LSE, LSI or by an external clock. LPTIM1 is able to wakeup the devices from
Stop mode.
The low-power timer main features are the following:
16-bit up counter with 16-bit autoreload register
16-bit compare register
Configurable output: pulse, PWM
Continuous / one shot mode
Selectable software / hardware input trigger
Selectable clock source
Internal clock source: LSE, LSI, HSI or APB1 clock
External clock source over LPTIM1 input (working even with no internal clock
source running, used by the pulse counter application)
Programmable digital glitch filter
Encoder mode
Active in Stop mode.
3.22.5 Independent watchdog
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is
clocked from an independent 32 kHz internal RC and as it operates independently from the
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog
to reset the device when a problem occurs, or as a free-running timer for application timeout
management. It is hardware- or software-configurable through the option bytes.
Functional overview STM32F423xH
36/209 DocID029161 Rev 7
3.22.6 Window watchdog
The window watchdog is based on a 7-bit downcounter that can be set as free-running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from
the main clock. It has an early warning interrupt capability and the counter can be frozen in
debug mode.
3.22.7 SysTick timer
This timer is dedicated to real-time operating systems, but could also be used as a standard
downcounter. It features:
A 24-bit downcounter
Autoreload capability
Maskable system interrupt generation when the counter reaches 0
Programmable clock source.
3.23 Inter-integrated circuit interface (I2C)
The devices feature up to four I2C bus interfaces which can operate in multimaster and
slave modes:
One I2C interface supports the Standard mode (up to 100 kHz), Fast-mode (up to
400 kHz) modes and Fast-mode plus (up to 1 MHz).
Three I2C interfaces support the Standard mode (up to 100 KHz) and the Fast mode
(up to 400 KHz). Their frequency can be increased up to 1 MHz. For more details on
the complete solution, refer to the nearest STMicroelectronics sales office.
All I2C interfaces features 7/10-bit addressing mode and 7-bit addressing mode (as slave)
and embed a hardware CRC generation/verification.
They can be served by DMA and they support SMBus 2.0/PMBus.
The devices also include programmable analog and digital noise filters (see Table 6).
3.24 Universal synchronous/asynchronous receiver transmitters
(USART)
The devices embed four universal synchronous/asynchronous receiver transmitters
(USART1, USART2, USART3 and USART6) as well as six universal asynchronous receiver
transmitters (UART4, UART5, UART7, UART8, UART9 and UART10).
These ten interfaces provide asynchronous communication, IrDA SIR ENDEC support,
multiprocessor communication mode, single-wire half-duplex communication mode and
have LIN Master/Slave capability. USART1, USART6, UART9 and UART10 can
communicate at speeds up to 12.5 Mbit/s. The other interfaces communicate at up to
6.25 bit/s.
Table 6. Comparison of I2C analog and digital filters
Analog filter Digital filter
Pulse width of
suppressed spikes 50 ns Programmable length from 1 to 15 I2C peripheral clocks
DocID029161 Rev 7 37/209
STM32F423xH Functional overview
43
USART1, USART2, USART3 and USART6 provide hardware management of the CTS and
RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication
capability. All interfaces can be served by the DMA controller.
Table 7. USART feature comparison
USART
name
Standard
features
Modem
(RTS/CTS) LIN SPI
master irDA Smartcard
(ISO 7816)
Max. baud
rate in Mbit/s
(oversampling
by 16)
Max. baud
rate in Mbit/s
(oversampling
by 8)
APB
mapping
USART1 X X X X X X 6.25 12.5
APB2
(max.
100 MHz)
USART2 X X X X X X 3.12 6.25
APB1
(max.
50 MHz)
USART3 X X X X X X 3.12 6.25
APB1
(max.
50 MHz)
UART4 X - X - X - 3.12 6.25
APB1
(max.
50 MHz)
UART5 X - X - X - 3.12 6.25
APB1
(max.
50 MHz)
USART6 X X X X X X 6.25 12.5
APB2
(max.
100 MHz)
UART7 X - X - X - 3.12 6.25
APB1
(max.
50 MHz)
UART8 X - X - X - 3.12 6.25
APB1
(max.
50 MHz)
UART9 X - X - X - 6.25 12.5
APB2
(max.
100 MHz)
UART10 X - X - X - 6.25 12.5
APB2
(max.
100 MHz)
Functional overview STM32F423xH
38/209 DocID029161 Rev 7
3.25 Serial peripheral interface (SPI)
The devices feature five SPIs in slave and master modes in full-duplex and simplex
communication modes. SPI1, SPI4 and SPI5 can communicate at up to 50 Mbit/s, SPI2 and
SPI3 can communicate at up to 25 Mbit/s. The 3-bit prescaler gives 8 master mode
frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC
generation/verification supports basic SD Card/MMC modes. All SPIs can be served by the
DMA controller.
The SPI interfaces can be configured to operate in TI mode for communications in master
mode and slave mode.
3.26 Inter-integrated sound (I2S)
Five standard I2S interfaces (multiplexed with SPI1 to SPI5) are available. They can be
operated in master or slave mode, in simplex communication mode, and full duplex mode
for I2S2 and I2S3. All I2S interfaces can be configured to operate with a 16-/32-bit resolution
as an input or output channel. I2Sx audio sampling frequencies from 8 kHz up to 192 kHz
are supported. When either or both of the I2S interfaces is/are configured in master mode,
the master clock can be output to the external DAC/CODEC at 256 times the sampling
frequency.
All I2Sx interfaces can be served by the DMA controller.
3.27 Serial Audio interface (SAI1)
The serial audio interface (SAI1) is based on two independent audio sub-blocks which can
operate as transmitter or receiver with their FIFO. Many audio protocols are supported by
each block: I2S standards, LSB or MSB-justified, PCM/DSP, TDM, AC’97 and SPDIF
output, supporting audio sampling frequencies from 8 kHz up to 192 kHz. Both sub-blocks
can be configured in master or in slave mode.
In master mode, the master clock can be output to the external DAC/CODEC at 256 times of
the sampling frequency.
The two sub-blocks can be configured in synchronous mode when full-duplex mode is
required.
SAI1 can be served by the DMA controller.
3.28 Audio PLL (PLLI2S)
The devices feature an additional dedicated PLL for audio I2S and SAI applications. It allows
to achieve error-free I2S sampling clock accuracy without compromising on the CPU
performance, while using USB peripherals.
Different sources can be selected for the I2S master clock of the APB1 and the I2S master
clock of the APB2. This gives the flexibility to work with two different audio sampling
frequencies. The different possible sources are the main PLL, the PLLI2S, HSE or HSI
clocks or an external clock provided through a pin (external PLL or CODEC output)
DocID029161 Rev 7 39/209
STM32F423xH Functional overview
43
Different sources can also be selected for the SAI. The different possible sources are the
main PLL, the PLLI2S, HSE or HSI clocks or an external clock provided through a pin
(external PLL or CODEC output).
The PLLI2S configuration can be modified to manage an I2S/SAI sample rate change
without disabling the main PLL (PLL) used for CPU, USB and Ethernet interfaces.
The audio PLL can be programmed with very low error to obtain sampling rates ranging
from 8 KHz to 192 KHz.
3.29 Digital filter for sigma-delta modulators (DFSDM)
The device embeds two DFSDMs:
DFSDM1 has 2 digital filters modules and 4 external input serial channels
(transceivers) or alternately 2 internal parallel inputs support.
DFSDM2 features 4 digital filters modules and 8 external input serial channels
(transceivers) or alternately 4 internal parallel inputs support.
The amount of filters defines the number of conversions which can be performed
simultaneously.
The DFSDM peripheral is dedicated to interface the external Σ∆ modulators to
microcontroller and then to perform digital filtering of the received data streams (which
represent analog value on Σ∆ modulators inputs). DFSDM can also interface PDM (Pulse
Density Modulation) microphones and perform PDM to PCM conversion and filtering in
hardware. It is also possible to introduce a programmable delay between different
microphones (beamforming feature). DFSDM features optional parallel data stream inputs
from microcontrollers memory (through DMA/CPU transfers into DFSDM).
DFSDM transceivers support several serial interface formats (to support various Σ∆
modulators). DFSDM digital filter modules perform digital processing according user
selected filter parameters with up to 24-bit final ADC resolution.
3.30 Dynamic tuning of PDM delays for sound source localization
A mechanism is implemented on top of the DFSDM allowing to dynamically tune PDM
delays of each microphone without the need to add external delay lines.
Audio application with several microphones require strong microphones placement
constraints, as the distance between the microphones must be a multiple of v/F where v is
the speed of the sound and F is the PCM sampling frequency.
The designed mechanism removes this constraint by programming delays for each digital
microphone with the granularity of the PDM clock rate prior to the conversion into PCM rate.
The tuning delay is performed by a clock skipping technique.
Table 8. DFSDM feature comparison
DFSDM instance External input serial
channels
External input parallel
channels Digital filters
DFSDM1 4 2 2
DFSDM2 8 4 4
Functional overview STM32F423xH
40/209 DocID029161 Rev 7
The strong benefits of such mechanism coupled with DFSDM are:
Possibility to place the digital microphones close to each other
No need for external delay lines
The delay tuning is done in hardware, preventing the use of MIPs crunching algorithms
Possibility to change the delay tuning on the fly
The low power consumption and CPU time released due to the DFSDM hardware PDM
to PCM conversion
The impacted audio application are beam forming and sound source localization
3.31 Secure digital input/output interface (SDIO)
An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System
Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit.
The interface allows data transfer at up to 50 MHz, and is compliant with the SD Memory
Card Specification Version 2.0.
The SDIO Card Specification Version 2.0 is also supported with two different databus
modes: 1-bit (default) and 4-bit.
The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack
of MMC4.1 or previous.
In addition to SD/SDIO/MMC/eMMC, this interface is fully compliant with the CE-ATA digital
protocol Rev1.1.
3.32 Controller area network (bxCAN)
The three CANs are compliant with the 2.0A and B (active) specifications with a bitrate up to
1 Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as
extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive
FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one
CAN is used). 256 bytes of SRAM are allocated for CAN1 and CAN2, and 512 bytes for
CAN3.
3.33 Universal serial bus on-the-go full-speed (USB_OTG_FS)
The devices embed a USB OTG full-speed device/host/OTG peripheral with integrated
transceivers. The USB OTG FS peripheral is compliant with USB 2.0 and OTG 1.0
specifications. It features software-configurable endpoint setting and supports
suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock,
which is generated by a PLL connected to the HSE oscillator. The Battery Charging
Detection (BCD) can detect and identify the type of port it is connected to (standard USB or
charger). The charging type can also be detected: Dedicated Charging Port (DCP),
Charging Downstream Port (CDP) and Standard Downstream Port (SDP).
Some packages provide a dedicated USB power rail allowing to supply the USB from a
different voltage that the rest of the device. As an example, the device can be powered with
the minimum specified supply voltage while the USB runs at the level defined by the
standard.
DocID029161 Rev 7 41/209
STM32F423xH Functional overview
43
The main USB OTG FS features are:
Combined Rx and Tx FIFO size of 320 × 35 bits with dynamic FIFO sizing
Support of session request protocol (SRP) and host negotiation protocol (HNP)
6 bidirectional endpoints
12 host channels with periodic OUT support
HNP/SNP/IP inside (no need for any external resistor)
For OTG/Host modes, a power switch is needed when bus-powered devices are
connected
Link Power Management (LPM)
Battery Charging Detection (BCD) supporting DCP, CDP and SDP
3.34 Random number generator (RNG)
All devices embed an RNG that delivers 32-bit random numbers generated by an integrated
analog circuit.
3.35 Advanced encryption standard hardware accelerator (AES)
The devices embed an AES hardware accelerator can be used to both encipher and
decipher data using AES algorithm.
The AES peripheral supports:
Encryption/Decryption using AES Rijndael Block Cipher algorithm
NIST FIPS 197 compliant implementation of AES encryption/decryption algorithm
128-bit and 256-bit register for storing the encryption, decryption or derivation key (4x
32-bit registers)
Electronic codebook (ECB), Cipher block chaining (CBC), Counter mode (CTR), Galois
Counter Mode (GCM), Galois Message Authentication Code mode (GMAC) and Cipher
Message Authentication Code mode (CMAC) supported.
Key scheduler
Key derivation for decryption
128-bit data block processing
128-bit, 256-bit key length
1x32-bit INPUT buffer and 1x32-bit OUTPUT buffer.
Register access supporting 32-bit data width only.
One 128-bit Register for the initialization vector when AES is configured in CBC mode
or for the 32-bit counter initialization when CTR mode is selected, GCM mode or
CMAC mode.
Automatic data flow control with support of direct memory access (DMA) using 2
channels, one for incoming data, and one for outcoming data.
Suspend a message if another message with a higher priority needs to be processed.
Functional overview STM32F423xH
42/209 DocID029161 Rev 7
3.36 General-purpose input/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain,
with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down)
or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog
alternate functions. All GPIOs are high-current-capable and have speed selection to better
manage internal noise, power consumption and electromagnetic emission.
The I/O configuration can be locked if needed by following a specific sequence in order to
avoid spurious writing to the I/Os registers.
Fast I/O handling allowing maximum I/O toggling up to 100 MHz.
3.37 Analog-to-digital converter (ADC)
One 12-bit analog-to-digital converter is embedded and shares up to 16 external channels,
performing conversions in the single-shot or scan mode. In scan mode, automatic
conversion is performed on a selected group of analog inputs.
The ADC can be served by the DMA controller. An analog watchdog feature allows very
precise monitoring of the converted voltage of one, some or all selected channels. An
interrupt is generated when the converted voltage is outside the programmed thresholds.
To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1,
TIM2, TIM3, TIM4 or TIM5 timer.
3.38 Digital to analog converter (DAC)
The two 12-bit buffered DAC channels can be used to convert two digital signals into two
analog voltage signal outputs.
This digital interface supports the following features:
Two DAC output channels
8-bit or 12-bit output mode
Left or right data alignment in 12-bit mode
Synchronized update capability
Noise-wave generation
Triangular-wave generation
Dual DAC channel independent or simultaneous conversions
DMA capability for each channel
External triggers for conversion
Input voltage reference (VREF+)
Eight DAC trigger inputs are used in the device. The DAC channels are triggered through
the timer update outputs that are also connected to different DMA channels.
DocID029161 Rev 7 43/209
STM32F423xH Functional overview
43
3.39 Temperature sensor
The temperature sensor has to generate a voltage that varies linearly with temperature. The
conversion range is between 1.7 V and 3.6 V. The temperature sensor is internally
connected to the ADC_IN18 input channel which is used to convert the sensor output
voltage into a digital value. Refer to the reference manual for additional information.
As the offset of the temperature sensor varies from chip to chip due to process variation, the
internal temperature sensor is mainly suitable for applications that detect temperature
changes instead of absolute temperatures. If an accurate temperature reading is needed,
then an external temperature sensor part should be used.
3.40 Serial wire JTAG debug port (SWJ-DP)
The Arm SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug
port that enables either a serial wire debug or a JTAG probe to be connected to the target.
Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could
be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with
SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to
switch between JTAG-DP and SW-DP.
3.41 Embedded Trace Macrocell™
The Arm Embedded Trace Macrocell provides a greater visibility of the instruction and data
flow inside the CPU core by streaming compressed data at a very high rate from the
STM32F423xH through a small number of ETM pins to an external hardware trace port
analyzer (TPA) device. The TPA is connected to a host computer using any high-speed
channel available. Real-time instruction and data flow activity can be recorded and then
formatted for display on the host computer that runs the debugger software. TPA hardware
is commercially available from common development tool vendors.
The Embedded Trace Macrocell operates with third party debugger software tools.
Pinouts and pin description STM32F423xH
44/209 DocID029161 Rev 7
4 Pinouts and pin description
4.1 WLCSP81 pinout description
Figure 11. STM32F423xH WLCSP81 pinout
1. The above figure shows the package top view.
06Y9
9'' 3& 3$ 3' 3% 3% %227 966

$
%
&
'
(
)
*
+
966 3$ 3$ 3& 3% 3% 3% 3'5B21
9&$3B 3$ 3$ 3& 3' 3&
$17,B7$03
3$ 3$ 3$
3& 3& 3%
9''86% 3'
3' 3%
3% 9&$3B 3%
3(
3%
3%
3%
3(
3(
966
3$:.83
9''$
3&
3&
3&
3$
3% 3&
3$
95()
3&
9''
966
9''
9%$7
3&
26&B,1
966$95()
1567
3+
26&B287
3+
26&B,1
3&
26&B287
-9'' 966 3( 3(3( 3$3& 9'' 3$
3& 3& 3%
3% 3$ 3$
3( 3$ %<3$66B
5(*
DocID029161 Rev 7 45/209
STM32F423xH Pinouts and pin description
74
4.2 UFQFPN48 pinout description
Figure 12. STM32F423xH UFQFPN48 pinout
1. The above figure shows the package top view.
069
966
%227
3%
3%
3%
3%
3%
3$
3$
        
 9''
 966
 3$
8)4)31
 3$
966$95()
 3$
9''$95()
 3$
3$
 3$
3$
 3$
3$

9''
        
3$
3$
3$
3$
3$
3%
3%
3%
966






  
  
3%
9&$3B
3%
3%
3%
3%
9%$7
3&
3&26&B,1
3+26&B,1
1567
3%
3%
9''
3&26&B287
3+26&B287
Pinouts and pin description STM32F423xH
46/209 DocID029161 Rev 7
4.3 LQFP64 pinout description
Figure 13. STM32F423xH LQFP64 pinout
1. The above figure shows the package top view.
             
















            











9%$7
3&26&B,1
3+26&B,1
1567
3&
3&
3&
3&
966$95()
9''$95()
3$
3$
3$
9''
3%
3%
%227
3%
3%
3%
3%
3%
3'
3&
3&
3&
3$
3$
9''
966
3$
3$
3$
3$
3$
3$
3&
3&
3&
3&
3%
3%
3%
3%
3$
966
3$
3$
3$
3$
3&
3&
3%
3%
3%
3%
9&$3B
/4)3
3&
069
9''
966
9''
966
3+26&B287
3&26&B287
DocID029161 Rev 7 47/209
STM32F423xH Pinouts and pin description
74
4.4 LQFP100 pinout description
Figure 14. STM32F423xH LQFP100 pinout
1. The above figure shows the package top view.


































































0%
0%
0%
0%
0%
6"!4
0#/3#?).
0#/3#?/54
633
6$$
0(/3#?).
.234
0#
0#
0#
0#
6$$
633!62%&
6$$!
62%&
0!
0!
0!
6$$
633
6#!0?
0!
0!
0!
0!
0!
0!
0#
0#
0#
0#
0$
0$
0$
0$
0$
0$
0$
0$
0"
0"
0"
0"
0!
633
6$$
0!
0!
0!
0!
0#
0#
0"
0"
0"
0%
0%
0%
0%
0%
0%
0%
0%
0%
0"
6#!0?
633
6$$
6$$
633
0%
0%
0"
0"
"//4
0"
0"
0"
0"
0"
0$
0$
0$
0$
0$
0$
0$
0$
0#
0#
0#
0!
0!

























-36
,1&0
0#
0(/3#?/54
Pinouts and pin description STM32F423xH
48/209 DocID029161 Rev 7
4.5 LQFP144 pinout description
Figure 15. STM32F423xH LQFP144 pinout
1. The above figure shows the package top view.
06Y9
/4)3
























3)
3+26&B,1
3+26&B287
1567
3&
3&
3&
3&
9''
966$95()
95()
9''$
3$
3$
3$
3)
3)
3)
9''
3)
3)
3)
966
3)










































































966
9''
3$
3&
3)
3$
3$
3%
966
3)
3$
3&
9''
3)
3(
3%
3%
3*
3(
966
3)
3)
3*
3(
9''
3*
3'
3'
9''
966
3'
3'
3'
3'
3'
3'
3%
3%
3%
3%
3*
3*
966
3*
3*
3&
3&
9''86%
3*
3*
9''
3'5B21
3%
3%
3%
3(
3(
3%
9''
3*
3%
%227
966
3*
3*
3%
3%
3*
3'
9''
3*
3*
3*
3'
 966
 3'
 3'
 3'
 3'
 3'
 3'
 3&
 3&
3&
 3$
 3$
 9''





3$
966
9&$3B
3$
3$


3&
3&


3$
3$
 3$




3(
3%
9&$3B
3%




3(
3(
3(
3(


9''
3(

3$



3)
3)
9%$7
3&26&B,1
3)
3(
3(
3&
3&26&B287
3(
3(
3(
DocID029161 Rev 7 49/209
STM32F423xH Pinouts and pin description
74
4.6 UFBGA100 pinout description
Figure 16. STM32F423xH UFBGA100 pinout
1. The above figure shows the package top view.
06Y9
$
%
(
'
&
)
*
+
-
.
/
0
3(
3&
26&
B287
3&
26&
B,1
3&
3(
3&
966$
95()
95()
9''$
3(
3(
3(
3(
9%$7
966
9''
1567
3&
3&
3$
3$
3%
3(
3%
966
%<3$66
B5(*
3'5
B21
3&
3$
3$
3$
%227
3%
9''
3$
3$
3$
3'
3%
3%
3&
3&
3%
3'
3'
3%
3%
3%
3'
3(
3(
3%
3'
3'
3'
3(
3(
3$
3'
3'
3%
3(
3(
3$
3&
3&
3&
3$
3'
3'
3%
3%
3(
3$
3&
9&$3
B
3$
3&
3'
3'
3%
9&$3
B
3(
966
9''
3$
3$
3$
3&
3&
3'
3'
3%
3%
3(
966
9''
  
3+
26&B
,1
3+
26&B
287
Pinouts and pin description STM32F423xH
50/209 DocID029161 Rev 7
4.7 UFBGA144 pinout description
Figure 17. STM32F423xH UFBGA144 pinout
1. The above figure shows the package top view.
4.8 Pins definition
06Y9
3& 3( 3( 3( 3( 3% 3% 3' 3' 3$ 3$ 3$

$
%
&
'
(
)
*
+
-
.
/
0
3&
26&B,1 3( 3( 3( 3% 3% 3* 3* 3' 3& 3& 3$
3&
26&B287 9%$7 3) 3) 3% 3* 3' 3& 9''86% 3$
3+
26&B,1 966 9'' 3' 3$ 3$
3+
26&B287 3) 3) 3' 3& 3$
1567 3) 3& 3&
3) 3) 3* 3&
3& 3& 3& 3* 3* 3*
966$ 3$ 3$ 3* 3* 3*
95() 3$ 3$ 3& 3) 3( 3' 3' 3' 3'
95() 3$ 3$ 3% 3) 3) 3( 3( 3' 3' 3% 3%
9''$ 3$ 3$ 3% 3) 3) 3( 3( 3% 3% 3% 3%
3) %227 3% 3*
3% 3*
3* 3'
3* 3'966 9663) 3'5B21
3) 9''9'' 9''9'' 9''9'' 9''
3) 966966 9&$3B9'' 9''966 9''
3( 3'966 9&$3B3& %<3$66B
5(*
3( 3'3* 3(3& 3%
3* 3(
Table 9. Legend/abbreviations used in the pinout table
Name Abbreviation Definition
Pin name Unless otherwise specified in brackets below the pin name, the pin function during and after
reset is the same as the actual pin name
Pin type
S Supply pin
I Input only pin
I/O Input/ output pin
I/O structure
FT 5 V tolerant I/O
FTf 5 V tolerant I/O, I2C FM+ option
TC Standard 3.3 V I/O
TTa 3.3 V tolerant I/O directly connected to DAC
B Dedicated BOOT0 pin
NRST Bidirectional reset pin with embedded weak pull-up resistor
Notes Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset
DocID029161 Rev 7 51/209
STM32F423xH Pinouts and pin description
74
Alternate functions Functions selected through GPIOx_AFR registers
Additional functions Functions directly selected/enabled through peripheral registers
Table 9. Legend/abbreviations used in the pinout table (continued)
Name Abbreviation Definition
Table 10. STM32F423xH pin definition
Pin Number
Pin name
(function
after
reset)(1)
Pin
type
I/O
structure Notes Alternate functions Additional
functions
UFQFPN48
LQFP64
WLCSP81
LQFP100
UFBGA100
UFBGA144
LQFP144
- - NC 1 B2 A3 1 PE2 I/O FT (2)
TRACECLK,
SPI4_SCK/I2S4_CK,
SPI5_SCK/I2S5_CK,
SAI1_MCLK_A,
QUADSPI_BK1_IO2,
UART10_RX,
FSMC_A23,
EVENTOUT
-
- - NC 2 A1 A2 2 PE3 I/O FT (2)
TRACED0, SAI1_SD_B,
UART10_TX,
FSMC_A19,
EVENTOUT
-
- - NC 3 B1 B2 3 PE4 I/O FT (2)(3)
TRACED1,
SPI4_NSS/I2S4_WS,
SPI5_NSS/I2S5_WS,
SAI1_SD_A,
DFSDM1_DATIN3,
FSMC_A20,
EVENTOUT
-
- - NC 4 C2 B3 4 PE5 I/O FT (2)
TRACED2, TIM9_CH1,
SPI4_MISO,
SPI5_MISO,
SAI1_SCK_A,
DFSDM1_CKIN3,
FSMC_A21,
EVENTOUT
-
- - NC 5 D2 B4 5 PE6 I/O FT (2)(3)
TRACED3, TIM9_CH2,
SPI4_MOSI/I2S4_SD,
SPI5_MOSI/I2S5_SD,
SAI1_FS_A,
FSMC_A22,
EVENTOUT
-
1 1 B9 6 E2 C2 6 VBAT S - - - VBAT
22C8 7 C1 A1 7 PC13-
ANTI_TAMP I/O FT (4)(5) EVENTOUT TAMP_1
33C9 8 D1 B1 8 PC14-
OSC32_IN I/O FT (4)(5)(6) EVENTOUT OSC32_IN
Pinouts and pin description STM32F423xH
52/209 DocID029161 Rev 7
44D9 9 E1 C1 9 PC15-
OSC32_OUT I/O FT (4)(6) EVENTOUT OSC32_OUT
--- - - C310 PF0 I/O FT - I2C2_SDA, FSMC_A0,
EVENTOUT -
--- - - C411 PF1 I/O FT - I2C2_SCL, FSMC_A1,
EVENTOUT -
--- - - D412 PF2 I/O FT - I2C2_SMBA, FSMC_A2,
EVENTOUT -
--- - - E213 PF3 I/O FT - TIM5_CH1, FSMC_A3,
EVENTOUT -
--- - - E314 PF4 I/O FT - TIM5_CH2, FSMC_A4,
EVENTOUT -
--- - - E415 PF5 I/O FT - TIM5_CH3, FSMC_A5,
EVENTOUT -
- - D8 10 F2 D2 16 VSS S - - - -
- - E8 11 G2 D3 17 VDD S - - - -
--- - - F318 PF6 I/O FT -
TRACED0, TIM10_CH1,
SAI1_SD_B,
UART7_Rx,
QUADSPI_BK1_IO3,
EVENTOUT
-
--- - - F219 PF7 I/O FT -
TRACED1, TIM11_CH1,
SAI1_MCLK_B,
UART7_Tx,
QUADSPI_BK1_IO2,
EVENTOUT
-
--- - - G320 PF8 I/O FT -
SAI1_SCK_B,
UART8_RX,
TIM13_CH1,
QUADSPI_BK1_IO0,
EVENTOUT
-
--- - - G221 PF9 I/O FT -
SAI1_FS_B,
UART8_TX,
TIM14_CH1,
QUADSPI_BK1_IO1,
EVENTOUT
-
--- - - G122 PF10 I/O FT - TIM1_ETR, TIM5_CH4,
EVENTOUT -
5 5 E9 12 F1 D1 23 PH0 - OSC_IN I/O FT (6) EVENTOUT OSC_IN
6 6 F9 13 G1 E1 24 PH1 -
OSC_OUT I/O FT (6) EVENTOUT OSC_OUT
Table 10. STM32F423xH pin definition (continued)
Pin Number
Pin name
(function
after
reset)(1)
Pin
type
I/O
structure Notes Alternate functions Additional
functions
UFQFPN48
LQFP64
WLCSP81
LQFP100
UFBGA100
UFBGA144
LQFP144
DocID029161 Rev 7 53/209
STM32F423xH Pinouts and pin description
74
7 7 G9 14 H2 F1 25 NRST I/O RST - - NRST
- 8 F8 15 H1 H1 26 PC0 I/O FT -
LPTIM1_IN1,
DFSDM2_CKIN4,
SAI1_MCLK_B,
EVENTOUT
ADC1_IN10,
WKUP2
- 9 C7 16 J2 H2 27 PC1 I/O FT -
LPTIM1_OUT,
DFSDM2_DATIN4,
SAI1_SD_B,
EVENTOUT
ADC1_IN11,
WKUP3
-10D717 J3 H3 28 PC2 I/O FT -
LPTIM1_IN2,
DFSDM2_DATIN7,
SPI2_MISO,
I2S2ext_SD,
SAI1_SCK_B,
DFSDM1_CKOUT,
FSMC_NWE,
EVENTOUT
ADC1_IN12
-11E718 K2 H4 29 PC3 I/O FT -
LPTIM1_ETR,
DFSDM2_CKIN7,
SPI2_MOSI/I2S2_SD,
SAI1_FS_B, FSMC_A0,
EVENTOUT
ADC1_IN13
---19 - - 30 VDD S - - - -
8 12 H9 20 J1 J1 31 VSSA S - - - -
--- - K1K1 - VREF- S - - - -
- - G8 21 L1 L1 32 VREF+ S - - - -
9 13 F7 22 M1 M1 33 VDDA S - - - -
10 14 G7 23 L2 J2 34 PA0 I/O FT -
TIM2_CH1/TIM2_ETR,
TIM5_CH1, TIM8_ETR,
USART2_CTS,
UART4_TX, EVENTOUT
ADC1_IN0,
WKUP1
11 15 H8 24 M2 K2 35 PA1 I/O FT -
TIM2_CH2, TIM5_CH2,
SPI4_MOSI/I2S4_SD,
USART2_RTS,
UART4_RX,
QUADSPI_BK1_IO3,
EVENTOUT
ADC1_IN1
12 16 J9 25 K3 L2 36 PA2 I/O FT -
TIM2_CH3, TIM5_CH3,
TIM9_CH1, I2S2_CKIN,
USART2_TX,
FSMC_D4/FSMC_DA4,
EVENTOUT
ADC1_IN2
Table 10. STM32F423xH pin definition (continued)
Pin Number
Pin name
(function
after
reset)(1)
Pin
type
I/O
structure Notes Alternate functions Additional
functions
UFQFPN48
LQFP64
WLCSP81
LQFP100
UFBGA100
UFBGA144
LQFP144
Pinouts and pin description STM32F423xH
54/209 DocID029161 Rev 7
13 17 E6 26 L3 M2 37 PA3 I/O FT -
TIM2_CH4, TIM5_CH4,
TIM9_CH2, I2S2_MCK,
USART2_RX,
SAI1_SD_B,
FSMC_D5/FSMC_DA5,
EVENTOUT
ADC1_IN3
- 18 H7 27 - - 38 VSS S - - - -
--F6- E3H5 - BYPASS_
REG IFT - - -
-19J8 28 - F4 39 VDD S - - - -
14 20 E5 29 M3 J3 40 PA4 I/O TTa -
SPI1_NSS/I2S1_WS,
SPI3_NSS/I2S3_WS,
USART2_CK,
DFSDM1_DATIN1,
FSMC_D6/FSMC_DA6,
EVENTOUT
ADC1_IN4,
DAC_OUT1
15 21 G6 30 K4 K3 41 PA5 I/O TTa -
TIM2_CH1/TIM2_ETR,
TIM8_CH1N,
SPI1_SCK/I2S1_CK,
DFSDM1_CKIN1,
FSMC_D7/FSMC_DA7,
EVENTOUT
ADC1_IN5,
DAC_OUT2
16 22 F5 31 L4 L3 42 PA6 I/O FT -
TIM1_BKIN, TIM3_CH1,
TIM8_BKIN,
SPI1_MISO, I2S2_MCK,
DFSDM2_CKIN1,
TIM13_CH1,
QUADSPI_BK2_IO0,
SDIO_CMD,
EVENTOUT
ADC1_IN6
17 23 J7 32 M4 M3 43 PA7 I/O FT -
TIM1_CH1N,
TIM3_CH2,
TIM8_CH1N,
SPI1_MOSI/I2S1_SD,
DFSDM2_DATIN1,
TIM14_CH1,
QUADSPI_BK2_IO1,
EVENTOUT
ADC1_IN7
-24H633 K5 J4 44 PC4 I/O FT -
DFSDM2_CKIN2,
I2S1_MCK,
QUADSPI_BK2_IO2,
FSMC_NE4,
EVENTOUT
ADC1_IN14
Table 10. STM32F423xH pin definition (continued)
Pin Number
Pin name
(function
after
reset)(1)
Pin
type
I/O
structure Notes Alternate functions Additional
functions
UFQFPN48
LQFP64
WLCSP81
LQFP100
UFBGA100
UFBGA144
LQFP144
DocID029161 Rev 7 55/209
STM32F423xH Pinouts and pin description
74
-25J6 34 L5 K4 45 PC5 I/O FT -
DFSDM2_DATIN2,
I2CFMP1_SMBA,
USART3_RX,
QUADSPI_BK2_IO3,
FSMC_NOE,
EVENTOUT
ADC1_IN15
18 26 E4 35 M5 L4 46 PB0 I/O FT -
TIM1_CH2N,
TIM3_CH3,
TIM8_CH2N,
SPI5_SCK/I2S5_CK,
EVENTOUT
ADC1_IN8
19 27 G5 36 M6 M4 47 PB1 I/O FT -
TIM1_CH3N,
TIM3_CH4,
TIM8_CH3N,
SPI5_NSS/I2S5_WS,
DFSDM1_DATIN0,
QUADSPI_CLK,
EVENTOUT
ADC1_IN9
20 28 H5 37 L6 J5 48 PB2 I/O FT -
LPTIM1_OUT,
DFSDM1_CKIN0,
QUADSPI_CLK,
EVENTOUT
BOOT1
- - - - - M5 49 PF11 I/O FT - TIM8_ETR, EVENTOUT -
--- - - L550 PF12 I/O FT - TIM8_BKIN, FSMC_A6,
EVENTOUT -
- - - - - G4 51 VSS S - - - -
--- - - G552 VDD S - - - -
--- - - K553 PF13 I/O FT - I2CFMP1_SMBA,
FSMC_A7, EVENTOUT -
- - - - - M6 54 PF14 I/O FTf - I2CFMP1_SCL,
FSMC_A8, EVENTOUT -
- - - - - L6 55 PF15 I/O FTf - I2CFMP1_SDA,
FSMC_A9, EVENTOUT -
--- - - K656 PG0 I/O FT -
CAN1_RX, UART9_RX,
FSMC_A10,
EVENTOUT
-
--- - - J657 PG1 I/O FT - CAN1_TX, UART9_TX,
FSMC_A11, EVENTOUT -
Table 10. STM32F423xH pin definition (continued)
Pin Number
Pin name
(function
after
reset)(1)
Pin
type
I/O
structure Notes Alternate functions Additional
functions
UFQFPN48
LQFP64
WLCSP81
LQFP100
UFBGA100
UFBGA144
LQFP144
Pinouts and pin description STM32F423xH
56/209 DocID029161 Rev 7
- - NC 38 M7 M7 58 PE7 I/O FT (2)
TIM1_ETR,
DFSDM1_DATIN2,
UART7_Rx,
QUADSPI_BK2_IO0,
FSMC_D4/FSMC_DA4,
EVENTOUT
-
- - NC 39 L7 L7 59 PE8 I/O FT (2)
TIM1_CH1N,
DFSDM1_CKIN2,
UART7_Tx,
QUADSPI_BK2_IO1,
FSMC_D5/FSMC_DA5,
EVENTOUT
-
- - J5 40 M8 K7 60 PE9 I/O FT -
TIM1_CH1,
DFSDM1_CKOUT,
QUADSPI_BK2_IO2,
FSMC_D6/FSMC_DA6,
EVENTOUT
-
- - - - - H6 61 VSS S - - - -
--- - - G662 VDD S - - - -
- - G4 41 L8 J7 63 PE10 I/O FT -
TIM1_CH2N,
DFSDM2_DATIN0,
QUADSPI_BK2_IO3,
FSMC_D7/FSMC_DA7,
EVENTOUT
-
- - H4 42 M9 H8 64 PE11 I/O FT -
TIM1_CH2,
DFSDM2_CKIN0,
SPI4_NSS/I2S4_WS,
SPI5_NSS/I2S5_WS,
FSMC_D8/FSMC_DA8,
EVENTOUT
-
- - J4 43 L9 J8 65 PE12 I/O FT -
TIM1_CH3N,
DFSDM2_DATIN7,
SPI4_SCK/I2S4_CK,
SPI5_SCK/I2S5_CK,
FSMC_D9/FSMC_DA9,
EVENTOUT
-
- - F4 44 M10 K8 66 PE13 I/O FT -
TIM1_CH3,
DFSDM2_CKIN7,
SPI4_MISO,
SPI5_MISO,
FSMC_D10/FSMC_DA1
0, EVENTOUT
-
Table 10. STM32F423xH pin definition (continued)
Pin Number
Pin name
(function
after
reset)(1)
Pin
type
I/O
structure Notes Alternate functions Additional
functions
UFQFPN48
LQFP64
WLCSP81
LQFP100
UFBGA100
UFBGA144
LQFP144
DocID029161 Rev 7 57/209
STM32F423xH Pinouts and pin description
74
- - G3 45 M11 L8 67 PE14 I/O FT -
TIM1_CH4,
SPI4_MOSI/I2S4_SD,
SPI5_MOSI/I2S5_SD,
DFSDM2_DATIN1,
FSMC_D11/FSMC_DA1
1, EVENTOUT
-
- - J3 46 M12 M8 68 PE15 I/O FT -
TIM1_BKIN,
DFSDM2_CKIN1,
FSMC_D12/FSMC_DA1
2, EVENTOUT
-
21 29 H3 47 L10 M9 69 PB10 I/O FTf -
TIM2_CH3, I2C2_SCL,
SPI2_SCK/I2S2_CK,
I2S3_MCK,
USART3_TX,
I2CFMP1_SCL,
DFSDM2_CKOUT,
SDIO_D7, EVENTOUT
-
- - NC - K9 M10 70 PB11 I/O FT -
TIM2_CH4, I2C2_SDA,
I2S2_CKIN,
USART3_RX,
EVENTOUT
-
22 30 H2 48 L11 H7 71 VCAP_1 S - - - -
23 31 J2 49 F12 - - VSS S - - - -
24 32 J1 50 G12 G7 72 VDD S - - - -
25 33 F3 51 L12 M11 73 PB12 I/O FT -
TIM1_BKIN,
I2C2_SMBA,
SPI2_NSS/I2S2_WS,
SPI4_NSS/I2S4_WS,
SPI3_SCK/I2S3_CK,
USART3_CK,
CAN2_RX,
DFSDM1_DATIN1,
UART5_RX,
FSMC_D13/FSMC_DA1
3, EVENTOUT
-
26 34 G2 52 K12 M12 74 PB13 I/O FT -
TIM1_CH1N,
I2CFMP1_SMBA,
SPI2_SCK/I2S2_CK,
SPI4_SCK/I2S4_CK,
USART3_CTS,
CAN2_TX,
DFSDM1_CKIN1,
UART5_TX, EVENTOUT
-
Table 10. STM32F423xH pin definition (continued)
Pin Number
Pin name
(function
after
reset)(1)
Pin
type
I/O
structure Notes Alternate functions Additional
functions
UFQFPN48
LQFP64
WLCSP81
LQFP100
UFBGA100
UFBGA144
LQFP144
Pinouts and pin description STM32F423xH
58/209 DocID029161 Rev 7
27 35 E3 53 K11 L11 75 PB14 I/O FTf -
TIM1_CH2N,
TIM8_CH2N,
I2CFMP1_SDA,
SPI2_MISO,
I2S2ext_SD,
USART3_RTS,
DFSDM1_DATIN2,
TIM12_CH1,
FSMC_D0/FSMC_DA0,
SDIO_D6, EVENTOUT
-
28 36 H1 54 K10 L12 76 PB15 I/O FTf -
RTC_REFIN,
TIM1_CH3N,
TIM8_CH3N,
I2CFMP1_SCL,
SPI2_MOSI/I2S2_SD,
DFSDM1_CKIN2,
TIM12_CH2, SDIO_CK,
EVENTOUT
-
--NC55 - L977 PD8 I/O FT (2)
USART3_TX,
FSMC_D13/FSMC_DA1
3, EVENTOUT
-
- - F2 56 K8 K9 78 PD9 I/O FT -
USART3_RX,
FSMC_D14/FSMC_DA1
4, EVENTOUT
-
--G157J12J979 PD10 I/O FT (7)
USART3_CK,
UART4_TX,
FSMC_D15/FSMC_DA1
5, EVENTOUT
-
--NC58J11H980 PD11 I/O FT (2)
DFSDM2_DATIN2,
I2CFMP1_SMBA,
USART3_CTS,
QUADSPI_BK1_IO0,
FSMC_A16,
EVENTOUT
-
- - NC 59 J10 L10 81 PD12 I/O FTf (2)
TIM4_CH1,
DFSDM2_CKIN2,
I2CFMP1_SCL,
USART3_RTS,
QUADSPI_BK1_IO1,
FSMC_A17,
EVENTOUT
-
- - NC 60 H12 K10 82 PD13 I/O FTf (2)
TIM4_CH2,
I2CFMP1_SDA,
QUADSPI_BK1_IO3,
FSMC_A18,
EVENTOUT
-
- - - - - G8 83 VSS S - - - -
Table 10. STM32F423xH pin definition (continued)
Pin Number
Pin name
(function
after
reset)(1)
Pin
type
I/O
structure Notes Alternate functions Additional
functions
UFQFPN48
LQFP64
WLCSP81
LQFP100
UFBGA100
UFBGA144
LQFP144
DocID029161 Rev 7 59/209
STM32F423xH Pinouts and pin description
74
--- - - F884 VDD S - - - -
- - NC 61 H11 K11 85 PD14 I/O FTf (2)
TIM4_CH3,
I2CFMP1_SCL,
DFSDM2_CKIN0,
UART9_RX,
FSMC_D0/FSMC_DA0,
EVENTOUT
-
- - NC 62 H10 K12 86 PD15 I/O FTf (2)
TIM4_CH4,
I2CFMP1_SDA,
DFSDM2_DATIN0,
UART9_TX,
FSMC_D1/FSMC_DA1,
EVENTOUT
-
- - - - - J12 87 PG2 I/O FT - FSMC_A12,
EVENTOUT -
--- - - J1188 PG3 I/O FT - FSMC_A13,
EVENTOUT -
- - - - - J10 89 PG4 I/O FT - FSMC_A14,
EVENTOUT -
- - - - - H12 90 PG5 I/O FT - FSMC_A15,
EVENTOUT -
-- - - - H1191 PG6 I/O FT - QUADSPI_BK1_NCS,
EVENTOUT -
- - - - - H10 92 PG7 I/O FT - USART6_CK,
EVENTOUT -
--- - -G1193 PG8 I/O FT - USART6_RTS,
EVENTOUT -
- - - - - - 94 VSS S - - - -
-- - - - F10- VDD S - - - -
- - F1 - - C11 95 VDDUSB S - - - -
-37D563E12G1296 PC6 I/O FTf -
TIM3_CH1, TIM8_CH1,
I2CFMP1_SCL,
I2S2_MCK,
DFSDM1_CKIN3,
DFSDM2_DATIN6,
USART6_TX,
FSMC_D1/FSMC_DA1,
SDIO_D6, EVENTOUT
-
Table 10. STM32F423xH pin definition (continued)
Pin Number
Pin name
(function
after
reset)(1)
Pin
type
I/O
structure Notes Alternate functions Additional
functions
UFQFPN48
LQFP64
WLCSP81
LQFP100
UFBGA100
UFBGA144
LQFP144
Pinouts and pin description STM32F423xH
60/209 DocID029161 Rev 7
-38D464E11F1297 PC7 I/O FTf -
TIM3_CH2, TIM8_CH2,
I2CFMP1_SDA,
SPI2_SCK/I2S2_CK,
I2S3_MCK,
DFSDM2_CKIN6,
USART6_RX,
DFSDM1_DATIN3,
SDIO_D7, EVENTOUT
-
-39E165E10F1198 PC8 I/O FT -
TIM3_CH3, TIM8_CH3,
DFSDM2_CKIN3,
USART6_CK,
QUADSPI_BK1_IO2,
SDIO_D0, EVENTOUT
-
-40E266D12E1199 PC9 I/O FT -
MCO_2, TIM3_CH4,
TIM8_CH4, I2C3_SDA,
I2S2_CKIN,
DFSDM2_DATIN3,
QUADSPI_BK1_IO0,
SDIO_D1, EVENTOUT
-
29 41 D3 67 D11 E12 100 PA8 I/O FT -
MCO_1, TIM1_CH1,
I2C3_SCL,
DFSDM1_CKOUT,
USART1_CK,
UART7_RX,
USB_FS_SOF,
CAN3_RX, SDIO_D1,
EVENTOUT
-
30 42 D2 68 D10 D12 101 PA9 I/O FT -
TIM1_CH2,
DFSDM2_CKIN3,
I2C3_SMBA,
SPI2_SCK/I2S2_CK,
USART1_TX,
USB_FS_VBUS,
SDIO_D2, EVENTOUT
-
31 43 D1 69 C12 D11 102 PA10 I/O FT -
TIM1_CH3,
DFSDM2_DATIN3,
SPI2_MOSI/I2S2_SD,
SPI5_MOSI/I2S5_SD,
USART1_RX,
USB_FS_ID,
EVENTOUT
-
Table 10. STM32F423xH pin definition (continued)
Pin Number
Pin name
(function
after
reset)(1)
Pin
type
I/O
structure Notes Alternate functions Additional
functions
UFQFPN48
LQFP64
WLCSP81
LQFP100
UFBGA100
UFBGA144
LQFP144
DocID029161 Rev 7 61/209
STM32F423xH Pinouts and pin description
74
32 44 C3 70 B12 C12 103 PA11 I/O FT -
TIM1_CH4,
DFSDM2_CKIN5,
SPI2_NSS/I2S2_WS,
SPI4_MISO,
USART1_CTS,
USART6_TX,
CAN1_RX,
USB_FS_DM,
UART4_RX,
EVENTOUT
-
33 45 B3 71 A12 B12 104 PA12 I/O FT -
TIM1_ETR,
DFSDM2_DATIN5,
SPI2_MISO,
SPI5_MISO,
USART1_RTS,
USART6_RX,
CAN1_TX, USB_FS_DP,
UART4_TX, EVENTOUT
-
34 46 C2 72 A11 A12 105 PA13 I/O FT - JTMS-SWDIO,
EVENTOUT -
- - C1 73 C11 G9 106 VCAP_2 S - - - -
35 47 B1 74 F11 G10 107 VSS S - - - -
-48 - 75G11 - - VDD S - - - -
36 - A1 - - F9 108 VDD S - - - -
37 49 B2 76 A10 A11 109 PA14 I/O FT - JTCK-SWCLK,
EVENTOUT -
38 50 A3 77 A9 A10 110 PA15 I/O FT -
JTDI,
TIM2_CH1/TIM2_ETR,
SPI1_NSS/I2S1_WS,
SPI3_NSS/I2S3_WS,
USART1_TX,
UART7_TX,
SAI1_MCLK_A,
CAN3_TX, EVENTOUT
-
- 51 A2 78 B11 B11 111 PC10 I/O FT -
DFSDM2_CKIN5,
SPI3_SCK/I2S3_CK,
USART3_TX,
QUADSPI_BK1_IO1,
SDIO_D2, EVENTOUT
-
Table 10. STM32F423xH pin definition (continued)
Pin Number
Pin name
(function
after
reset)(1)
Pin
type
I/O
structure Notes Alternate functions Additional
functions
UFQFPN48
LQFP64
WLCSP81
LQFP100
UFBGA100
UFBGA144
LQFP144
Pinouts and pin description STM32F423xH
62/209 DocID029161 Rev 7
- 52 C4 79 C10 B10 112 PC11 I/O FT -
DFSDM2_DATIN5,
I2S3ext_SD,
SPI3_MISO,
USART3_RX,
UART4_RX,
QUADSPI_BK2_NCS,
FSMC_D2/FSMC_DA2,
SDIO_D3, EVENTOUT
-
- 53 B4 80 B10 C10 113 PC12 I/O FT -
SPI3_MOSI/I2S3_SD,
USART3_CK,
UART5_TX,
FSMC_D3/FSMC_DA3,
SDIO_CK, EVENTOUT
-
- - A4 81 C9 E10 114 PD0 I/O FT -
DFSDM2_CKIN6,
CAN1_RX, UART4_RX,
FSMC_D2/FSMC_DA2,
EVENTOUT
-
- - NC 82 B9 D10 115 PD1 I/O FT (2)
DFSDM2_DATIN6,
CAN1_TX, UART4_TX,
FSMC_D3/FSMC_DA3,
EVENTOUT
-
-54C583 C8 E9116 PD2 I/O FT -
TIM3_ETR,
DFSDM2_CKOUT,
UART5_RX,
FSMC_NWE,
SDIO_CMD,
EVENTOUT
-
- - NC 84 B8 D9 117 PD3 I/O FT (2)
TRACED1,
SPI2_SCK/I2S2_CK,
DFSDM1_DATIN0,
USART2_CTS,
QUADSPI_CLK,
FSMC_CLK,
EVENTOUT
-
- - NC 85 B7 C9 118 PD4 I/O FT (2)
DFSDM1_CKIN0,
USART2_RTS,
FSMC_NOE,
EVENTOUT
-
--NC86A6B9119 PD5 I/O FT (2)
DFSDM2_CKOUT,
USART2_TX,
FSMC_NWE,
EVENTOUT
-
- - - - - E7 120 VSS S - - - -
- - - - - F7 121 VDD S - - - -
Table 10. STM32F423xH pin definition (continued)
Pin Number
Pin name
(function
after
reset)(1)
Pin
type
I/O
structure Notes Alternate functions Additional
functions
UFQFPN48
LQFP64
WLCSP81
LQFP100
UFBGA100
UFBGA144
LQFP144
DocID029161 Rev 7 63/209
STM32F423xH Pinouts and pin description
74
- - NC 87 B6 A8 122 PD6 I/O FT (2)
SPI3_MOSI/I2S3_SD,
DFSDM1_DATIN1,
USART2_RX,
FSMC_NWAIT,
EVENTOUT
-
- - NC 88 A5 A9 123 PD7 I/O FT (2)
DFSDM1_CKIN1,
USART2_CK,
FSMC_NE1,
EVENTOUT
-
- - - - - E8 124 PG9 I/O FT -
USART6_RX,
QUADSPI_BK2_IO2,
FSMC_NE2,
EVENTOUT
-
- - - - - D8 125 PG10 I/O FT - FSMC_NE3,
EVENTOUT -
- - - - - C8 126 PG11 I/O FT -
CAN2_RX,
UART10_RX,
EVENTOUT
-
- - - - - B8 127 PG12 I/O FT -
USART6_RTS,
CAN2_TX, UART10_TX,
FSMC_NE4,
EVENTOUT
-
- - - - - D7 128 PG13 I/O FT -
TRACED2,
USART6_CTS,
FSMC_A24,
EVENTOUT
-
- - - - - C7 129 PG14 I/O FT -
TRACED3,
USART6_TX,
QUADSPI_BK2_IO3,
FSMC_A25,
EVENTOUT
-
- - - - - - 130 VSS S - - - -
- - - - - F6 131 VDD S - - - -
- - - - - B7 132 PG15 I/O FT - USART6_CTS,
EVENTOUT -
39 55 A5 89 A8 A7 133 PB3 I/O FTf -
JTDO-SWO, TIM2_CH2,
I2CFMP1_SDA,
SPI1_SCK/I2S1_CK,
SPI3_SCK/I2S3_CK,
USART1_RX,
UART7_RX, I2C2_SDA,
SAI1_SD_A, CAN3_RX,
EVENTOUT
-
Table 10. STM32F423xH pin definition (continued)
Pin Number
Pin name
(function
after
reset)(1)
Pin
type
I/O
structure Notes Alternate functions Additional
functions
UFQFPN48
LQFP64
WLCSP81
LQFP100
UFBGA100
UFBGA144
LQFP144
Pinouts and pin description STM32F423xH
64/209 DocID029161 Rev 7
40 56 B5 90 A7 A6 134 PB4 I/O FT -
JTRST, TIM3_CH1,
SPI1_MISO,
SPI3_MISO,
I2S3ext_SD,
UART7_TX, I2C3_SDA,
SAI1_SCK_A,
CAN3_TX, SDIO_D0,
EVENTOUT
-
41 57 A6 91 C5 B6 135 PB5 I/O FT -
LPTIM1_IN1,
TIM3_CH2,
I2C1_SMBA,
SPI1_MOSI/I2S1_SD,
SPI3_MOSI/I2S3_SD,
CAN2_RX, SAI1_FS_A,
UART5_RX, SDIO_D3,
EVENTOUT
-
42 58 B6 92 B5 C6 136 PB6 I/O FT -
LPTIM1_ETR,
TIM4_CH1, I2C1_SCL,
DFSDM2_CKIN7,
USART1_TX, CAN2_TX,
QUADSPI_BK1_NCS,
UART5_TX, SDIO_D0,
EVENTOUT
-
43 59 B7 93 B4 D6 137 PB7 I/O FT -
LPTIM1_IN2,
TIM4_CH2, I2C1_SDA,
DFSDM2_DATIN7,
USART1_RX,
FSMC_NL, EVENTOUT
-
44 60 A7 94 A4 D5 138 BOOT0 I B - - VPP
45 61 C6 95 A3 C5 139 PB8 I/O FT -
LPTIM1_OUT,
TIM4_CH3, TIM10_CH1,
I2C1_SCL,
SPI5_MOSI/I2S5_SD,
DFSDM2_CKIN1,
CAN1_RX, I2C3_SDA,
UART5_RX, SDIO_D4,
EVENTOUT
-
46 62 D6 96 B3 B5 140 PB9 I/O FT -
TIM4_CH4, TIM11_CH1,
I2C1_SDA,
SPI2_NSS/I2S2_WS,
DFSDM2_DATIN1,
CAN1_TX, I2C2_SDA,
UART5_TX, SDIO_D5,
EVENTOUT
-
Table 10. STM32F423xH pin definition (continued)
Pin Number
Pin name
(function
after
reset)(1)
Pin
type
I/O
structure Notes Alternate functions Additional
functions
UFQFPN48
LQFP64
WLCSP81
LQFP100
UFBGA100
UFBGA144
LQFP144
DocID029161 Rev 7 65/209
STM32F423xH Pinouts and pin description
74
- - NC 97 C3 A5 141 PE0 I/O FT (2)
TIM4_ETR,
DFSDM2_CKIN4,
UART8_Rx,
FSMC_NBL0,
EVENTOUT
-
- - NC 98 A2 A4 142 PE1 I/O FT (2)
DFSDM2_DATIN4,
UART8_Tx,
FSMC_NBL1,
EVENTOUT
-
47 63 A8 99 D3 E6 - VSS S - - - -
- - B8 - H3 E5 143 PDR_ON I FT - - -
48 64 A9 100 C4 F5 144 VDD S - - - -
1. Function availability depends on the chosen device.
2. NC (Not Connected) pins are not bonded. They must be configured by software to output push-pull and forced to 0 in the
output data register to avoid extra power consumption in low power mode.
3. Compatibility issue on alternate function pin PE4 SAI1_SD_A and PE6 SAI1_FS_A: Pins have been swapped versus other
MCUs supporting those alternate SAI functions on those pins
4. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current
(3 mA), the use of GPIOs PC13 to PC15 in output mode is limited:
- The speed should not exceed 2 MHz with a maximum load of 30 pF.
- These I/Os must not be used as a current source (e.g. to drive an LED).
5. Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after
reset (because these registers are not reset by the main reset). For details on how to manage these I/Os, refer to the RTC
register description sections in the STM32F413/423 reference manual.
6. FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1).
7. Incompatibility issue on alternate function with other MCUs supporting UART4: UART4_TX wrongly mapped to PD10
instead of PC10
Table 10. STM32F423xH pin definition (continued)
Pin Number
Pin name
(function
after
reset)(1)
Pin
type
I/O
structure Notes Alternate functions Additional
functions
UFQFPN48
LQFP64
WLCSP81
LQFP100
UFBGA100
UFBGA144
LQFP144
Table 11. FSMC pin definition
Pins
FSMC
64 pins 81 pins 100 pins 144 pins
LCD/NOR/
PSRAM/SRAM
NOR/PSRAM
Mux
PE2 A23 A23 - - Yes Yes
PE3 A19 A19 - - Yes Yes
PE4 A20 A20 - - Yes Yes
PE5 A21 A21 - - Yes Yes
PE6 A22 A22 - - Yes Yes
PF0 A0 - - - - Yes
Pinouts and pin description STM32F423xH
66/209 DocID029161 Rev 7
PF1 A1 - - - - Yes
PF2 A2 - - - - Yes
PF3 A3 - - - - Yes
PF4 A4 - - - - Yes
PF5 A5 - - - - Yes
PC2 NWE NWE Yes Yes Yes Yes
PC3 A0 - Yes Yes Yes Yes
PA2 D4 DA4 Yes Yes Yes Yes
PA3 D5 DA5 Yes Yes Yes Yes
PA4 D6 DA6 Yes Yes Yes Yes
PA5 D7 DA7 Yes Yes Yes Yes
PC4 NE4 NE4 Yes Yes Yes Yes
PC5 NOE NOE Yes Yes Yes Yes
PF12 A6 - - - - Yes
PF13 A7 - - - - Yes
PF14 A8 - - - - Yes
PF15 A9 - - - - Yes
PG0 A10 - - - - Yes
PG1 A11 - - - - Yes
PE7 D4 DA4 - - Yes Yes
PE8 D5 DA5 - - Yes Yes
PE9 D6 DA6 - Yes Yes Yes
PE10 D7 DA7 - Yes Yes Yes
PE11 D8 DA8 - Yes Yes Yes
PE12 D9 DA9 - Yes Yes Yes
PE13 D10 DA10 - Yes Yes Yes
PE14 D11 DA11 - Yes Yes Yes
PE15 D12 DA12 - Yes Yes Yes
PB12 D13 DA13 Yes Yes Yes Yes
PB14 D0 DA0 Yes Yes Yes Yes
PD8 D13 DA13 - - - Yes
PD9 D14 DA14 - Yes Yes Yes
PD10 D15 DA15 - Yes Yes Yes
Table 11. FSMC pin definition (continued)
Pins
FSMC
64 pins 81 pins 100 pins 144 pins
LCD/NOR/
PSRAM/SRAM
NOR/PSRAM
Mux
DocID029161 Rev 7 67/209
STM32F423xH Pinouts and pin description
74
PD11 A16 A16 - - Yes Yes
PD12 A17 A17 - - Yes Yes
PD13 A18 A18 - - Yes Yes
PD14 D0 DA0 - - Yes Yes
PD15 D1 DA1 - - Yes Yes
PG2 A12 - - - - Yes
PG3 A13 - - - - Yes
PG4 A14 - - - - Yes
PG5 A15 - - - - Yes
PC6 D1 DA1 Yes Yes Yes Yes
PC11 D2 DA2 Yes Yes Yes Yes
PC12 D3 DA3 Yes Yes Yes Yes
PD0 D2 DA2 - Yes Yes Yes
PD1 D3 DA3 - - Yes Yes
PD2 NWE NWE Yes Yes Yes Yes
PD3 CLK CLK - - Yes Yes
PD4 NOE NOE - - Yes Yes
PD5 NWE NWE - - Yes Yes
PD6 NWAIT NWAIT - - Yes Yes
PD7 NE1 NE1 - - Yes Yes
PG9 NE2 NE2 - - - Yes
PG10 NE3 NE3 - - - Yes
PG12 NE4 NE4 - - - Yes
PG13 A24 A24 - - - Yes
PG14 A25 A25 - - - Yes
PB7 NL NL Yes Yes Yes Yes
PE0 NBL0 NBL0 - - Yes Yes
PE1 NBL1 NBL1 - - Yes Yes
Table 11. FSMC pin definition (continued)
Pins
FSMC
64 pins 81 pins 100 pins 144 pins
LCD/NOR/
PSRAM/SRAM
NOR/PSRAM
Mux
Pinouts and pin description STM32F423xH
68/209 DocID029161 Rev 7
4.9 Alternate functions
Table 12. STM32F423xH alternate functions
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS_
AF
TIM1/2/
LPTIM1 TIM3/4/5 DFSDM2/
TIM8/9/10/11
I2C1/2/3/
I2CFMP1
SPI1/I2S1/
SPI2/I2S2/
SPI3/I2S3/
SPI4/I2S4
SPI2/I2S2/
SPI3/I2S3/
SPI4/I2S4/
SPI5/I2S5/
DFSDM1/2
SPI3/I2S3/
SAI1/
DFSDM2/
USART1/
USART2/
USART3
DFSDM1/
USART3/4/
5/6/7/8/
CAN1
I2C2/I2C3/
I2CFMP1/
CAN1/2/
TIM12/13/14/
QUADSPI
SAI1/
DFSDM1/
DFSDM2/
QUADSPI/
FSMC
/OTG1_FS
UART4/
UART5/
UART9/
UART10
/CAN3
FSMC /SDIO - RNG SYS_
AF
Port A
PA0 -
TIM2_CH1/
TIM2_
ETR
TIM5_
CH1 TIM8_ETR - - - USART2_
CTS
UART4_
TX ------
EVENT
OUT
PA1 - TIM2_CH2 TIM5_
CH2 --
SPI4_MOSI/I
2S4_SD -USART2_
RTS
UART4_
RX
QUADSPI_
BK1_IO3 -- ---
EVENT
OUT
PA2 - TIM2_CH3 TIM5_
CH3 TIM9_CH1 - I2S2_CKIN - USART2_
TX ----
FSMC_D4/
FSMC_DA4 --
EVENT
OUT
PA3 - TIM2_CH4 TIM5_
CH4 TIM9_CH2 - I2S2_MCK - USART2_
RX --SAI1_SD_B-
FSMC_D5/
FSMC_DA5 --
EVENT
OUT
PA4 - - - - - SPI1_NSS/I2
S1_WS
SPI3_NSS/I
2S3_WS
USART2_
CK
DFSDM1_
DATIN1 ---
FSMC_D6/
FSMC_DA6 --
EVENT
OUT
PA5 -
TIM2_CH1/
TIM2_
ETR
- TIM8_CH1N - SPI1_SCK/I2
S1_CK --
DFSDM1_
CKIN1 ---
FSMC_D7/
FSMC_DA7 --
EVENT
OUT
PA6 - TIM1_
BKIN
TIM3_
CH1 TIM8_BKIN - SPI1_MISO I2S2_MCK DFSDM2_
CKIN1 -TIM13_
CH1
QUADSPI_B
K2_IO0 -SDIO_
CMD --
EVENT
OUT
PA7 - TIM1_
CH1N
TIM3_
CH2
TIM8_
CH1N -SPI1_MOSI/I
2S1_SD -DFSDM2_
DATIN1 -TIM14_
CH1
QUADSPI_B
K2_IO1 ----
EVENT
OUT
PA8 MCO_1 TIM1_CH1 - - I2C3_
SCL -DFSDM1_
CKOUT
USART1_
CK
UART7_
RX -USB_FS_
SOF
CAN3_
RX
SDIO_
D1 --
EVENT
OUT
PA9 - TIM1_CH2 - DFSDM2_
CKIN3
I2C3_
SMBA
SPI2_SCK/I2
S2_CK -USART1_
TX --
USB_FS_
VBUS -SDIO_
D2 --
EVENT
OUT
PA10 - TIM1_CH3 - DFSDM2_
DATIN3 -SPI2_MOSI/I
2S2_SD
SPI5_MOSI/
I2S5_SD
USART1_
RX --
USB_FS_
ID ----
EVENT
OUT
PA11 - TIM1_CH4 - DFSDM2_
CKIN5 -SPI2_NSS/I2
S2_WS SPI4_MISO USART1_
CTS
USART6_
TX CAN1_RX USB_FS_
DM
UART4_
RX ---
EVENT
OUT
PA12 - TIM1_ETR - DFSDM2_
DATIN5 - SPI2_MISO SPI5_MISO USART1_
RTS
USART6_
RX CAN1_TX USB_FS_
DP
UART4_
TX ---
EVENT
OUT
PA13 JTMS-
SWDIO -- - - - - - - - - - ---
EVENT
OUT
PA14 JTCK-
SWCLK -- - - - - - - - - - ---
EVENT
OUT
PA15 JTDI
TIM2_CH1/
TIM2_
ETR
---
SPI1_NSS/
I2S1_WS
SPI3_NSS/
I2S3_WS
USART1_
TX
UART7_
TX -SAI1_
MCLK_A
CAN3_
TX ---
EVENT
OUT
STM32F423xH Pinouts and pin description
DocID029161 Rev 7 69/209
Port B
PB0 - TIM1_
CH2N
TIM3_
CH3
TIM8_
CH2N --
SPI5_SCK/I
2S5_CK -- - -----
EVENT
OUT
PB1 - TIM1_
CH3N
TIM3_
CH4
TIM8_
CH3N --
SPI5_NSS/
I2S5_WS -DFSDM1_
DATIN0
QUADSPI_C
LK -- ---
EVENT
OUT
PB2 - LPTIM1_
OUT ----
DFSDM1_
CKIN0 --
QUADSPI_C
LK -- ---
EVENT
OUT
PB3 JTDO-
SWO TIM2_CH2 - - I2CFMP1
_SDA
SPI1_SCK/I2
S1_CK
SPI3_SCK/I
2S3_CK
USART1_
RX
UART7_
RX I2C2_SDA SAI1_SD_A CAN3_
RX ---
EVENT
OUT
PB4 JTRST - TIM3_
CH1 - - SPI1_MISO SPI3_MISO I2S3ext_
SD
UART7_
TX I2C3_SDA SAI1_SCK_
A
CAN3_
TX SDIO_D0 - - EVENT
OUT
PB5 - LPTIM1_
IN1
TIM3_
CH2 -I2C1_
SMBA
SPI1_MOSI/I
2S1_SD
SPI3_MOSI/
I2S3_SD - - CAN2_RX SAI1_FS_A UART5_
RX SDIO_D3 - - EVENT
OUT
PB6 - LPTIM1_
ETR
TIM4_
CH1 - I2C1_SCL - DFSDM2_
CKIN7
USART1_
TX - CAN2_TX QUADSPI_
BK1_NCS
UART5_
TX SDIO_D0 - - EVENT
OUT
PB7 - LPTIM1_
IN2
TIM4_
CH2 -I2C1_
SDA -DFSDM2_
DATIN7
USART1_
RX ----FSMC_NL--
EVENT
OUT
PB8 - LPTIM1_
OUT
TIM4_
CH3
TIM10_
CH1
I2C1_
SCL -SPI5_MOSI/
I2S5_SD
DFSDM2_
CKIN1 CAN1_RX I2C3_SDA - UART5_
RX SDIO_D4 - - EVENT
OUT
PB9 - - TIM4_
CH4
TIM11_
CH1
I2C1_
SDA
SPI2_NSS/I2
S2_WS
DFSDM2_
DATIN1 - CAN1_TX I2C2_SDA - UART5_
TX SDIO_D5 - - EVENT
OUT
PB10 - TIM2_CH3 - - I2C2_
SCL
SPI2_SCK/I2
S2_CK I2S3_MCK USART3_
TX -I2CFMP1_
SCL
DFSDM2_
CKOUT -SDIO_D7--
EVENT
OUT
PB11 - TIM2_CH4 - - I2C2_
SDA I2S2_CKIN - USART3_
RX -------
EVENT
OUT
PB12 - TIM1_
BKIN --
I2C2_
SMBA
SPI2_NSS/I2
S2_WS
SPI4_NSS/
I2S4_WS
SPI3_SCK/
I2S3_CK
USART3_
CK CAN2_RX DFSDM1_
DATIN1
UART5_
RX
FSMC_D13/F
SMC_DA13 --
EVENT
OUT
PB13 - TIM1_
CH1N --
I2CFMP1
_SMBA
SPI2_SCK/I2
S2_CK
SPI4_SCK/
I2S4_CK -USART3_
CTS CAN2_TX DFSDM1_
CKIN1
UART5_
TX ---
EVENT
OUT
PB14 - TIM1_
CH2N -TIM8_
CH2N
I2CFMP1
_SDA SPI2_MISO I2S2ext_SD USART3_
RTS
DFSDM1_
DATIN2 TIM12_CH1 FSMC_D0/
FSMC_DA0 -SDIO_D6--
EVENT
OUT
PB15 RTC_
REFIN
TIM1_
CH3N -TIM8_
CH3N
I2CFMP1
_SCL
SPI2_MOSI/I
2S2_SD --
DFSDM1_
CKIN2 TIM12_CH2 - - SDIO_CK - - EVENT
OUT
Table 12. STM32F423xH alternate functions (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS_
AF
TIM1/2/
LPTIM1 TIM3/4/5 DFSDM2/
TIM8/9/10/11
I2C1/2/3/
I2CFMP1
SPI1/I2S1/
SPI2/I2S2/
SPI3/I2S3/
SPI4/I2S4
SPI2/I2S2/
SPI3/I2S3/
SPI4/I2S4/
SPI5/I2S5/
DFSDM1/2
SPI3/I2S3/
SAI1/
DFSDM2/
USART1/
USART2/
USART3
DFSDM1/
USART3/4/
5/6/7/8/
CAN1
I2C2/I2C3/
I2CFMP1/
CAN1/2/
TIM12/13/14/
QUADSPI
SAI1/
DFSDM1/
DFSDM2/
QUADSPI/
FSMC
/OTG1_FS
UART4/
UART5/
UART9/
UART10
/CAN3
FSMC /SDIO - RNG SYS_
AF
Pinouts and pin description STM32F423xH
70/209 DocID029161 Rev 7
Port C
PC0 - LPTIM1_
IN1 -DFSDM2_CK
IN4 -- -
SAI1_
MCLK_B -------
EVENT
OUT
PC1 - LPTIM1_
OUT -DFSDM2_DA
TIN4 - - - SAI1_SD_B - - - - - - - EVENT
OUT
PC2 - LPTIM1_IN
2-DFSDM2_DA
TIN7 - SPI2_MISO I2S2ext_SD SAI1_SCK_
B
DFSDM1_
CKOUT - - - FSMC_NWE - - EVENT
OUT
PC3 - LPTIM1_
ETR -DFSDM2_CK
IN7 -SPI2_MOSI/I
2S2_SD - SAI1_FS_B - - - - FSMC_A0 - - EVENT
OUT
PC4 - - - DFSDM2_CK
IN2 - I2S1_MCK - - - - QUADSPI_
BK2_IO2 -FSMC_NE4- -
EVENT
OUT
PC5 - - - DFSDM2_DA
TIN2
I2CFMP1
_SMBA --
USART3_
RX --
QUADSPI_
BK2_IO3 -FSMC_NOE- -
EVENT
OUT
PC6 - - TIM3_
CH1 TIM8_CH1 I2CFMP1
_SCL I2S2_MCK DFSDM1_
CKIN3
DFSDM2_
DATIN6
USART6_
TX -FSMC_D1/
FSMC_DA1 -SDIO_D6--
EVENT
OUT
PC7 - - TIM3_
CH2 TIM8_CH2 I2CFMP1
_SDA
SPI2_SCK/
I2S2_CK I2S3_MCK DFSDM2_
CKIN6
USART6_
RX -DFSDM1_
DATIN3 -SDIO_D7--
EVENT
OUT
PC8 - - TIM3_
CH3 TIM8_CH3 - - - DFSDM2_
CKIN3
USART6_
CK
QUADSPI_
BK1_IO2 --SDIO_D0--
EVENT
OUT
PC9 MCO_2 - TIM3_
CH4 TIM8_CH4 I2C3_
SDA I2S2_CKIN - DFSDM2_
DATIN3 -QUADSPI_
BK1_IO0 --SDIO_D1--
EVENT
OUT
PC10 - - - DFSDM2_
CKIN5 --
SPI3_SCK/
I2S3_CK
USART3_
TX -QUADSPI_
BK1_IO1 --SDIO_D2--
EVENT
OUT
PC11 - - - DFSDM2_
DATIN5 - I2S3ext_SD SPI3_MISO USART3_
RX
UART4_
RX
QUADSPI_
BK2_NCS
FSMC_D2/
FSMC_DA2 -SDIO_D3--
EVENT
OUT
PC12 - - - - - - SPI3_MOSI/
I2S3_SD
USART3_
CK
UART5_
TX -FSMC_D3/F
SMC_DA3 -SDIO_CK--
EVENT
OUT
PC13 - - - - - - - - - - - - - - - EVENT
OUT
PC14 - - - - - - - - - - - - - - - EVENT
OUT
PC15 - - - - - - - - - - - - - - - EVENT
OUT
Table 12. STM32F423xH alternate functions (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS_
AF
TIM1/2/
LPTIM1 TIM3/4/5 DFSDM2/
TIM8/9/10/11
I2C1/2/3/
I2CFMP1
SPI1/I2S1/
SPI2/I2S2/
SPI3/I2S3/
SPI4/I2S4
SPI2/I2S2/
SPI3/I2S3/
SPI4/I2S4/
SPI5/I2S5/
DFSDM1/2
SPI3/I2S3/
SAI1/
DFSDM2/
USART1/
USART2/
USART3
DFSDM1/
USART3/4/
5/6/7/8/
CAN1
I2C2/I2C3/
I2CFMP1/
CAN1/2/
TIM12/13/14/
QUADSPI
SAI1/
DFSDM1/
DFSDM2/
QUADSPI/
FSMC
/OTG1_FS
UART4/
UART5/
UART9/
UART10
/CAN3
FSMC /SDIO - RNG SYS_
AF
STM32F423xH Pinouts and pin description
DocID029161 Rev 7 71/209
Port D
PD0 - - - DFSDM2_
CKIN6 - - - - - CAN1_RX - UART4_
RX
FSMC_D2/
FSMC_DA2 --
EVENT
OUT
PD1 - - - DFSDM2_
DATIN6 - - - - - CAN1_TX - UART4_
TX
FSMC_D3/
FSMC_DA3 --
EVENT
OUT
PD2 - - TIM3_
ETR
DFSDM2_
CKOUT -- - -
UART5_
RX -FSMC_
NWE -SDIO_CMD- -
EVENT
OUT
PD3 TRACE
D1 -- - -
SPI2_SCK/
I2S2_CK
DFSDM1_
DATIN0
USART2_
CTS -QUADSPI_
CLK - - FSMC_CLK - - EVENT
OUT
PD4 - - - - - - DFSDM1_
CKIN0
USART2_
RTS ----
FSMC_
NOE --
EVENT
OUT
PD5 - - - DFSDM2_
CKOUT -- -
USART2_
TX ----
FSMC_
NWE --
EVENT
OUT
PD6 - - - - - SPI3_MOSI/
I2S3_SD
DFSDM1_
DATIN1
USART2_
RX ----
FSMC_
NWAIT --
EVENT
OUT
PD7 - - - - - - DFSDM1_
CKIN1
USART2_
CK ----FSMC_NE1--
EVENT
OUT
PD8 - - - - - - - USART3_
TX ----
FSMC_D13/F
SMC_DA13 --
EVENT
OUT
PD9 - - - - - - - USART3_
RX ----
FSMC_D14/F
SMC_DA14 --
EVENT
OUT
PD10 - - - - - - - USART3_
CK
UART4_
TX ---
FSMC_D15/F
SMC_DA15 --
EVENT
OUT
PD11 - - - DFSDM2_
DATIN2
I2CFMP1
_SMBA --
USART3_
CTS -QUADSPI_
BK1_IO0 - - FSMC_A16 - - EVENT
OUT
PD12 - - TIM4_
CH1
DFSDM2_
CKIN2
I2CFMP1
_SCL --
USART3_
RTS -QUADSPI_
BK1_IO1 - - FSMC_A17 - - EVENT
OUT
PD13 - - TIM4_
CH2 -I2CFMP1
_SDA ----
QUADSPI_
BK1_IO3 - - FSMC_A18 - - EVENT
OUT
PD14 - - TIM4_
CH3 -I2CFMP1
_SCL -----
DFSDM2_
CKIN0
UART9_
RX
FSMC_D0/
FSMC_DA0 --
EVENT
OUT
PD15 - - TIM4_
CH4 -I2CFMP1
_SDA -----
DFSDM2_
DATIN0
UART9_
TX
FSMC_D1/
FSMC_DA1 --
EVENT
OUT
Table 12. STM32F423xH alternate functions (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS_
AF
TIM1/2/
LPTIM1 TIM3/4/5 DFSDM2/
TIM8/9/10/11
I2C1/2/3/
I2CFMP1
SPI1/I2S1/
SPI2/I2S2/
SPI3/I2S3/
SPI4/I2S4
SPI2/I2S2/
SPI3/I2S3/
SPI4/I2S4/
SPI5/I2S5/
DFSDM1/2
SPI3/I2S3/
SAI1/
DFSDM2/
USART1/
USART2/
USART3
DFSDM1/
USART3/4/
5/6/7/8/
CAN1
I2C2/I2C3/
I2CFMP1/
CAN1/2/
TIM12/13/14/
QUADSPI
SAI1/
DFSDM1/
DFSDM2/
QUADSPI/
FSMC
/OTG1_FS
UART4/
UART5/
UART9/
UART10
/CAN3
FSMC /SDIO - RNG SYS_
AF
Pinouts and pin description STM32F423xH
72/209 DocID029161 Rev 7
Port E
PE0 - - TIM4_
ETR
DFSDM2_
CKIN4 -- - -
UART8_
Rx ---
FSMC_
NBL0 --
EVENT
OUT
PE1 - - - DFSDM2_
DATIN4 -- - -
UART8_
Tx ---
FSMC_
NBL1 --
EVENT
OUT
PE2 TRACE
CLK -- - -
SPI4_SCK
/I2S4_CK
SPI5_SCK/
I2S5_CK
SAI1_
MCLK_A -QUADSPI_
BK1_IO2 -UART10
_RX FSMC_A23 - - EVENT
OUT
PE3 TRACE
D0 - - - - - - SAI1_SD_B - - - UART10
_TX FSMC_A19 - - EVENT
OUT
PE4 TRACE
D1 -- - -
SPI4_NSS/
I2S4_WS
SPI5_NSS/
I2S5_WS SAI1_SD_A DFSDM1_
DATIN3 ---FSMC_A20--
EVENT
OUT
PE5 TRACE
D2 - - TIM9_CH1 - SPI4_MISO SPI5_MISO SAI1_SCK_
A
DFSDM1_
CKIN3 ---FSMC_A21--
EVENT
OUT
PE6 TRACE
D3 - - TIM9_CH2 - SPI4_MOSI/I
2S4_SD
SPI5_MOSI/
I2S5_SD SAI1_FS_A - - - - FSMC_A22 - - EVENT
OUT
PE7 - TIM1_ETR - - - - DFSDM1_
DATIN2 -UART7_
Rx -QUADSPI_
BK2_IO0 -FSMC_D4/
FSMC_DA4 --
EVENT
OUT
PE8 - TIM1_
CH1N ----
DFSDM1_
CKIN2 -UART7_
Tx -QUADSPI_
BK2_IO1 -FSMC_D5/
FSMC_DA5 --
EVENT
OUT
PE9 - TIM1_CH1 - - - - DFSDM1_
CKOUT -- -
QUADSPI_
BK2_IO2 -FSMC_D6/
FSMC_DA6 --
EVENT
OUT
PE10 - TIM1_
CH2N -DFSDM2_
DATIN0 -- - - - -
QUADSPI_
BK2_IO3 -FSMC_D7/
FSMC_DA7 --
EVENT
OUT
PE11 - TIM1_
CH2 -DFSDM2_
CKIN0 -SPI4_NSS/
I2S4_WS
SPI5_NSS/
I2S5_WS -- - --
FSMC_D8/
FSMC_DA8 --
EVENT
OUT
PE12 - TIM1_
CH3N -DFSDM2_
DATIN7 -SPI4_SCK/
I2S4_CK
SPI5_SCK/
I2S5_CK -- - --
FSMC_D9/
FSMC_DA9 --
EVENT
OUT
PE13 - TIM1_
CH3 -DFSDM2_
CKIN7 - SPI4_MISO SPI5_MISO - - - - - FSMC_D10/
FSMC_DA10 --
EVENT
OUT
PE14 - TIM1_
CH4 ---
SPI4_MOSI/I
2S4_SD
SPI5_MOSI/
I2S5_SD -- -
DFSDM2_
DATIN1 -FSMC_D11/
FSMC_DA11 --
EVENT
OUT
PE15 - TIM1_
BKIN ---- - - - -
DFSDM2_
CKIN1 -FSMC_D12/F
SMC_DA12 --
EVENT
OUT
Table 12. STM32F423xH alternate functions (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS_
AF
TIM1/2/
LPTIM1 TIM3/4/5 DFSDM2/
TIM8/9/10/11
I2C1/2/3/
I2CFMP1
SPI1/I2S1/
SPI2/I2S2/
SPI3/I2S3/
SPI4/I2S4
SPI2/I2S2/
SPI3/I2S3/
SPI4/I2S4/
SPI5/I2S5/
DFSDM1/2
SPI3/I2S3/
SAI1/
DFSDM2/
USART1/
USART2/
USART3
DFSDM1/
USART3/4/
5/6/7/8/
CAN1
I2C2/I2C3/
I2CFMP1/
CAN1/2/
TIM12/13/14/
QUADSPI
SAI1/
DFSDM1/
DFSDM2/
QUADSPI/
FSMC
/OTG1_FS
UART4/
UART5/
UART9/
UART10
/CAN3
FSMC /SDIO - RNG SYS_
AF
STM32F423xH Pinouts and pin description
DocID029161 Rev 7 73/209
Port F
PF0 - - - - I2C2_
SDA ----- --FSMC_A0--
EVENT
OUT
PF1 - - - - I2C2_
SCL ----- --FSMC_A1--
EVENT
OUT
PF2 - - - - I2C2_
SMBA -------FSMC_A2--
EVENT
OUT
PF3 - - TIM5_
CH1 --- - - - - --FSMC_A3--
EVENT
OUT
PF4 - - TIM5_
CH2 --- - - - - --FSMC_A4--
EVENT
OUT
PF5 - - TIM5_
CH3 --- - - - - --FSMC_A5--
EVENT
OUT
PF6 TRACE
D0 - - TIM10_CH1 - - - SAI1_SD_B UART7_
Rx
QUADSPI_
BK1_IO3 -- ---
EVENT
OUT
PF7 TRACE
D1 - - TIM11_CH1 - - - SAI1_
MCLK_B
UART7_
Tx
QUADSPI_
BK1_IO2 -- ---
EVENT
OUT
PF8 - - - - - - - SAI1_SCK_
BUART8_RX TIM13_CH1 QUADSPI_B
K1_IO0 ----
EVENT
OUT
PF9 - - - - - - - SAI1_FS_B UART8_
TX TIM14_CH1 QUADSPI_B
K1_IO1 ----
EVENT
OUT
PF10 - TIM1_ETR TIM5_
CH4 --- - - - - -----
EVENT
OUT
PF11 - - - TIM8_ETR - - - - - - - - - - - EVENT
OUT
PF12 - - - TIM8_BKIN - - - - - - - - FSMC_A6 - - EVENT
OUT
PF13 - - - - I2CFMP1
_SMBA -------FSMC_A7--
EVENT
OUT
PF14 - - - - I2CFMP1
_SCL -------FSMC_A8--
EVENT
OUT
PF15 - - - - I2CFMP1
_SDA -------FSMC_A9--
EVENT
OUT
Table 12. STM32F423xH alternate functions (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS_
AF
TIM1/2/
LPTIM1 TIM3/4/5 DFSDM2/
TIM8/9/10/11
I2C1/2/3/
I2CFMP1
SPI1/I2S1/
SPI2/I2S2/
SPI3/I2S3/
SPI4/I2S4
SPI2/I2S2/
SPI3/I2S3/
SPI4/I2S4/
SPI5/I2S5/
DFSDM1/2
SPI3/I2S3/
SAI1/
DFSDM2/
USART1/
USART2/
USART3
DFSDM1/
USART3/4/
5/6/7/8/
CAN1
I2C2/I2C3/
I2CFMP1/
CAN1/2/
TIM12/13/14/
QUADSPI
SAI1/
DFSDM1/
DFSDM2/
QUADSPI/
FSMC
/OTG1_FS
UART4/
UART5/
UART9/
UART10
/CAN3
FSMC /SDIO - RNG SYS_
AF
Pinouts and pin description STM32F423xH
74/209 DocID029161 Rev 7
Port G
PG0 - - - - - - - - - CAN1_RX - UART9_
RX FSMC_A10 - - EVENT
OUT
PG1 - - - - - - - - - CAN1_TX - UART9_
TX FSMC_A11 - - EVENT
OUT
PG2 - - - - - - - - - - - - FSMC_A12 - - EVENT
OUT
PG3 - - - - - - - - - - - - FSMC_A13 - - EVENT
OUT
PG4 - - - - - - - - - - - - FSMC_A14 - - EVENT
OUT
PG5 - - - - - - - - - - - - FSMC_A15 - - EVENT
OUT
PG6 - - - - - - - - - - QUADSPI_B
K1_NCS ----
EVENT
OUT
PG7 - - - - - - - - USART6_
CK ------
EVENT
OUT
PG8 - - - - - - - - USART6_
RTS ------
EVENT
OUT
PG9 - - - - - - - - USART6_
RX
QUADSPI_
BK2_IO2 --FSMC_NE2--
EVENT
OUT
PG10 - - - - - - - - - - - - FSMC_NE3 - - EVENT
OUT
PG11 - - - - - - - - - CAN2_RX - UART10
_RX ---
EVENT
OUT
PG12 - - - - - - - - USART6_
RTS CAN2_TX - UART10
_TX FSMC_NE4 - - EVENT
OUT
PG13 TRACE
D2 -- - - - - -
USART6_
CTS ---FSMC_A24--
EVENT
OUT
PG14 TRACE
D3 -- - - - - -
USART6_
TX
QUADSPI_
BK2_IO3 - - FSMC_A25 - - EVENT
OUT
PG15 - - - - - - - - USART6_
CTS ------
EVENT
OUT
PortH
PH0 - - - - - - - - - - - - - - - EVENT
OUT
PH1 - - - - - - - - - - - - - - - EVENT
OUT
Table 12. STM32F423xH alternate functions (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS_
AF
TIM1/2/
LPTIM1 TIM3/4/5 DFSDM2/
TIM8/9/10/11
I2C1/2/3/
I2CFMP1
SPI1/I2S1/
SPI2/I2S2/
SPI3/I2S3/
SPI4/I2S4
SPI2/I2S2/
SPI3/I2S3/
SPI4/I2S4/
SPI5/I2S5/
DFSDM1/2
SPI3/I2S3/
SAI1/
DFSDM2/
USART1/
USART2/
USART3
DFSDM1/
USART3/4/
5/6/7/8/
CAN1
I2C2/I2C3/
I2CFMP1/
CAN1/2/
TIM12/13/14/
QUADSPI
SAI1/
DFSDM1/
DFSDM2/
QUADSPI/
FSMC
/OTG1_FS
UART4/
UART5/
UART9/
UART10
/CAN3
FSMC /SDIO - RNG SYS_
AF
DocID029161 Rev 7 75/209
STM32F423xH Memory mapping
78
5 Memory mapping
The memory map is shown in Figure 18.
Figure 18. Memory map
5HVHUYHG
06Y9
0E\WH
EORFN
LQWHUQDO
SHULSKHUDOV
0E\WH
EORFN
1RWXVHG
0E\WH
EORFNLQF
65$065$0
[
[)))))))
[
[)))))))
[)))))))
[&
[')))))))
[(
[))))))))
0E\WH
EORFN
&RGH
[[)))))))
[
5HVHUYHG
[)))
[[))))
[
[$±'))))))
$+%
5HVHUYHG
[)))))))
[
65$0.%DOLDVHG
E\ELWEDQGLQJ [[))))
$3%
$3%
[))
[[))))
5HVHUYHG
[[)))))))
[))
$+%
5HVHUYHG
)ODVKPHPRU\
[)))[)))))
[)))&[)))))))
[[))))
[[)))))))
[[))))))
5HVHUYHG
$OLDVHGWR)ODVKV\VWHP
PHPRU\RU65$0
GHSHQGLQJRQWKH%227SLQV
273DUHDORFN
[[))))
[)))&[)))&)
[)))$[)))%)))
8VHURSWLRQE\WHV
[
&RUWH[ą0LQWHUQDO
SHULSKHUDOV [([()))))
5HVHUYHG [([))))))))
[%)))))))
5HVHUYHG
65$0.%DOLDVHG
E\ELWEDQGLQJ
5HVHUYHG
$+%
[)))[)))$)
$)))
[
5HVHUYHG
6\VWHPPHPRU\
65$0.%DFFHVVHGE\
&38YLD,EXVDQG'EXV [[))))
[$
[$)))
[
0E\WH
EORFN
SHULSKHUDOV
[
)0&
$QG
4XDG63,
5HVHUYHG [[))())))
Memory mapping STM32F423xH
76/209 DocID029161 Rev 7
Table 13. STM32F423xH register boundary addresses
Bus Boundary address Peripheral
0xE010 0000 - 0xFFFF FFFF Reserved
Cortex®-M4 0xE000 0000 - 0xE00F FFFF Cortex-M4 internal peripherals
AHB3
0xA000 2000 - 0xDFFF FFFF Reserved
0xA000 1000 - 0xA000 1FFF QuadSPI control register
0xA000 0000 - 0xA000 0FFF FSMC control register
0x9000 0000 - 0x9FFF FFFF QUADSPI
0x7000 0000 - 0x08FFF FFFF Reserved
0x6000 0000 - 0x6FFF FFFF FSMC
AHB2
0x5006 0C00 - 0x5FFF FFFF Reserved
0x5006 0800 0x5006 0BFF RNG
0x5006 0400 - 0x5006 07FF Reserved
0x5006 0000 - 0x5006 03FF AES
0x5004 0000 - 0x5005 FFFF Reserved
0x5000 0000 - 0x5003 FFFF USB OTG FS
AHB1
0x4002 6800 - 0x4FFF FFFF Reserved
0x4002 6400 - 0x4002 67FF DMA2
0x4002 6000 - 0x4002 63FF DMA1
0x4002 4000 - 0X4002 5FFF Reserved
0x4002 3C00 - 0x4002 3FFF Flash interface register
0x4002 3800 - 0x4002 3BFF RCC
0x4002 3400 - 0x4002 37FF Reserved
0x4002 3000 - 0x4002 33FF CRC
0x4002 2000 - 0x4002 2FFF Reserved
0x4002 1C00 - 0x4002 1FFF GPIOH
0x4002 1800 - 0x4002 1BFF GPIOG
0x4002 1400 - 0x4002 17FF GPIOF
0x4002 1000 - 0x4002 13FF GPIOE
0x4002 0C00 - 0x4002 0FFF GPIOD
0x4002 0800 - 0x4002 0BFF GPIOC
0x4002 0400 - 0x4002 07FF GPIOB
0x4002 0000 - 0x4002 03FF GPIOA
DocID029161 Rev 7 77/209
STM32F423xH Memory mapping
78
APB2
0x4001 6800- 0x4001 FFFF Reserved
0x4001 6400 - 0x4001 67FF DFSDM2
0x4001 6000 - 0x4001 63FF DFSDM1
0x4001 5C00 - 0x4001 5FFF Reserved
0x4001 5800 - 0x4001 5BFF SAI1
0x4001 5400 - 0x4001 57FF Reserved
0x4001 5000 - 0x4001 53FF SPI5/I2S5
0x4001 4C00 - 0x4001 4FFF Reserved
0x4001 4800 - 0x4001 4BFF TIM11
0x4001 4400 - 0x4001 47FF TIM10
0x4001 4000 - 0x4001 43FF TIM9
0x4001 3C00 - 0x4001 3FFF EXTI
0x4001 3800 - 0x4001 3BFF SYSCFG
0x4001 3400 - 0x4001 37FF SPI4/I2S4
0x4001 3000 - 0x4001 33FF SPI1/I2S1
0x4001 2C00 - 0x4001 2FFF SDIO
0x4001 2400 - 0x4001 2BFF Reserved
0x4001 2000 - 0x4001 23FF ADC1/2/3
0x4001 1C00 - 0x4001 1FFF UART10
0x4001 1800 - 0x4001 1BFF UART9
0x4001 1400 - 0x4001 17FF USART6
0x4001 1000 - 0x4001 13FF USART1
0x4001 0800 - 0x4001 0FFF Reserved
0x4001 0400 - 0x4001 07FF TIM8
0x4001 0000 - 0x4001 03FF TIM1
Table 13. STM32F423xH register boundary addresses (continued)
Bus Boundary address Peripheral
Memory mapping STM32F423xH
78/209 DocID029161 Rev 7
APB1
0x4000 8000 - 0x4000 FFFF Reserved
0x4000 7C00 - 0x4000 7FFF UART8
0x4000 7800 - 0x4000 7BFF UART7
0x4000 7400 - 0x4000 77FF DAC1
0x4000 7000 - 0x4000 73FF PWR
0x4000 6C00- 0x4000 6FFF CAN3
0x4000 6800- 0x4000 6BFF CAN2
0x4000 6400- 0x4000 67FF CAN1
0x4000 6000- 0x4000 63FF I2CFMP1
0x4000 5C00 - 0x4000 5FFF I2C3
0x4000 5800 - 0x4000 5BFF I2C2
0x4000 5400 - 0x4000 57FF I2C1
0x4000 5000 - 0x4000 53FF UART5
0x4000 4C00 - 0x4000 4FFF UART4
0x4000 4800 - 0x4000 4BFF USART3
0x4000 4400 - 0x4000 47FF USART2
0x4000 4000 - 0x4000 43FF I2S3ext
0x4000 3C00 - 0x4000 3FFF SPI3 / I2S3
0x4000 3800 - 0x4000 3BFF SPI2 / I2S2
0x4000 3400 - 0x4000 37FF I2S2ext
0x4000 3000 - 0x4000 33FF IWDG
0x4000 2C00 - 0x4000 2FFF WWDG
0x4000 2800 - 0x4000 2BFF RTC & BKP Registers
0x4000 2400 - 0x4000 27FF LPTIM1
0x4000 2000 - 0x4000 23FF TIM14
0x4000 1C00 - 0x4000 1FFF TIM13
0x4000 1800 - 0x4000 1BFF TIM12
0x4000 1400 - 0x4000 17FF TIM7
0x4000 1000 - 0x4000 13FF TIM6
0x4000 0C00 - 0x4000 0FFF TIM5
0x4000 0800 - 0x4000 0BFF TIM4
0x4000 0400 - 0x4000 07FF TIM3
0x4000 0000 - 0x4000 03FF TIM2
Table 13. STM32F423xH register boundary addresses (continued)
Bus Boundary address Peripheral
DocID029161 Rev 7 79/209
STM32F423xH Electrical characteristics
175
6 Electrical characteristics
6.1 Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
6.1.1 Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean ±3 σ).
6.1.2 Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.3 V (for the
1.7 V VDD 3.6 V voltage range). They are given only as design guidelines and are not
tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean ±2 σ).
6.1.3 Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
6.1.4 Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 19.
6.1.5 Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 20.
Figure 19. Pin loading conditions Figure 20. Input voltage measurement
-36
#P&
-#5PIN
-36
-#5PIN
6).
Electrical characteristics STM32F423xH
80/209 DocID029161 Rev 7
6.1.6 Power supply scheme
Figure 21. Power supply scheme
1. To connect PDR_ON pin, refer to Section: Power supply supervisor.
2. The 4.7 µF ceramic capacitor must be connected to one of the VDD pin.
3. VCAP_2 pad is only available on 100-pin and 144-pin packages.
4. VDDA=VDD and VSSA=VSS.
5. VDDUSB is a dedicated independent USB power supply for the on-chip full-speed OTG PHY module and
associated DP/DM GPIOs. VDDUSB value does not depend on the VDD and VDDA values, but it must be the
last supply to be provided and the first to disappear.
Caution: Each power supply pair (for example VDD/VSS, VDDA/VSSA) must be decoupled with filtering
ceramic capacitors as shown above. These capacitors must be placed as close as possible
to, or below, the appropriate pins on the underside of the PCB to ensure good operation of
the device. It is not recommended to remove filtering capacitors to reduce PCB size or cost.
This might cause incorrect operation of the device.
06Y9
%DFNXSFLUFXLWU\
26&.57&
:DNHXSORJLF
%DFNXSUHJLVWHUV
.HUQHOORJLF
&38GLJLWDO
5$0
$QDORJ
5&V
3//
3RZHU
VZLWFK
9%$7
*3,2V
287
,1
îQ)
î)
9%$7
WR9
9ROWDJH
UHJXODWRU
9''$
$'&
/HYHOVKLIWHU
,2
/RJLF
9''
Q)
)
)ODVKPHPRU\
9&$3B
9&$3B
î)
%<3$66B5(*
3'5B21 5HVHW
FRQWUROOHU
9''

966

9''
95()
95()
966$
95()
Q)
)
27*
)6
3+<
9''B86%
Q)
)
9''86%
DocID029161 Rev 7 81/209
STM32F423xH Electrical characteristics
175
6.1.7 Current consumption measurement
Figure 22. Current consumption measurement scheme
6.2 Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 14: Voltage characteristics,
Table 15: Current characteristics, and Table 16: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of
the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.
DL
9%$7
9''
9''$
,''B9%$7
,''
Table 14. Voltage characteristics
Symbol Ratings Min Max Unit
VDD–VSS
External main supply voltage (including VDDA, VDD,
VDDUSB and VBAT)(1)
1. All main power (VDD, VDDA, VDDUSB) and ground (VSS, VSSA) pins must always be connected to the
external power supply, in the permitted range.
–0.3 4.0
V
VIN
Input voltage on FT and TC pins(2)
2. VIN maximum value must always be respected. Refer to Table 15 for the values of the maximum allowed
injected current.
VSS–0.3 VDD+4.0
Input voltage on TTa pins VSS–0.3 4.0
Input voltage on any other pin VSS–0.3 4.0
Input voltage for BOOT0 VSS 9.0
|ΔVDDx| Variations between different VDD power pins - 50
mV
|VSSX VSS|Variations between all the different ground pins
including VREF-
-50
VESD(HBM) Electrostatic discharge voltage (human body model)
see Section 6.3.14:
Absolute maximum
ratings (electrical
sensitivity)
Electrical characteristics STM32F423xH
82/209 DocID029161 Rev 7
Table 15. Current characteristics
Symbol Ratings Max. Unit
ΣIVDD Total current into sum of all VDD_x power lines (source)(1) 180
mA
Σ IVSS Total current out of sum of all VSS_x ground lines (sink)(1) -180
Σ IVDDUSB Total current into VDDUSB power lines (source) 25
IVDD Maximum current into each VDD_x power line (source)(1) 100
IVSS Maximum current out of each VSS_x ground line (sink)(1) -100
IIO
Output current sunk by any I/O and control pin 25
Output current sourced by any I/O and control pin -25
ΣIIO
Total output current sunk by sum of all I/O and control pins (2) 120
Total output current sunk by sum of all USB I/Os 25
Total output current sourced by sum of all I/Os and control pins(2) -120
IINJ(PIN) (3)
Injected current on FT and TC pins (4)
– 5/ + 0
Injected current on NRST and B pins (4)
Injected current on TTa pins(5) ± 5
ΣIINJ(PIN) Total injected current (sum of all I/O and control pins)(6) ± 25
1. All main power (VDD, VDDA, VDDUSB) and ground (VSS, VSSA) pins must always be connected to the external power supply,
in the permitted range.
2. This current consumption must be correctly distributed over all I/Os and control pins.
3. Negative injection disturbs the analog performance of the device. See note in Section 6.3.20: 12-bit ADC characteristics.
4. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum
value.
5. A positive injection is induced by VIN>VDDA in the same time a negative injection is induced by VIN<VSS. IINJ(PIN) must
never be exceeded. Refer to Table 14 for the values of the maximum allowed input voltage.
6. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and
negative injected currents (instantaneous values).
Table 16. Thermal characteristics
Symbol Ratings Value Unit
TSTG Storage temperature range –65 to +150
°C
TJMaximum junction temperature 125
TLEAD
Maximum lead temperature during soldering
(WLCSP81, LQFP64/100/144, UFQFPN48,
UFBGA100/144)
see note (1)
1. Compliant with JEDEC Std J-STD-020D (for small body, Sn-Pb or Pb assembly), the ST ECOPACK®
7191395 specification, and the European directive on Restrictions on Hazardous Substances (ROHS
directive 2011/65/EU, July 2011).
DocID029161 Rev 7 83/209
STM32F423xH Electrical characteristics
175
6.3 Operating conditions
6.3.1 General operating conditions
Table 17. General operating conditions
Symbol Parameter Conditions Min Typ Max Unit
fHCLK
Internal AHB clock
frequency
Power Scale3: Regulator ON,
VOS[1:0] bits in PWR_CR
register = 0x01
0- 64
MHz
Power Scale2: Regulator ON,
VOS[1:0] bits in PWR_CR
register = 0x10
0 - 84
Power Scale1: Regulator ON,
VOS[1:0] bits in PWR_CR
register = 0x11
0- 100
fPCLK1
Internal APB1 clock
frequency -0 -50MHz
fPCLK2
Internal APB2 clock
frequency -0 -100MHz
VDD Standard operating voltage - 1.7(1) -3.6V
VDDA(2)(3)
Analog operating voltage
(ADC limited to 1.2 M
samples) Must be the same potential as VDD(4)
1.7(1) -2.4
V
Analog operating voltage
(ADC limited to 2.4 M
samples)
2.4 - 3.6
VDDUSB
USB supply voltage
(supply voltage for PA11 and
PA12 pins)
USB not used 1.7 3.3 3.6
V
USB used(5) 3.0 - 3.6
VBAT Backup operating voltage - 1.65 - 3.6 V
V12
Regulator ON: 1.2 V
internal voltage on
VCAP_1/VCAP_2 pins
VOS[1:0] bits in PWR_CR
register = 0x01
Max frequency 64 MHz
1.08(6) 1.14 1.20(6)
V
VOS[1:0] bits in PWR_CR
register = 0x10
Max frequency 84 MHz
1.20(6) 1.26 1.32(6)
VOS[1:0] bits in PWR_CR
register = 0x11
Max frequency 100 MHz
1.26 1.32 1.38
V12
Regulator OFF: 1.2 V
external voltage must be
supplied on
VCAP_1/VCAP_2 pins
Max frequency 64 MHz 1.10 1.14 1.20
VMax frequency 84 MHz 1.20 1.26 1.32
Max frequency 100 MHz 1.26 1.32 1.38
Electrical characteristics STM32F423xH
84/209 DocID029161 Rev 7
VIN
Input voltage on
RST, FT and TC pins(7)
2 V VDD 3.6 V –0.3 - 5.5
V
VDD 2 V –0.3 - 5.2
Input voltage on TTa pins - - 0.3 - VDDA + 0.3
Input voltage on BOOT0 pin - 0 - 9
PD
Power dissipation at
TA = 85°C for range 6 or
TA = 105°C for range 7(8)
UFQFPN48 - - 625
mW
WLCSP81 - - 504
LQFP64 - - 426
LQFP100 - - 465
LQFP144 - 571
UFBGA100 - - 351
UFBGA144 - - 417
Power dissipation at
TA = 125°C for range 3(8)
UFQFPN48 - - 156
WLCSP81 - - 126
LQFP64 - - 106
LQFP100 - - 116
LQFP144 - - 143
UFBGA100 - - 088
UFBGA144 - - 104
TA
Ambient temperature for
range 6
Maximum power dissipation –40 - 85
°C
Low power dissipation(9) –40 - 105
Ambient temperature for
range 7
Maximum power dissipation –40 - 105
Low power dissipation(9) –40 - 125
Ambient temperature for
range 3
Maximum power dissipation –40 - 125
Low power dissipation(9) –40 - 130
TJ Junction temperature range
Range 6 –40 - 105
Range 7 –40 - 125
Range 3 –40 - 130
1. VDD/VDDA minimum value of 1.7 V with the use of an external power supply supervisor (refer to Section 3.17.2: Internal
reset OFF).
2. When the ADC is used, refer to Table 75: ADC characteristics.
3. If VREF+ pin is present, it must respect the following condition: VDDA-VREF+ < 1.2 V.
4. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV between VDD and
VDDA can be tolerated during power-up and power-down operation.
5. Only the DM (PA11) and DP (PA12) pads are supplied through VDDUSB. For application where the VBUS (PA9) is directly
connected to the chip, a minimum VDD supply of 2.7V is required.
(some application examples are shown in appendix B)
6. Guaranteed by test in production
7. To sustain a voltage higher than VDD+0.3, the internal Pull-up and Pull-Down resistors must be disabled
Table 17. General operating conditions (continued)
Symbol Parameter Conditions Min Typ Max Unit
DocID029161 Rev 7 85/209
STM32F423xH Electrical characteristics
175
8. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax.
9. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax.
Table 18. Features depending on the operating power supply range
Operating
power
supply
range
ADC
operation
Maximum
Flash
memory
access
frequency
with no wait
states
(fFlashmax)
Maximum Flash
memory access
frequency with
wait states (1)(2)
I/O operation
Clock output
frequency on
I/O pins(3)
Possible
Flash
memory
operations
VDD =1.7 to
2.1 V(4)
Conversion
time up to
1.2 Msps
16 MHz(5) 100 MHz with 6
wait states
No I/O
compensation up to 30 MHz
8-bit erase
and program
operations
only
VDD = 2.1 to
2.4 V
Conversion
time up to
1.2 Msps
18 MHz 100 MHz with 5
wait states
No I/O
compensation up to 30 MHz
16-bit erase
and program
operations
VDD = 2.4 to
2.7 V
Conversion
time up to
2.4 Msps
20 MHz 100 MHz with 4
wait states
I/O
compensation
works
up to 50 MHz
16-bit erase
and program
operations
VDD = 2.7 to
3.6 V(6)
Conversion
time up to
2.4 Msps
25 MHz 100 MHz with 3
wait states
I/O
compensation
works
–up to
100 MHz
when VDD =
3.0 to 3.6 V
–up to
50 MHz
when VDD =
2.7 to 3.0 V
32-bit erase
and program
operations
1. Applicable only when the code is executed from Flash memory. When the code is executed from RAM, no wait state is
required.
2. Thanks to the ART accelerator and the 128-bit Flash memory, the number of wait states given here does not impact the
execution speed from Flash memory since the ART accelerator allows to achieve a performance equivalent to 0 wait state
program execution.
3. Refer to Table 61: I/O AC characteristics for frequencies vs. external load.
4. VDD/VDDA minimum value of 1.7 V, with the use of an external power supply supervisor (refer to Section 3.17.2: Internal
reset OFF).
5. Prefetch available over the complete VDD supply range.
6. The voltage range for the USB full speed embedded PHY can drop down to 2.7 V. However the electrical characteristics of
D- and D+ pins will be degraded between 2.7 and 3 V.
Electrical characteristics STM32F423xH
86/209 DocID029161 Rev 7
6.3.2 VCAP_1/VCAP_2 external capacitors
Stabilization for the main regulator is achieved by connecting the external capacitor CEXT to
the VCAP_1 and VCAP_2 pins. For packages supporting only 1 VCAP pin, the 2 CEXT
capacitors are replaced by a single capacitor.
CEXT is specified in Table 19.
Figure 23. External capacitor CEXT
1. Legend: ESR is the equivalent series resistance.
6.3.3 Operating conditions at power-up/power-down (regulator ON)
Subject to general operating conditions for TA.
Table 20. Operating conditions at power-up / power-down (regulator ON)
Table 19. VCAP_1/VCAP_2 operating conditions(1)
1. When bypassing the voltage regulator, the two 2.2 µF VCAP capacitors are not required and should be
replaced by two 100 nF decoupling capacitors.
Symbol Parameter Conditions
CEXT Capacitance of external capacitor with the pins
VCAP_1 and VCAP_2 available 2.2 µF
ESR ESR of external capacitor with the pins VCAP_1 and
VCAP_2 available < 2 Ω
CEXT Capacitance of external capacitor with a single VCAP
pin available 4.7 µF
ESR ESR of external capacitor with a single VCAP pin
available < 1 Ω
069
(65
5/HDN
&
Symbol Parameter Min Max Unit
tVDD
VDD rise time rate 20
µs/V
VDD fall time rate 20
DocID029161 Rev 7 87/209
STM32F423xH Electrical characteristics
175
6.3.4 Operating conditions at power-up / power-down (regulator OFF)
Subject to general operating conditions for TA.
Note: This feature is only available for UFBGA100 and UFBGA144 packages.
6.3.5 Embedded reset and power control block characteristics
The parameters given in Table 22 are derived from tests performed under ambient
temperature and VDD supply voltage @ 3.3V.
Table 21. Operating conditions at power-up / power-down (regulator OFF)(1)
1. To reset the internal logic at power-down, a reset must be applied on pin PA0 when VDD reach below
1.08 V.
Symbol Parameter Conditions Min Max Unit
tVDD
VDD rise time rate Power-up 20
µs/V
VDD fall time rate Power-down 20
tVCAP
VCAP_1 and VCAP_2 rise time rate Power-up 20
VCAP_1 and VCAP_2 fall time rate Power-down 20
Table 22. Embedded reset and power control block characteristics
Symbol Parameter Conditions Min Typ Max Unit
VPVD
Programmable voltage
detector level selection
PLS[2:0]=000 (rising edge) 2.09 2.14 2.19
V
PLS[2:0]=000 (falling edge) 1.98 2.04 2.08
PLS[2:0]=001 (rising edge) 2.23 2.30 2.37
PLS[2:0]=001 (falling edge) 2.13 2.19 2.25
PLS[2:0]=010 (rising edge) 2.39 2.45 2.51
PLS[2:0]=010 (falling edge) 2.29 2.35 2.39
PLS[2:0]=011 (rising edge) 2.54 2.60 2.65
PLS[2:0]=011 (falling edge) 2.44 2.51 2.56
PLS[2:0]=100 (rising edge) 2.70 2.76 2.82
PLS[2:0]=100 (falling edge) 2.59 2.66 2.71
PLS[2:0]=101 (rising edge) 2.86 2.93 2.99
PLS[2:0]=101 (falling edge) 2.65 2.84 3.02
PLS[2:0]=110 (rising edge) 2.96 3.03 3.10
PLS[2:0]=110 (falling edge) 2.85 2.93 2.99
PLS[2:0]=111 (rising edge) 3.07 3.14 3.21
PLS[2:0]=111 (falling edge) 2.95 3.03 3.09
VPVDhyst(2) PVD hysteresis - - 100 - mV
VPOR/PDR
Power-on/power-down
reset threshold
Falling edge 1.60(1) 1.68 1.76 V
Rising edge 1.64 1.72 1.80
Electrical characteristics STM32F423xH
88/209 DocID029161 Rev 7
6.3.6 Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, ambient temperature, I/O pin loading, device software configuration,
operating frequencies, I/O pin switching rate, program location in memory and executed
binary code.
The current consumption is measured as described in Figure 22: Current consumption
measurement scheme.
All the run-mode current consumption measurements given in this section are performed
with a reduced code that gives a consumption equivalent to CoreMark code.
VPDRhyst(2) PDR hysteresis - - 40 - mV
VBOR1
Brownout level 1
threshold
Falling edge 2.13 2.19 2.24
V
Rising edge 2.23 2.29 2.33
VBOR2
Brownout level 2
threshold
Falling edge 2.44 2.50 2.56
Rising edge 2.53 2.59 2.63
VBOR3
Brownout level 3
threshold
Falling edge 2.75 2.83 2.88
Rising edge 2.85 2.92 2.97
VBORhyst(2) BOR hysteresis - - 100 - mV
TRSTTEMPO
(2)(3) POR reset timing - 0.5 1.5 3.0 ms
IRUSH(2)
In-Rush current on
voltage regulator power-
on (POR or wakeup from
Standby)
- - 160 200 mA
ERUSH(2)
In-Rush energy on
voltage regulator power-
on (POR or wakeup from
Standby)
VDD = 1.7 V, TA = 125 °C,
IRUSH = 171 mA for 31 µs --5.4µC
1. The product behavior is guaranteed by design down to the minimum VPOR/PDR value.
2. Guaranteed by design.
3. The reset timing is measured from the power-on (POR reset or wakeup from VBAT) to the instant when first
instruction is fetched by the user application code.
Table 22. Embedded reset and power control block characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
DocID029161 Rev 7 89/209
STM32F423xH Electrical characteristics
175
Typical and maximum current consumption
The MCU is placed under the following conditions:
All I/O pins are in input mode with a static value at VDD or VSS (no load).
All peripherals are disabled except if it is explicitly mentioned.
The Flash memory access time is adjusted to both fHCLK frequency and VDD ranges
(refer to Table 18: Features depending on the operating power supply range).
The voltage scaling is adjusted to fHCLK frequency as follows:
Scale 3 for fHCLK 64 MHz
Scale 2 for 64 MHz < fHCLK 84 MHz
Scale 1 for 84 MHz < fHCLK 100 MHz
The system clock is HCLK, fPCLK1 = fHCLK/2, and fPCLK2 = fHCLK.
External clock is 4 MHz and PLL is ON except if it is explicitly mentioned.
The maximum values are obtained for VDD = 3.6 V and a maximum ambient
temperature (TA), and the typical values for TA= 25 °C and VDD = 3.3 V unless
otherwise specified.
Table 23. Typical and maximum current consumption, code with data processing (ART
accelerator disabled) running from SRAM - VDD = 1.7 V
Symbol Parameter Conditions fHCLK
(MHz)
Typ Max(1)
Unit
TA= 25 °C TA= 25 °C TA=85 °C TA=105 °C TA=125 °C
IDD
Supply
current in
Run mode
External clock,
PLL ON,
all peripherals
enabled(2)(3)
100 32.9 34.96 35.30 37.21 40.79
mA
84 26.5 28.13 28.58 30.50 33.96
64 18.3 19.44 20.11 21.76 25.03
50 14.4 15.28 16.12 17.95 21.11
25 7.5 8.10 9.35 11.09 14.38
20 6.4 6.99 8.17 9.96 13.17
HSI, PLL off, all
peripherals
enabled(2)(3)
16 4.6 5.17 6.42 8.28 11.46
1 0.7 1.28 2.64 4.30 7.66
External clock,
PLL ON, all
peripherals
disabled(3)
100 15.4 16.43 17.35 19.17 22.85
84 12.4 13.28 14.32 16.12 19.67
64 8.7 9.36 10.38 12.06 15.31
50 6.9 7.47 8.54 10.36 13.49
25 3.7 4.27 5.47 7.17 10.45
20 3.2 3.72 5.01 6.67 10.02
HSI, PLL off, all
peripherals
disabled(3)
16 2.3 2.80 4.05 5.90 9.07
1 0.6 1.14 2.51 4.16 7.51
1. Guaranteed by characterization results.
2. When analog peripheral blocks such as ADC, HSE, LSE, HSI, or LSI are ON, an additional power consumption has to be
considered.
Electrical characteristics STM32F423xH
90/209 DocID029161 Rev 7
3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA for the
analog part.
Table 24. Typical and maximum current consumption, code with data processing (ART
accelerator disabled) running from SRAM - VDD = 3.6 V
Symbol Parameter Conditions fHCLK
(MHz)
Typ Max(1)
Unit
TA=
25 °C
TA=
25 °C
TA=
85 °C
TA=
105 °C
TA=
125 °C
IDD
Supply
current in
Run mode
External clock,
PLL ON,
all peripherals enabled(2)
100 33.3 35.32(3) 35.65 37.65 41.26(3)
mA
84 26.8 28.45(3) 28.97 30.82 34.39(3)
64 18.6 19.74(3) 20.35 22.11 25.35(3)
50 14.6 15.57 16.41 18.21 21.46
25 7.8 8.37 9.64 11.32 14.68
20 6.7 7.25 8.40 10.25 13.45
HSI, PLL OFF(4),
all peripherals enabled(2)
16 4.6 4.96 6.39 8.20 11.54
1 0.8 0.86 2.51 4.34 7.65
External clock,
PLL ON,
all peripherals
disabled(2)
100 15.7 16.74(3) 17.62 19.50 23.16(3)
84 12.7 13.57(3) 14.60 16.38 19.98(3)
64 9.0 9.62(3) 10.60 12.37 15.58(3)
50 7.1 7.69 8.79 10.63 13.79
25 4.0 4.52 5.68 7.44 10.68
20 3.4 4.03 5.23 6.90 10.27
HSI, PLL OFF,
all peripherals
disabled(2)
16 2.3 2.44 4.00 5.81 9.13
1 0.6 0.70 2.35 4.18 7.49
1. Guaranteed by characterization results.
2. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA for the
analog part.
3. Tested in production
4. When analog peripheral blocks such as ADC, HSE, LSE, HSI, or LSI are ON, an additional power consumption has to be
considered
DocID029161 Rev 7 91/209
STM32F423xH Electrical characteristics
175
Table 25. Typical and maximum current consumption in run mode, code with data processing
(ART accelerator enabled except prefetch) running from Flash memory- VDD = 1.7 V
Symbol Parameter Conditions fHCLK
(MHz)
Typ Max(1)
Unit
TA =
25 °C
TA =
25 °C
TA =
85 °C
TA =
105 °C
TA =
125 °C
IDD
Supply
current in
Run mode
External clock,
PLL ON,
all peripherals enabled(2)(3)
100 30.2 32.03 32.71 34.69 38.46
mA
84 24.3 25.77 26.58 28.47 32.16
64 16.8 17.80 18.66 20.53 23.85
50 13.2 14.05 15.12 16.85 20.27
25 7.1 7.62 8.92 10.81 14.11
20 6.1 6.69 7.95 9.72 13.09
HSI, PLL OFF,
all peripherals enabled(2)
16 4.4 4.99 6.28 8.18 11.45
1 0.9 1.50 2.88 4.58 8.00
External clock,
PLL ON(4)
all peripherals disabled(2)
100 12.6 13.46 14.75 16.68 20.54
84 10.2 10.90 12.25 14.10 17.84
64 7.2 7.70 8.95 10.81 14.14
50 5.7 6.26 7.56 9.26 12.72
25 3.2 3.77 5.11 6.82 10.26
20 2.9 3.41 4.79 6.49 9.92
HSI, PLL OFF, all
peripherals disabled(2)
16 2.1 2.63 3.91 5.80 9.06
1 0.8 1.34 2.72 4.42 7.86
1. Guaranteed by characterization results..
2. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only
while the ADC is ON (ADON bit is set in the ADC_CR2 register).
3. When the ADC is ON (ADON bit set in the ADC_CR2), add an additional power consumption of 1.6mA per ADC for the
analog part.
4. Refer to Table 47 and RM0383 for the possible PLL VCO setting
Electrical characteristics STM32F423xH
92/209 DocID029161 Rev 7
Table 26. Typical and maximum current consumption in run mode, code with data processing
(ART accelerator enabled except prefetch) running from Flash memory - VDD = 3.6 V
Symbol Parameter Conditions fHCLK
(MHz)
Typ Max(1)
Unit
TA =
25 °C
TA =
25 °C
TA =
85 °C
TA =
105 °C
TA =
125 °C
IDD
Supply current
in Run mode
External clock,
PLL ON(2),
all peripherals enabled(3)
100 30.7 32.85(4) 33.30 35.37 39.08
mA
84 24.7 26.48 27.15 28.94 32.65
64 17.2 18.36 19.14 20.88 24.29
50 13.6 14.54 15.45 17.27 20.58
25 7.4 7.97 9.23 11.05 14.42
20 6.4 6.99 8.18 10.03 13.32
HSI, PLL OFF, all
peripherals enabled(3)
16 4.5 5.04 6.32 8.23 11.50
1 1.0 1.50 2.89 4.59 8.01
External clock, PLL ON(2)
all peripherals disabled(3)
100 13.1 14.36 15.33 17.25 20.98
84 10.7 11.67 12.73 14.56 18.21
64 7.5 8.23 9.40 11.13 14.52
50 6.1 6.74 7.89 9.61 12.98
25 3.5 4.19 5.37 7.08 10.48
20 3.2 3.71 5.02 6.72 10.15
HSI, PLL OFF, all
peripherals disabled(3)
16 2.1 2.67 3.95 5.84 9.10
1 0.8 1.35 2.72 4.43 7.87
1. Guaranteed by characterization results.
2. Refer to Table 47 and RM0383 for the possible PLL VCO setting
3. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only
while the ADC is ON (ADON bit is set in the ADC_CR2 register).
4. Tested in production.
DocID029161 Rev 7 93/209
STM32F423xH Electrical characteristics
175
Table 27. Typical and maximum current consumption in run mode, code with data processing
(ART accelerator disabled) running from Flash memory - VDD = 3.6 V
Symbol Parameter Conditions fHCLK
(MHz)
Typ Max(1)
Unit
TA =
25 °C
TA =
25 °C
TA =
85 °C
TA =
105 °C
TA =
125 °C
IDD
Supply current
in Run mode
External clock,
PLL ON(2),
all peripherals enabled(3)
100 39.9 42.46 43.17 45.32 49.19
mA
84 32.6 34.71 35.45 37.58 41.24
64 24.2 25.86 26.73 28.47 31.96
50 19.7 21.01 22.00 23.74 27.26
25 10.8 11.55 12.83 14.66 18.03
20 9.2 9.82 11.16 13.09 16.36
HSI, PLL OFF, all
peripherals enabled(3)
16 6.8 7.33 8.77 10.69 14.00
1 1.2 1.83 3.08 4.83 8.19
External clock, PLL ON(2)
all peripherals disabled(3)
100 22.3 24.11 25.26 27.35 31.11
84 18.5 20.00 21.15 23.20 26.87
64 14.6 15.81 17.02 18.74 22.20
50 12.2 13.14 14.45 16.18 19.66
25 7.0 7.52 8.95 10.84 14.19
20 6.0 6.58 7.95 9.74 13.07
HSI, PLL OFF, all
peripherals disabled(3)
16 4.5 4.97 6.40 8.30 11.59
1 1.0 1.61 2.94 4.65 8.05
1. Guaranteed by characterization results.
2. Refer to Table 47 and RM0383 for the possible PLL VCO setting
3. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only
while the ADC is ON (ADON bit is set in the ADC_CR2 register).
Electrical characteristics STM32F423xH
94/209 DocID029161 Rev 7
Table 28. Typical and maximum current consumption in run mode, code with data processing
(ART accelerator disabled) running from Flash memory - VDD = 1.7 V
Symbol Parameter Conditions fHCLK
(MHz)
Typ Max(1)
Unit
TA =
25 °C
TA =
25 °C
TA =
85 °C
TA =
105 °C
TA =
125 °C
IDD
Supply current
in Run mode
External clock,
PLL ON,
all peripherals
enabled(2)(3)
100 36.1 38.48 39.08 40.91 44.59
mA
84 30.6 32.60 33.14 35.10 38.56
64 23.9 25.67 26.27 27.94 31.19
50 18.9 20.32 21.04 22.85 26.10
25 10.8 11.63 12.75 14.56 17.87
20 9.2 9.84 11.06 12.98 16.23
HSI, PLL OFF,
all peripherals
enabled(2)(3)
16 7.1 7.69 9.02 10.87 14.25
1 1.2 1.84 3.10 4.84 8.20
External clock, PLL ON(3)
all peripherals disabled
100 18.6 20.33 21.23 23.15 26.71
84 16.5 18.09 19.01 20.81 24.29
64 14.3 15.76 16.67 18.28 21.50
50 11.5 12.57 13.53 15.33 18.49
25 7.0 7.67 8.90 10.76 14.05
20 6.0 6.68 7.87 9.65 12.96
HSI, PLL OFF,
all peripherals disabled(3)
16 4.8 5.33 6.66 8.49 11.86
1 1.0 1.62 2.95 4.66 8.06
1. Guaranteed by characterization results.
2. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only
while the ADC is ON (ADON bit is set in the ADC_CR2 register).
3. When the ADC is ON (ADON bit set in the ADC_CR2), add an additional power consumption of 1.6mA per ADC for the
analog part.
DocID029161 Rev 7 95/209
STM32F423xH Electrical characteristics
175
Table 29. Typical and maximum current consumption in run mode, code with data processing
(ART accelerator enabled with prefetch) running from Flash memory - VDD = 3.6 V
Symbol Parameter Conditions fHCLK
(MHz)
Typ Max(1)
Unit
TA =
25 °C
TA =
25 °C
TA =
85 °C
TA =
105 °C
TA =
125 °C
IDD
Supply current
in Run mode
External clock,
PLL ON,
all peripherals enabled(2)
100 42.3 45.08 45.76 47.88 51.71
mA
84 34.6 36.87 37.58 39.64 43.32
64 25.5 27.18 27.93 29.90 33.23
50 20.2 21.55 22.50 24.34 27.73
25 10.9 11.61 12.87 14.72 18.08
20 9.3 9.86 11.20 13.13 16.41
HSI, PLL OFF,
all peripherals enabled
16 6.9 7.37 8.81 10.72 14.04
1 1.2 1.83 3.09 4.83 8.19
External clock,
PLL ON(2)
all peripherals disabled
100 24.7 26.76 27.84 29.93 33.66
84 20.5 22.18 23.25 25.33 28.98
64 15.9 17.13 18.23 20.18 23.46
50 12.7 13.68 14.95 16.71 20.13
25 7.1 7.57 9.01 10.88 14.25
20 6.1 6.61 7.98 9.80 13.11
HSI, PLL OFF,
all peripherals disabled
16 4.5 5.00 6.44 8.33 11.63
1 1.0 1.61 2.94 4.65 8.06
1. Guaranteed by characterization results.
2. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only
while the ADC is ON (ADON bit is set in the ADC_CR2 register).
Electrical characteristics STM32F423xH
96/209 DocID029161 Rev 7
Table 30. Typical and maximum current consumption in run mode, code with data processing
(ART accelerator enabled with prefetch) running from Flash memory - VDD = 1.7 V
Symbol Parameter Conditions fHCLK
(MHz)
Typ Max(1)
Unit
TA =
25 °C
TA =
25 °C
TA =
85 °C
TA =
105 °C
TA =
125 °C
IDD
Supply current
in Run mode
External clock,
PLL ON,
all peripherals enabled(2)
100 42.9 45.86 45.76 47.88 51.71
mA
84 35.4 37.90 38.16 40.01 43.26
64 26.2 28.19 28.74 30.37 33.54
50 20.7 22.32 22.50 24.34 27.73
25 11.1 11.87 12.87 14.72 18.08
20 9.4 10.05 11.26 13.16 16.46
HSI, PLL OFF,
all peripherals enabled
16 7.1 7.72 9.06 10.90 14.29
1 1.2 1.84 3.10 4.84 8.20
External clock,
PLL ON(2)
all peripherals disabled
100 25.4 27.83 27.84 29.93 33.66
84 21.4 23.44 24.10 25.77 29.04
64 16.6 18.31 19.17 20.72 23.86
50 13.2 15.10 14.95 16.71 20.13
25 7.2 7.90 9.01 10.88 14.25
20 6.2 6.83 8.05 9.88 13.15
HSI, PLL OFF,
all peripherals disabled
16 4.8 5.37 6.70 8.52 11.89
1 1.0 1.62 2.96 4.67 8.07
1. Guaranteed by characterization results.
2. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only
while the ADC is ON (ADON bit is set in the ADC_CR2 register).
DocID029161 Rev 7 97/209
STM32F423xH Electrical characteristics
175
Table 31. Typical and maximum current consumption in Sleep mode - VDD = 3.6 V
Symbol Parameter Conditions fHCLK
(MHz)
Typ Max(1)
Unit
TA =
25 °C
TA =
25 °C
TA =
85 °C
TA =
105 °C
TA =
125 °C
IDD
Supply
current in
Sleep mode
All peripherals enabled(2)(3),
External clock,
PLL ON,
Flash deep power down
100 21.6 22.97(4) 23.91 25.99 29.72
mA
84 17.4 18.50 19.59 21.42 25.09
64 12.0 12.81 13.87 15.73 19.00
50 9.5 10.15 11.33 13.22 16.44
25 5.2 5.79 7.11 8.82 12.18
20 4.6 5.17 6.41 8.28 11.48
All peripherals enabled(2)(3),
HSI, PLL OFF,
Flash deep power down
16 3.0 3.24 4.78 6.60 9.94
1 0.7 0.76 2.41 4.23 7.55
All peripherals enabled(2)(3),
External clock,
PLL ON Flash ON
100 22.0 23.42 24.45 26.41 30.24
84 17.7 18.91 19.98 21.85 25.56
64 12.4 13.17 14.30 16.07 19.48
50 9.8 10.48 11.72 13.53 16.90
25 5.5 6.05 7.41 9.11 12.55
20 4.9 5.42 6.72 8.57 11.89
All peripherals enabled(2)(3),
HSI, PLL ON, Flash ON
16 3.3 3.51 5.06 6.91 10.30
1 0.9 1.01 2.67 4.52 7.88
All peripherals disabled,
External clock,
PLL ON(2),
Flash deep power down
100 3.5 4.17 5.56 7.54 11.23
84 2.9 3.48 4.94 6.76 10.40
64 2.2 2.73 3.94 5.80 8.98
50 1.8 2.38 3.57 5.42 8.60
25 1.3 1.86 3.11 4.82 8.12
20 1.3 1.90 3.13 4.85 8.15
All peripherals disabled,
HSI, PLL OFF(2),
Flash deep power down
16 0.6 0.68 2.33 4.16 7.47
1 0.5 0.59 2.24 4.07 7.38
All peripherals disabled,
External clock,
PLL ON(2), Flash ON
100 4.0 4.54 5.97 8.09 11.74
84 3.3 3.87 5.32 7.19 10.84
64 2.5 3.04 4.33 6.15 9.47
50 2.2 2.69 3.93 5.82 9.04
25 1.6 2.13 3.37 5.20 8.46
20 1.6 2.16 3.39 5.22 8.48
All peripherals disabled,
HSI, PLL OFF(2), Flash ON
16 0.9 0.96 2.62 4.47 7.82
1 0.7 0.85 2.50 4.36 7.71
1. Guaranteed by characterization results.
2. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only
while the ADC is ON (ADON bit is set in the ADC_CR2 register).
3. When the ADC is ON (ADON bit set in the ADC_CR2), add an additional power consumption of 1.6mA per ADC for the
analog part.
4. Tested in production.
Electrical characteristics STM32F423xH
98/209 DocID029161 Rev 7
Table 32. Typical and maximum current consumption in Sleep mode - VDD = 1.7 V
Symbol Parameter Conditions fHCLK
(MHz)
Typ Max(1)
Unit
TA =
25 °C
TA =
25 °C
TA =
85 °C
TA =
105 °C
TA =
125 °C
IDD
Supply current
in Sleep mode
External clock,
PLL ON,
Flash deep power down,
all peripherals enabled(2)
100 21.2 22.64 23.56 25.66 29.30
mA
84 17.1 18.20 19.27 21.14 24.75
64 11.8 12.53 13.59 15.47 18.66
50 9.3 9.88 11.06 12.94 16.11
25 5.0 5.52 6.83 8.61 11.88
20 4.4 4.93 6.16 8.03 11.19
HSI, PLL OFF(2),
Flash deep power down,
all peripherals enabled
16 3.0 3.53 4.91 6.57 9.94
1 0.6 1.19 2.55 4.21 7.57
External clock, PLL ON(2)
all peripherals enabled,
Flash ON
100 21.7 23.10 24.09 26.12 29.90
84 17.4 18.61 19.72 21.55 25.27
64 12.1 12.89 13.98 15.84 19.18
50 9.6 10.20 11.43 13.32 16.62
25 5.2 5.80 7.19 8.91 12.33
20 4.6 5.18 6.47 8.37 11.63
HSI, PLL OFF(2), all
peripherals enabled,
Flash ON
16 3.2 3.79 5.17 6.88 10.32
1 0.9 1.43 2.80 4.50 7.92
All peripherals disabled,
External clock,
PLL ON(2),
Flash deep power down
100 3.3 3.82 5.34 7.25 10.97
84 2.7 3.22 4.70 6.54 10.13
64 1.9 2.48 3.70 5.55 8.71
50 1.6 2.13 3.35 5.15 8.35
25 1.0 1.61 2.90 4.57 7.91
20 1.1 1.66 2.93 4.59 7.93
All peripherals disabled,
HSI, PLL OFF(2),
Flash deep power down
16 0.6 1.12 2.49 4.14 7.49
1 0.5 1.04 2.40 4.06 7.40
All peripherals disabled,
External clock, PLL
ON(2), Flash ON
100 3.7 4.28 5.76 7.83 11.49
84 3.1 3.60 5.11 6.96 10.64
64 2.3 2.80 4.09 5.96 9.23
50 1.9 2.44 3.70 5.59 8.82
25 1.3 1.89 3.18 4.94 8.27
20 1.4 1.92 3.20 4.97 8.29
All peripherals disabled,
HSI, PLL OFF(2), Flash
ON
16 0.8 1.38 2.75 4.44 7.87
1 0.7 1.25 2.65 4.34 7.77
1. Guaranteed by characterization results.
DocID029161 Rev 7 99/209
STM32F423xH Electrical characteristics
175
2. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only
while the ADC is ON (ADON bit is set in the ADC_CR2 register).
Table 33. Typical and maximum current consumptions in Stop mode - VDD = 1.7 V
Symbol Conditions Parameter
Typ(1) Max(1)
Unit
TA =
25 °C
TA =
25 °C
TA =
85 °C
TA =
105 °C
TA =
125 °C
IDD_STOP
Flash in Stop mode,
all oscillators OFF, no
independent watchdog
Main regulator usage 111.7 157.9 713.7 1323.5 2315.1
µA
Low power regulator usage 42.3 80.1 594.1 1167.6 2097.6
Flash in Deep power
down mode, all
oscillators OFF, no
independent watchdog
Main regulator usage 77.9 113.1 568.3 1073.6 1883.7
Low power regulator usage 19.7 55.8 561.3 1123.2 2026.0
Low power low voltage regulator
usage 15.3 46.3 490.8 991.3 1793.9
1. Guaranteed by characterization results.
Table 34. Typical and maximum current consumption in Stop mode - VDD=3.6 V
Symbol Conditions Parameter
Typ Max(1)
Unit
TA =
25 °C
TA =
25 °C
TA =
85 °C
TA =
105 °C
TA =
125 °C
IDD_STOP
Flash in Stop mode, all
oscillators OFF, no
independent watchdog
Main regulator usage 114.4 161.6(2) 723.0 1339.0 2342.7(2)
µA
Low power regulator usage 44.1 82.5(2) 600.6 1179.3 2119.1
Flash in Deep power
down mode, all
oscillators OFF, no
independent watchdog
Main regulator usage 80.6 116.7 572.3 1079.2 1896.3
Low power regulator usage 21.4 58.9 567.9 1134.5 2049.6
Low power low voltage
regulator usage 17.0 49.0(2) 497.4 1003.6 1817.0(2)
1. Guaranteed by characterization results.
2. Tested in production.
Table 35. Typical and maximum current consumption in Standby mode - VDD= 1.7 V
Symbol Parameter Conditions
Typ(1) Max(2)
Unit
TA =
25 °C
TA =
25 °C
TA =
85 °C
TA =
105 °C
TA =
125 °C
IDD_STBY Supply current in
Standby mode
Low-speed oscillator (LSE in low drive
mode) and RTC ON 2.3 3.7 15.9 32.5 76.8
µALow-speed oscillator (LSE in high drive
mode) and RTC ON 2.9 4.3 16.5 33.1 77.4
RTC and LSE OFF 1.1 2.5 14.7 31.3 75.6
1. When the PDR is OFF (internal reset is OFF), the typical current consumption is reduced by 1.2 µA.
2. Guaranteed by characterization results.
Electrical characteristics STM32F423xH
100/209 DocID029161 Rev 7
Table 36. Typical and maximum current consumption in Standby mode - VDD= 3.6 V
Symbol Parameter Conditions
Typ(1) Max(2)
Unit
TA =
25 °C
TA =
25 °C
TA =
85 °C
TA =
105 °C
TA =
125 °C
IDD_STBY Supply current in
Standby mode
Low-speed oscillator (LSE in low drive
mode) and RTC ON 3.7 5.2 20.6 40.5 82.7
µALow-speed oscillator (LSE in high drive
mode) and RTC ON 4.5 6.0 21.4 41.3 83.5
RTC and LSE OFF 2.5 4.0 19.4 39.3 81.5(3)
1. When the PDR is OFF (internal reset is OFF), the typical current consumption is reduced by 1.2 µA.
2. Guaranteed by characterization, not tested in production unless otherwise specified.
3. Tested in production.
Table 37. Typical and maximum current consumptions in VBAT mode
Symbol Parameter Conditions(1)
Typ Max(2)
Unit
TA = 25 °C TA =
85 °C
TA =
105 °C
TA =
125 °C
VBAT =
1.7 V
VBAT=
2.4 V
VBAT =
3.3 V
VBAT =
3.6 V VBAT = 3.6 V
IDD_VBAT
Backup
domain
supply
current
Low-speed oscillator (LSE in
low-drive mode) and RTC ON 0.74 0.84 1.04 1.24 3.00 5.00 10.00
µALow-speed oscillator (LSE in
high-drive mode) and RTC ON 1.51 1.64 1.89 2.00 3.80 5.80 11.60
RTC and LSE OFF 0.03 0.03 0.04 0.04 2.00 4.00 8.00
1. Crystal used: Abracon ABS07-120-32.768 kHz-T with a CL of 6 pF for typical values.
2. Guaranteed by characterization results.
DocID029161 Rev 7 101/209
STM32F423xH Electrical characteristics
175
Figure 24. Typical VBAT current consumption (LSE and RTC ON/LSE oscillator
“low power” mode selection)
Figure 25. Typical VBAT current consumption (LSE and RTC ON/LSE oscillator
“high drive” mode selection)
06Y9
06Y9
Electrical characteristics STM32F423xH
102/209 DocID029161 Rev 7
I/O system current consumption
The current consumption of the I/O system has two components: static and dynamic.
I/O static current consumption
All the I/Os used as inputs with pull-up generate current consumption when the pin is
externally held low. The value of this current consumption can be simply computed by using
the pull-up/pull-down resistors values given in Table 59: I/O static characteristics.
For the output pins, any external pull-down or external load must also be considered to
estimate the current consumption.
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate
voltage level is externally applied. This current consumption is caused by the input Schmitt
trigger circuits used to discriminate the input value. Unless this specific configuration is
required by the application, this supply current consumption can be avoided by configuring
these I/Os in analog mode. This is notably the case of ADC input pins which should be
configured as analog inputs.
Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,
as a result of external electromagnetic noise. To avoid current consumption related to
floating pins, they must either be configured in analog mode, or forced internally to a definite
digital value. This can be done either by using pull-up/down resistors or by configuring the
pins in output mode.
I/O dynamic current consumption
In addition to the internal peripheral current consumption (see Table 39: Peripheral current
consumption), the I/Os used by an application also contribute to the current consumption.
When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O
pin circuitry and to charge/discharge the capacitive load (internal or external) connected to
the pin:
where
ISW is the current sunk by a switching I/O to charge/discharge the capacitive load
VDD is the MCU supply voltage
fSW is the I/O switching frequency
C is the total capacitance seen by the I/O pin: C = CINT+ CEXT
The test pin is configured in push-pull output mode and is toggled by software at a fixed
frequency.
ISW VDD fSW C××=
DocID029161 Rev 7 103/209
STM32F423xH Electrical characteristics
175
Table 38. Switching output I/O current consumption
Symbol Parameter Conditions(1)
1. CS is the PCB board capacitance including the pad pin. CS = 7 pF (estimated value).
I/O toggling
frequency (fSW)Typ Unit
IDDIO I/O switching
current
VDD = 3.3 V
C = CINT
2 MHz 0.05
mA
8 MHz 0.15
25 MHz 0.45
50 MHz 0.85
60 MHz 1.00
84 MHz 1.40
90 MHz 1.67
VDD = 3.3 V
CEXT = 0 pF
C = CINT + CEXT + CS
2 MHz 0.10
8 MHz 0.35
25 MHz 1.05
50 MHz 2.20
60 MHz 2.40
84 MHz 3.55
90 MHz 4.23
VDD = 3.3 V
CEXT =10 pF
C = CINT + CEXT + CS
2 MHz 0.20
8 MHz 0.65
25 MHz 1.85
50 MHz 2.45
60 MHz 4.70
84 MHz 8.80
90 MHz 10.47
VDD = 3.3 V
CEXT = 22 pF
C = CINT + CEXT + CS
2 MHz 0.25
8 MHz 1.00
25 MHz 3.45
50 MHz 7.15
60 MHz 11.55
VDD = 3.3 V
CEXT = 33 pF
C = CINT + CEXT + CS
2 MHz 0.32
8 MHz 1.27
25 MHz 3.88
50 MHz 12.34
Electrical characteristics STM32F423xH
104/209 DocID029161 Rev 7
On-chip peripheral current consumption
The MCU is placed under the following conditions:
At startup, all I/O pins are in analog input configuration.
All peripherals are disabled unless otherwise mentioned.
The ART accelerator is ON.
Voltage Scale 2 mode selected, internal digital voltage V12 = 1.26 V.
HCLK is the system clock at 100 MHz. fPCLK1 = fHCLK/2, and fPCLK2 = fHCLK.
The given value is calculated by measuring the difference of current consumption
with all peripherals clocked off,
with only one peripheral clocked on,
scale 1 with fHCLK = 100 MHz,
scale 2 with fHCLK = 84 MHz,
scale 3 with fHCLK = 64 MHz.
Ambient operating temperature is 25 °C and VDD=3.3 V.
Table 39. Peripheral current consumption
Peripheral
IDD (Typ)
Unit
Scale 1 Scale 2 Scale 3
AHB1
GPIOA 1.89 1.82 1.64
µA/MHz
GPIOB 1.75 1.68 1.52
GPIOC 1.70 1.64 1.48
GPIOD 1.72 1.65 1.48
GPIOE 1.78 1.71 1.55
GPIOF 1.68 1.62 1.45
GPIOG 1.66 1.61 1.44
GPIOH 0.72 0.69 0.63
CRC 0.30 0.30 0.28
DMA1(1) 1.75N + 3.14 1.66N + 3.00 1.49N + 2.70
DMA2(1) 1.79N + 3.29 1.71N + 3.14 1.53N + 2.82
AHB2
RNG 0.72 0.70 0.63
µA/MHzUSB_OTG_FS 19.26 18.37 16.47
AES 2.75 2.63 2.36
AHB3 FSMC 5.42 5.18 4.64 µA/MHz
QSPI 10.33 9.86 8.84
DocID029161 Rev 7 105/209
STM32F423xH Electrical characteristics
175
APB1
AHB-APB1 bridge 0.90 0.88 0.81
µA/MHz
TIM2 13.08 12.48 11.16
TIM3 9.98 9.50 8.50
TIM4 9.88 9.43 8.44
TIM5 13.14 12.52 11.19
TIM6 1.94 1.86 1.66
TIM7 1.86 1.79 1.56
TIM12 5.56 5.29 4.72
TIM13 3.44 3.29 2.94
TIM14 3.66 3.48 3.09
LPTIM1 7.34 7.00 6.25
WWDG 0.64 0.62 0.53
SPI2/I2S2 3.02 2.88 2.56
SPI3/I2S3 3.06 2.90 2.59
USART2 3.30 3.14 2.81
USART3 3.32 3.14 2.81
UART4 3.18 3.02 2.69
UART5 3.26 3.10 2.75
I2C1 3.20 3.05 2.72
I2C2 3.30 3.14 2.81
I2C3 3.26 3.10 2.78
I2CFMP1 5.22 4.98 4.44
CAN1 5.58 5.31 4.75
CAN2 5.14 4.88 4.38
CAN3 5.70 5.43 4.84
PWR 0.90 0.86 0.75
DAC1 2.14 2.05 1.81
UART7 3.08 2.93 2.59
UART8 3.10 2.95 2.63
Table 39. Peripheral current consumption (continued)
Peripheral
IDD (Typ)
Unit
Scale 1 Scale 2 Scale 3
Electrical characteristics STM32F423xH
106/209 DocID029161 Rev 7
6.3.7 Wakeup time from low-power modes
The wakeup times given in Table 40 are measured starting from the wakeup event trigger up
to the first instruction executed by the CPU:
For Stop or Sleep modes: the wakeup event is WFE.
WKUP (PA0/PC0/PC1) pins are used to wakeup from Standby, Stop and Sleep modes.
APB2
AHB-APB2 bridge 0.10 0.11 0.09
µA/MHz
TIM1 6.78 6.46 5.80
TIM8 6.94 6.62 5.94
USART1 3.14 3.00 2.69
USART6 3.12 2.98 2.67
UART9 2.89 1.98 1.75
UART10 2.91 2.00 1.77
ADC1 3.45 3.29 2.95
SDIO 3.54 3.37 3.03
SPI1 1.52 1.46 1.31
SPI4 1.50 1.43 1.28
SYSCFG 0.58 0.55 0.50
EXT1 0.91 0.86 0.78
TIM9 2.95 2.81 2.53
TIM10 1.88 1.79 1.61
TIM11 1.86 1.77 1.59
SPI5 1.50 1.43 1.30
SAI 2.89 2.75 2.47
DFSDM1 4.43 4.21 3.80
DFSDM2 7.08 6.76 6.05
Bus Matrix 4.06 3.87 3.45
1. N is the number of stream enable (1...8).
Table 39. Peripheral current consumption (continued)
Peripheral
IDD (Typ)
Unit
Scale 1 Scale 2 Scale 3
DocID029161 Rev 7 107/209
STM32F423xH Electrical characteristics
175
Figure 26. Low-power mode wakeup
All timings are derived from tests performed under ambient temperature and VDD=3.3 V.
5HJXODWRU
UDPSXS
+6,UHVWDUW )ODVKVWRSH[LW
&38UHVWDUW
:DNHXSIURP6WRSPRGH
PDLQUHJXODWRU
5HJXODWRU
UDPSXS
+6,UHVWDUW )ODVK'HHS3GUHFRYHU\
&38UHVWDUW
:DNHXSIURP6WRSPRGH
PDLQUHJXODWRU
IODVKLQ'HHSSRZHUGRZQPRGH
5HJXODWRU
UDPSXS
+6,UHVWDUW )ODVKVWRSH[LW
&38UHVWDUW
:DNHXSIURP6WRS
UHJXODWRULQORZSRZHUPRGH
5HJXODWRU
UDPSXS
+6,UHVWDUW
&38UHVWDUW
:DNHXSIURP6WRS
UHJXODWRULQORZSRZHUPRGH
IODVKLQ'HHSSRZHUGRZQPRGH
5HJXODWRU
UHVWDUW
+6,UHVWDUW
&38UHVWDUW
:DNHXSIURP6WDQGE\PRGH
&38UHVWDUW
:DNHXSIURP6OHHSDQG
)ODVKLQ'HHSSRZHUGRZQ
069
)ODVK'HHS3GUHFRYHU\
2SWLRQE\WHVDUHQRWUHORDGHG
2SWLRQE\WHVDUHQRWUHORDGHG
)ODVK'HHS3GUHFRYHU\ 2SWLRQE\WHVORDGLQJ
)ODVK'HHS3GUHFRYHU\
2SWLRQE\WHVDUHQRWUHORDGHG
2SWLRQE\WHVDUHQRWUHORDGHG
5HJXODWRU
2))
2SWLRQE\WHVDUHQRWUHORDGHG
5HJXODWRU
21
Electrical characteristics STM32F423xH
108/209 DocID029161 Rev 7
6.3.8 External clock source characteristics
High-speed external user clock generated from an external source
In bypass mode the HSE oscillator is switched off and the input pin is a standard I/O. The
external clock signal has to respect the Table 59. However, the recommended clock input
waveform is shown in Figure 27.
The characteristics given in Table 41 result from tests performed using an high-speed
external clock source, and under ambient temperature and supply voltage conditions
Table 40. Low-power mode wakeup timings(1)
Symbol Parameter Conditions Min(1) Typ(1) Max(1) Unit
tWUSLEEP
Wakeup from Sleep mode
--46
clk
cycles
tWUSLEEPFDSM
Flash memory in Deep
power down mode - - 50.0
µs
tWUSTOP
Wakeup from STOP mode
Code execution on Flash
Main regulator - 12.7 15.0
Main regulator, Flash
memory in Deep power
down mode
- 104.1 120.0
Wakeup from Stop mode,
regulator in low power
mode(2)
- 20.9 28.0
Regulator in low power
mode, Flash memory in
Deep power down mode(2)
- 112.5 130.0
Regulator in low power
mode low voltage, Flash
memory in Deep power
down mode
- 112.5 130.0
tWUSTOP
Wakeup from STOP mode
code execution on RAM(3)
Main regulator with Flash in
Stop mode or Deep power
down(2)
-4.27.0
Wakeup from Stop mode,
regulator in low power
mode and Flash in Stop
mode or Deep power down
- 12.6 20.0
tWUSTDBY
Wakeup from Standby
mode - - 328.2 400.0
tWUFLASH Wakeup of Flash
From Flash_Stop mode - - 11.0
From Flash Deep power
down mode - - 40.0
1. Guaranteed by characterization results.
2. The specification is valid for wakeup from regulator in low power mode or low power low voltage mode, since the timing
difference is negligible.
3. For the faster wakeup time for code execution on RAM, the Flash must be in STOP or DeepPower Down mode (see
reference manual RM0430).
DocID029161 Rev 7 109/209
STM32F423xH Electrical characteristics
175
summarized in Table 17.
Low-speed external user clock generated from an external source
In bypass mode the LSE oscillator is switched off and the input pin is a standard I/O. The
external clock signal has to respect the Table 59. However, the recommended clock input
waveform is shown in Figure 28.
The characteristics given in Table 42 result from tests performed using an low-speed
external clock source, and under ambient temperature and supply voltage conditions
summarized in Table 17.
Table 41. High-speed external user clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
fHSE_ext
External user clock source
frequency(1)
1. Guaranteed by design.
1-50MHz
VHSEH OSC_IN input pin high level voltage 0.7VDD -V
DD V
VHSEL OSC_IN input pin low level voltage VSS -0.3V
DD
tw(HSE)
tw(HSE)
OSC_IN high or low time(1) 5--
ns
tr(HSE)
tf(HSE)
OSC_IN rise or fall time(1) --10
Cin(HSE) OSC_IN input capacitance(1) -5-pF
DuCy(HSE) Duty cycle 45 - 55 %
ILOSC_IN Input leakage current VSS VIN VDD --±1µA
Table 42. Low-speed external user clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
fLSE_ext
User External clock source
frequency(1) - 32.768 1000 kHz
VLSEH
OSC32_IN input pin high level
voltage 0.7VDD -V
DD V
VLSEL OSC32_IN input pin low level voltage VSS -0.3V
DD
tw(LSE)
tf(LSE)
OSC32_IN high or low time(1) 450 - -
ns
tr(LSE)
tf(LSE)
OSC32_IN rise or fall time(1) --50
Cin(LSE) OSC32_IN input capacitance(1) -5-pF
DuCy(LSE) Duty cycle 30 - 70 %
ILOSC32_IN Input leakage current VSS VIN VDD --±1µA
1. Guaranteed by design.
Electrical characteristics STM32F423xH
110/209 DocID029161 Rev 7
Figure 27. High-speed external clock source AC timing diagram
Figure 28. Low-speed external clock source AC timing diagram
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 26 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 43. In
the application, the resonator and the load capacitors have to be placed as close as
possible to the oscillator pins in order to minimize output distortion and startup stabilization
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
AI
/3# ?) .
%XTERNAL
34-&
CLOCKSOURCE
6(3%(
TF(3% T7(3%
),


4(3%
T
TR(3% T7(3%
F(3%?EXT
6(3%,
DL
26&B,1
([WHUQDO
670)
FORFNVRXUFH
9/6(+
WI/6( W:/6(
,/


7/6(
W
WU/6( W:/6(
I/6(BH[W
9/6(/
DocID029161 Rev 7 111/209
STM32F423xH Electrical characteristics
175
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 25 pF range (Typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 29). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2.
Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 29. Typical application with an 8 MHz crystal
1. REXT value depends on the crystal characteristics.
Low-speed external clock generated from a crystal/ceramic resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 44. In
the application, the resonator and the load capacitors have to be placed as close as
Table 43. HSE 4-26 MHz oscillator characteristics(1)
1. Guaranteed by design.
Symbol Parameter Conditions Min Typ Max Unit
fOSC_IN Oscillator frequency 4 - 26 MHz
RFFeedback resistor - 200 - kΩ
IDD HSE current consumption
VDD=3.3 V,
ESR= 30 Ω,
CL=5 pF @25 MHz
-450-
µA
VDD=3.3 V,
ESR= 30 Ω,
CL=10 pF @25 MHz
-530-
ACCHSE(2)
2. This parameter depends on the crystal used in the application. The minimum and maximum values must
be respected to comply with USB standard specifications.
HSE accuracy - -500 - 500 ppm
Gm_crit_max Maximum critical crystal gmStartup - - 1 mA/V
tSU(HSE)(3)
3. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly
with the crystal manufacturer
Startup time VDD is stabilized - 2 - ms
DL
26&B28 7
26&B,1 I+6(
&/
5)
670)
0+]
UHVRQDWRU
5HVRQDWRUZLWK
LQWHJUDWHGFDSDFLWRUV
%LDV
FRQWUROOHG
JDLQ
5(;7
&/
Electrical characteristics STM32F423xH
112/209 DocID029161 Rev 7
possible to the oscillator pins in order to minimize output distortion and startup stabilization
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
The LSE high-power mode allows to cover a wider range of possible crystals but with a cost
of higher power consumption.
Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
For information about the LSE high-power mode, refer to the reference manual RM0383.
Figure 30. Typical application with a 32.768 kHz crystal
Table 44. LSE oscillator characteristics (fLSE = 32.768 kHz) (1)
1. Guaranteed by design.
Symbol Parameter Conditions Min Typ Max Unit
RFFeedback resistor - - 18.4 - MΩ
IDD LSE current consumption
Low-power mode
(default) --1
µA
High-drive mode - - 3
ACCLSE(2)
2. This parameter depends on the crystal used in the application. Refer to the application note AN2867.
LSE accuracy - -500 - 500 ppm
Gm_crit_max Maximum critical crystal gm
Startup, low-power
mode --0.56
µA/V
Startup, high-drive
mode --1.50
tSU(LSE)(3)
3. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized
32.768 kHz oscillation is reached. This value is guaranteed by characterization and not tested in
production. It is measured for a standard crystal resonator and it can vary significantly with the crystal
manufacturer.
startup time VDD is stabilized - 2 - s
DLD
26&B 28 7
26&B ,1 I/6(
&/
5)
670)
N+]
UHVRQDWRU
5HVRQDWRUZLWK
LQWHJUDWHGFDSDFLWRUV
%LDV
FRQWUROOHG
JDLQ
&/
DocID029161 Rev 7 113/209
STM32F423xH Electrical characteristics
175
6.3.9 Internal clock source characteristics
The parameters given in Table 45 and Table 46 are derived from tests performed under
ambient temperature and VDD supply voltage conditions summarized in Table 17.
High-speed internal (HSI) RC oscillator
L
Figure 31. ACCHSI versus temperature
1. Guaranteed by characterization results.
Table 45. HSI oscillator characteristics (1)
1. VDD = 3.3 V, TA = –40 to 125 °C unless otherwise specified.
Symbol Parameter Conditions Min Typ Max Unit
fHSI Frequency - - 16 - MHz
ACCHSI
HSI user trimming step(2)
2. Guaranteed by design
---1%
Accuracy of the HSI oscillator
TA = – 40 to 125 °C(3)
3. Based on characterization
–8 - 6.75 %
TA = – 40 to 105 °C(3) –8 - 4.5 %
TA = –10 to 85 °C(3) –4 - 4 %
TA = 25 °C(4)
4. Factory calibrated, parts not soldered.
–1 - 1 %
tsu(HSI)(2) HSI oscillator startup time - - 2.2 4 µs
IDD(HSI)(2) HSI oscillator power
consumption - - 60 80 µA
-36








-IN
-AX
4YPICAL
4!#
!##(3)
Electrical characteristics STM32F423xH
114/209 DocID029161 Rev 7
Low-speed internal (LSI) RC oscillator
Figure 32. ACCLSI versus temperature
Table 46. LSI oscillator characteristics (1)
1. VDD = 3 V, TA = –40 to 125 °C unless otherwise specified.
Symbol Parameter Min Typ Max Unit
fLSI(2)
2. Guaranteed by characterization results.
Frequency 16.1 32.0 47.0 kHz
tsu(LSI)(3)
3. Guaranteed by design.
LSI oscillator startup time - 15.0 40.0 µs
IDD(LSI)(3) LSI oscillator power consumption - 0.4 0.6 µA










                
7HPSHUDWXUH&
PD[
PLQ
DYJ
06Y9
1RUPDOL]HGGHYLDWLRQ
DocID029161 Rev 7 115/209
STM32F423xH Electrical characteristics
175
6.3.10 PLL characteristics
The parameters given in Table 47 and Table 48 are derived from tests performed under
temperature and VDD supply voltage conditions summarized in Table 17.
Table 47. Main PLL characteristics
Symbol Parameter Conditions Min Typ Max Unit
fPLL_IN PLL input clock(1) -0.95
(2) 12.10
MHz
fPLLP_OUT PLLP multiplier output clock - 24 - 100
fPLLQ_OUT
48 MHz PLLQ multiplier
output clock --4875
fPLLR_OUT
PLLR multiplier output clock
for I2S and SAI - - - 216
fVCO_OUT PLL VCO output - 100 - 432
tLOCK
PLL lock time VCO freq = 100 MHz 75 - 200 µs
VCO freq = 432 MHz 100 - 300
Jitter(3)
Cycle-to-cycle jitter
System clock
100 MHz
RMS - 25 -
ps
peak
to
peak
-±150 -
Period Jitter RMS - 15 -
peak
to
peak
-±200 -
Bit Time CAN jitter Cycle to cycle at 1 MHz
on 1000 samples. - 330 -
IDD(PLL)(4) PLL power consumption on VDD VCO freq = 100 MHz
VCO freq = 432 MHz
0.15
0.45 -0.40
0.75 mA
IDDA(PLL)(4) PLL power consumption on
VDDA
VCO freq = 100 MHz
VCO freq = 432 MHz
0.30
0.55 -0.40
0.85
1. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared
between PLL and PLLI2S.
2. Guaranteed by design.
3. The use of two PLLs in parallel could degraded the Jitter up to +30%.
4. Guaranteed by characterization results.
Electrical characteristics STM32F423xH
116/209 DocID029161 Rev 7
Table 48. PLLI2S (audio PLL) characteristics
Symbol Parameter Conditions Min Typ Max Unit
fPLL_IN PLL input clock(1) -0.95
(2) 12.10
MHz
fPLLI2SQ_OUT
48 MHz PLLI2SQ
multiplier output clock --4875
fPLLI2SR_OUT
PLLI2SR multiplier output clock
for I2S and SAI - - - 216
fVCO_OUT PLLI2S VCO output - 100 - 432
tLOCK PLLI2S lock time VCO freq = 100 MHz 75 - 200 µs
VCO freq = 432 MHz 100 - 300
Jitter(3)
Master I2S clock jitter
Cycle to cycle at
12.288 MHz on
48 kHz period,
N=432, R=5
RMS - 90 -
peak
to
peak
- ±280 -
ps
Average frequency of
12.288 MHz
N = 432, R = 5
on 1000 samples
-90 -
WS I2S clock jitter Cycle to cycle at 48 KHz
on 1000 samples - 400 -
IDD(PLLI2S)(4) PLLI2S power consumption on
VDD
VCO freq = 100 MHz
VCO freq = 432 MHz
0.15
0.45 -0.40
0.75 mA
IDDA(PLLI2S)(4) PLLI2S power consumption on
VDDA
VCO freq = 100 MHz
VCO freq = 432 MHz
0.30
0.55 -0.40
0.85
1. Take care of using the appropriate division factor M to have the specified PLL input clock values.
2. Guaranteed by design.
3. Value given with main PLL running.
4. Guaranteed by characterization results.
DocID029161 Rev 7 117/209
STM32F423xH Electrical characteristics
175
6.3.11 PLL spread spectrum clock generation (SSCG) characteristics
The spread spectrum clock generation (SSCG) feature allows to reduce electromagnetic
interferences (see Table 55: EMI characteristics for LQFP144). It is available only on the
main PLL.
Equation 1
The frequency modulation period (MODEPER) is given by the equation below:
fPLL_IN and fMod must be expressed in Hz.
As an example:
If fPLL_IN = 1 MHz, and fMOD = 1 kHz, the modulation depth (MODEPER) is given by
equation 1:
Equation 2
Equation 2 allows to calculate the increment step (INCSTEP):
fVCO_OUT must be expressed in MHz.
With a modulation depth (md) = ±2 % (4 % peak to peak), and PLLN = 240 (in MHz):
An amplitude quantization error may be generated because the linear modulation profile is
obtained by taking the quantized values (rounded to the nearest integer) of MODPER and
INCSTEP. As a result, the achieved modulation depth is quantized. The percentage
quantized modulation depth is given by the following formula:
As a result:
Table 49. SSCG parameter constraints
Symbol Parameter Min Typ Max(1) Unit
fMod Modulation frequency - - 10 kHz
md Peak modulation depth 0.25 - 2 %
MODEPER * INCSTEP (Modulation period) * (Increment Step) - - 215-1 -
1. Guaranteed by design.
MODEPER round fPLL_IN 4f
Mod
×()[]=
MODEPER round 106410
3
×()[]250==
INCSTEP round 215 1()md PLLN××()100 5×MODEPER×()[]=
INCSTEP round 215 1()2240××()100 5×250×()[]126md(quantitazed)%==
mdquantized% MODEPER INCSTEP×100×5×()215 1()PLLN×()=
mdquantized% 250 126×100×5×()215 1()240×()2.002%(peak)==
Electrical characteristics STM32F423xH
118/209 DocID029161 Rev 7
Figure 33 and Figure 34 show the main PLL output clock waveforms in center spread and
down spread modes, where:
F0 is fPLL_OUT nominal.
Tmode is the modulation period.
md is the modulation depth.
Figure 33. PLL output clock waveforms in center spread mode
Figure 34. PLL output clock waveforms in down spread mode
6.3.12 Memory characteristics
Flash memory
The characteristics are given at TA = 40 to 125 °C unless otherwise specified.
The devices are shipped to customers with the Flash memory erased.
&REQUENCY0,,?/54
4IME
&
TMODE XTMODE
MD
AI
MD
)UHTXHQF\3//B287
7LPH
)
WPRGH [WPRGH
[PG
DLE
Table 50. Flash memory characteristics
Symbol Parameter Conditions Min Typ Max Unit
IDD Supply current
Write / Erase 8-bit mode, VDD = 1.7 V - 5 -
mAWrite / Erase 16-bit mode, VDD = 2.1 V - 8 -
Write / Erase 32-bit mode, VDD = 3.3 V - 12 -
DocID029161 Rev 7 119/209
STM32F423xH Electrical characteristics
175
Table 51. Flash memory programming
Symbol Parameter Conditions Min(1) Typ Max(1)
1. Guaranteed by characterization results.
Unit
tprog Word programming time Program/erase parallelism
(PSIZE) = x 8/16/32 -16100
(2)
2. The maximum programming time is measured after 100K erase operations.
µs
tERASE16KB Sector (16 KB) erase time
Program/erase parallelism
(PSIZE) = x 8 - 400 800
ms
Program/erase parallelism
(PSIZE) = x 16 - 300 600
Program/erase parallelism
(PSIZE) = x 32 - 250 500
tERASE64KB Sector (64 KB) erase time
Program/erase parallelism
(PSIZE) = x 8 - 1200 2400
ms
Program/erase parallelism
(PSIZE) = x 16 - 700 1400
Program/erase parallelism
(PSIZE) = x 32 - 550 1100
tERASE128KB Sector (128 KB) erase time
Program/erase parallelism
(PSIZE) = x 8 -24
s
Program/erase parallelism
(PSIZE) = x 16 -1.32.6
Program/erase parallelism
(PSIZE) = x 32 -12
tME Mass erase time
Program/erase parallelism
(PSIZE) = x 8 -2448
s
Program/erase parallelism
(PSIZE) = x 16 -1530
Program/erase parallelism
(PSIZE) = x 32 -1122
Vprog Programming voltage
32-bit program operation 2.7 - 3.6 V
16-bit program operation 2.1 - 3.6 V
8-bit program operation 1.7 - 3.6 V
Electrical characteristics STM32F423xH
120/209 DocID029161 Rev 7
Table 53. Flash memory endurance and data retention
Table 52. Flash memory programming with VPP voltage
Symbol Parameter Conditions Min(1) Typ Max(1)
1. Guaranteed by design.
Unit
tprog Double word programming
TA = 0 to +40 °C
VDD = 3.3 V
VPP = 8.5 V
- 16 100(2)
2. The maximum programming time is measured after 100K erase operations.
µs
tERASE16KB Sector (16 KB) erase time - 230 -
mstERASE64KB Sector (64 KB) erase time - 490 -
tERASE128KB Sector (128 KB) erase time - 875 -
tME Mass erase time - 9.8 - s
Vprog Programming voltage - 2.7 - 3.6 V
VPP VPP voltage range - 7 - 9 V
IPP
Minimum current sunk on
the VPP pin -10--mA
tVPP(3)
3. VPP should only be connected during programming/erasing.
Cumulative time during
which VPP is applied - - - 1 hour
Symbol Parameter Conditions
Value
Unit
Min(1)
1. Guaranteed by characterization results.
NEND Endurance
TA = –40 to +85 °C (temp. range 6)
TA = –40 to +105 °C (temp. range 7)
TA = –40 to +125 °C (temp. range 3)
10 kcycles
tRET Data retention
1 kcycle(2) at TA = 85 °C
2. Cycling performed over the whole temperature range.
30
Years
1 kcycle(2) at TA = 105 °C 10
1 kcycle(2) at TA = 125 °C 3
10 kcycle(2) at TA = 55 °C 20
DocID029161 Rev 7 121/209
STM32F423xH Electrical characteristics
175
6.3.13 EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).
the device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS
through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant
with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Table 55. They are based on the EMS levels and classes
defined in application note AN1709.
When the application is exposed to a noisy environment, it is recommended to avoid pin
exposition to disturbances. The pins showing a middle range robustness are: PA0, PA1,
PA2, on LQFP144 packages and PDR_ON on WLCSP81.
As a consequence, it is recommended to add a serial resistor (1 kΩ maximum) located as
close as possible to the MCU to the pins exposed to noise (connected to tracks longer than
50 mm on PCB).
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
Corrupted program counter
Unexpected reset
Critical Data corruption (control registers...)
Table 54. EMS characteristics for LQFP144 package
Symbol Parameter Conditions Level/
Class
VFESD
Voltage limits to be applied on any I/O pin
to induce a functional disturbance
VDD = 3.3 V, LQFP144
TA = +25 °C, fHCLK = 100 MHz,
conforms to IEC 61000-4-2
1B
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD = 3.3 V, LQFP144
TA = +25 °C, fHCLK = 100 MHz,
conforms to IEC 61000-4-4
3B
Electrical characteristics STM32F423xH
122/209 DocID029161 Rev 7
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application,
executing EEMBC code, is running. This emission test is compliant with IEC61967-2
standard which specifies the test board and the pin loading.
6.3.14 Absolute maximum ratings (electrical sensitivity)
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the JESD22-A114/C101 standard.
Table 55. EMI characteristics for LQFP144
Symbol Parameter Conditions Monitored
frequency band
Max vs.
[fHSE/fCPU]Unit
8/100 MHz
SEMI Peak level
VDD = 3.6 V, TA = 25 °C, LQFP144
package, conforming to IEC 61967-2,
EEMBC, ART ON, all peripheral clocks
enabled, clock dithering disabled.
0.1 to 30 MHz 13
dBµV
30 to 130 MHz 21
130 MHz to 1 GHz 25
1 GHz to 2 GHz 19
EMI Level 4 -
DocID029161 Rev 7 123/209
STM32F423xH Electrical characteristics
175
Static latchup
Two complementary static tests are required on six parts to assess the latchup
performance:
A supply overvoltage is applied to each power supply pin
A current injection is applied to each input, output and configurable I/O pin
These tests are compliant with EIA/JESD 78A IC latchup standard.
6.3.15 I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDD (for standard, 3 V-capable I/O pins) should be avoided during normal product
operation. However, in order to give an indication of the robustness of the microcontroller in
cases when abnormal injection accidentally happens, susceptibility tests are performed on a
sample basis during device characterization.
Functional susceptibility to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (>5
LSB TUE), out of conventional limits of induced leakage current on adjacent pins
(out of –5 µA/+0 µA range), or other functional failure (for example reset, oscillator
frequency deviation).
Negative induced leakage current is caused by negative injection and positive induced
leakage current by positive injection.
The test results are given in Table 58.
Table 56. ESD absolute maximum ratings
Symbol Ratings Conditions Class Maximum
value(1) Unit
VESD(HBM)
Electrostatic
discharge voltage
(human body model)
TA = +25 °C conforming to JESD22-A114 2 2000
V
VESD(CDM)
Electrostatic
discharge voltage
(charge device model)
TA = +25 °C conforming to ANSI/ESD STM5.3.1,
UFBGA144, UFBGA100, LQFP144, LQFP100,
WLCSP81, LQFP64
3250
TA = +25 °C conforming to ANSI/ESD STM5.3.1,
UFQFPN48 4500
1. Guaranteed by characterization results.
Table 57. Electrical sensitivities
Symbol Parameter Conditions Class
LU Static latch-up class TA = +125 °C conforming to JESD78A II level A
Electrical characteristics STM32F423xH
124/209 DocID029161 Rev 7
Note: It is recommended to add a Schottky diode (pin to ground) to analog pins which may
potentially inject negative currents.
6.3.16 I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 59 are derived from tests
performed under the conditions summarized in Table 17. All I/Os are CMOS and TTL
compliant.
Table 58. I/O current injection susceptibility(1)
Symbol Description
Functional susceptibility
Unit
Negative
injection
Positive
injection
IINJ
Injected current on BOOT0, PDR_ON, BYPASS_REG - 0 0
mA
Injected current on NRST - 0 NA
Injected current on PE6, PC13, PC14, PC15, PF0, PF1,
PF2, PC0, PC1, PC2, PC3 - 0 NA
Injected current on any other FT and FTf pins - 5 NA
Injected current on any other pins - 5 + 5
1. NA = not applicable.
Table 59. I/O static characteristics
Symbol Parameter Conditions Min Typ Max Unit
VIL
FT, TTa, TC and NRST I/O input
low level voltage 1.7 V VDD 3.6 V - - 0.3VDD(1)
V
BOOT0 I/O input low level
voltage
1.75 V VDD 3.6 V,
-40 °C TA 125 °C --
0.1VDD+0.1(2)
1.7 V VDD 3.6 V,
0 °C TA 125 °C --
VIH
FT, TTa, TC and NRST I/O input
high level voltage(6) 1.7 V VDD 3.6 V 0.7VDD(1) --
V
BOOT0 I/O input high level
voltage
1.75 V VDD 3.6 V,
-40 °C TA 125 °C 0.17VDD+0.7(2) --
1.7 V VDD 3.6 V,
0 °C TA 125 °C
VHYS(3)
FT, TTa, TC and NRST I/O input
hysteresis 1.7 V VDD 3.6 V 10% VDD(2)(4) --
V
BOOT0 I/O input hysteresis
1.75 V VDD 3.6 V,
-40 °C TA 125 °C 0.1 - -
1.7 V VDD 3.6 V,
0 °C TA 125 °C
DocID029161 Rev 7 125/209
STM32F423xH Electrical characteristics
175
All I/Os are CMOS and TTL compliant (no software configuration required). Their
characteristics cover more than the strict CMOS-technology or TTL parameters. The
coverage of these requirements for FT and TC I/Os is shown in Figure 35.
Ilkg
I/O input leakage current (5) VSS VIN VDD --±1
µA
I/O FT/TC input leakage current
(6) VIN = 5 V - - 3
RPU
Weak pull-up
equivalent
resistor(7)
All pins
except for
PA10
(OTG_FS_ID)
VIN = VSS 30 40 50
kΩ
PA10
(OTG_FS_ID) -71014
RPD
Weak pull-down
equivalent
resistor(8)
All pins
except for
PA10
(OTG_FS_ID)
VIN = VDD 30 40 50
PA10
(OTG_FS_ID) -71014
CIO I/O pin capacitance - - 5 - pF
1. Guaranteed by test in production.
2. Guaranteed by design.
3. Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by characterization results.
4. With a minimum of 200 mV.
5. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins, Refer to Table 58: I/O
current injection susceptibility
6. To sustain a voltage higher than VDD +0.3 V, the internal pull-up/pull-down resistors must be disabled. Leakage could be
higher than the maximum value, if negative current is injected on adjacent pins.Refer to Table 58: I/O current injection
susceptibility
7. Pull-up resistors are designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series
resistance is minimum (~10% order).
8. Pull-down resistors are designed with a true resistance in series with a switchable NMOS. This NMOS contribution to the
series resistance is minimum (~10% order).
Table 59. I/O static characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
Electrical characteristics STM32F423xH
126/209 DocID029161 Rev 7
Figure 35. FT/TC I/O input characteristics
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or
source up to ±20 mA (with a relaxed VOL/VOH) except PC13, PC14 and PC15 which can
sink or source up to ±3mA. When using the PC13 to PC15 GPIOs in output mode, the speed
should not exceed 2 MHz with a maximum load of 30 pF.
In the user application, the number of I/O pins which can drive current must be limited to
respect the absolute maximum rating specified in Section 6.2. In particular:
The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
ΣIVDD (see Table 15).
The sum of the currents sunk by all the I/Os on VSS plus the maximum Run
consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating
ΣIVSS (see Table 15).
Output voltage levels
Unless otherwise specified, the parameters given in Table 60 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Table 17. All I/Os are CMOS and TTL compliant.
069



     



9''9
9,/9,+9
7HVWHGLQSURGXFWLRQ&026UHTXLUHPHQW9,+PLQ 9''
7HVWHGLQSURGXFWLRQ&026UHTXLUHPHQW9,/PD[ 9''
%DVHGRQ'HVLJQVLPXODWLRQV9,/PD[ 9''
77/UHTXLUHPHQW
9,+PLQ 9
77/UHTXLUHPHQW9,/PD[
9


$UHDQRW
GHWHUPLQHG


%DVHGRQ'HVLJQVLPXODWLRQV9,+PLQ 9''
DocID029161 Rev 7 127/209
STM32F423xH Electrical characteristics
175
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 36 and
Table 61, respectively.
Unless otherwise specified, the parameters given in Table 61 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Table 17.
Table 60. Output voltage characteristics
Symbol Parameter Conditions Min Max Unit
VOL(1) Output low level voltage for an I/O pin CMOS port(2)
IIO = +8 mA
2.7 V VDD 3.6 V
-0.4
V
VOH(3) Output high level voltage for an I/O pin VDD–0.4 -
VOL (1) Output low level voltage for an I/O pin TTL port(2)
IIO =+8 mA
2.7 V VDD 3.6 V
-0.4
V
VOH (3) Output high level voltage for an I/O pin 2.4 -
VOL(1) Output low level voltage for an I/O pin IIO = + 20 mA
2.7 V VDD 3.6 V
-1.3
(4)
V
VOH(3) Output high level voltage for an I/O pin VDD–1.3(4) -
VOL(1) Output low level voltage for an I/O pin IIO = + 6 mA
1.8 V VDD 3.6 V
-0.4
(4)
V
VOH(3) Output high level voltage for an I/O pin VDD–0.4(4) -
VOL(1) Output low level voltage for an I/O pin IIO = +4 mA
1.7 V VDD 3.6 V
-0.4
(5)
V
VOH(3) Output high level voltage for an I/O pin VDD–0.4(5) -
VOLFM(1) Output low level voltage for an FTf I/O pin in
FM+ mode
IIO = + 20 mA
2.7 V VDD 3.6 V -0.4V
VOLFM(1) Output low level voltage for an FTf I/O pin in
FM+ mode
IIO = + 10 mA
1.8 V VDD 3.6 V -0.4V
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 15. and the sum of
IIO (I/O ports and control pins) must not exceed IVSS.
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in Table 15 and the sum
of IIO (I/O ports and control pins) must not exceed IVDD.
4. Guaranteed by characterization results.
5. Guaranteed by design.
Electrical characteristics STM32F423xH
128/209 DocID029161 Rev 7
Table 61. I/O AC characteristics(1)(2)
OSPEEDRy
[1:0] bit
value(1)
Symbol Parameter Conditions Min Typ Max Unit
00
fmax(IO)out Maximum frequency(3)
CL = 50 pF, VDD 2.70 V - - 4
MHz
CL = 50 pF, VDD 1.7 V - - 2
CL = 10 pF, VDD 2.70 V - - 8
CL = 10 pF, VDD 1.7 V - - 4
tf(IO)out/
tr(IO)out
Output high to low level
fall time and output low to
high level rise time
CL = 50 pF, VDD = 1.7 V to 3.6 V - - 100 ns
01
fmax(IO)out Maximum frequency(3)
CL = 50 pF, VDD 2.70 V - - 25
MHz
CL = 50 pF, VDD 1.7 V - - 12.5
CL = 10 pF, VDD 2.70 V - - 50
CL = 10 pF, VDD 1.7 V - - 20
tf(IO)out/
tr(IO)out
Output high to low level
fall time and output low to
high level rise time
CL = 50 pF, VDD 2.7 V - - 10
ns
CL = 50 pF, VDD 1.7 V - - 20
CL = 10 pF, VDD 2.70 V - - 6
CL = 10 pF, VDD 1.7 V - - 10
10
fmax(IO)out Maximum frequency(3)
CL = 40 pF, VDD 2.70 V - - 50(4)
MHz
CL = 40 pF, VDD 1.7 V - - 25
CL = 10 pF, VDD 2.70 V - - 100(4)
CL = 10 pF, VDD 1.7 V - - 50(4)
tf(IO)out/
tr(IO)out
Output high to low level
fall time and output low to
high level rise time
CL = 40 pF, VDD 2.70 V - - 6
ns
CL = 40 pF, VDD 1.7 V - - 10
CL = 10 pF, VDD 2.70 V - - 4
CL = 10 pF, VDD 1.7 V - - 6
11
Fmax(IO)ou
t
Maximum frequency(3) CL = 30 pF, VDD 2.70 V - - 100(4)
MHz
CL = 30 pF, VDD 1.7 V - - 50(4)
tf(IO)out/
tr(IO)out
Output high to low level
fall time and output low to
high level rise time
CL = 30 pF, VDD 2.70 V - - 4
ns
CL = 30 pF, VDD 1.7 V - - 6
CL = 10 pF, VDD 2.70 V - - 2.5
CL = 10 pF, VDD 1.7 V - - 4
FM+
Fmax Maximum frequency
CL = 50 pF, 1.6 VDD 3.6 V
-- 1MHz
Tf Output high to low level
fall time -- 5ns
-t
EXTIpw
Pulse width of external
signals detected by the
EXTI controller
-10--ns
DocID029161 Rev 7 129/209
STM32F423xH Electrical characteristics
175
Figure 36. I/O AC characteristics definition
6.3.17 NRST pin characteristics
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up
resistor, RPU (see Table 59).
Unless otherwise specified, the parameters given in Table 62 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Table 17. Refer to Table 59: I/O static characteristics for the values of VIH and VIL for
NRST pin.
1. Guaranteed by characterization results.
2. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F4xx reference manual for a description of
the GPIOx_SPEEDR GPIO port output speed register.
3. The maximum frequency is defined in Figure 36.
4. For maximum frequencies above 50 MHz and VDD > 2.4 V, the compensation cell should be used.
DLG



WU,2RXW
287387
(;7(51$/
21&/
0D[LPXPIUHTXHQF\LVDFKLHYHGLIWUWI7DQGLIWKHGXW\F\FOHLV
ZKHQORDGHGE\&/VSHFLILHGLQWKHWDEOH³,2$&FKDUDFWHULVWLFV´



7
WI,2RXW
Table 62. NRST pin characteristics
Symbol Parameter Conditions Min Typ Max Unit
RPU
Weak pull-up equivalent
resistor(1) VIN = VSS 30 40 50 kΩ
VF(NRST)(2) NRST Input filtered pulse - - - 100 ns
VNF(NRST)(2) NRST Input not filtered pulse VDD > 2.7 V 300 - - ns
TNRST_OUT Generated reset pulse duration Internal Reset
source 20 - - µs
1. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series
resistance must be minimum (~10% order).
2. Guaranteed by design.
Electrical characteristics STM32F423xH
130/209 DocID029161 Rev 7
Figure 37. Recommended NRST pin protection
1. The reset network protects the device against parasitic resets.
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 62. Otherwise the reset is not taken into account by the device.
6.3.18 TIM timer characteristics
The parameters given in Table 63 are guaranteed by design.
Refer to Section 6.3.16: I/O port characteristics for details on the input/output alternate
function characteristics (output compare, input capture, external clock, PWM output).
DLF
670)
538
1567

9''
)LOWHU
,QWHUQDO5HVHW
)
([WHUQDO
UHVHWFLUFXLW 
Table 63. TIMx characteristics(1)(2)
1. TIMx is used as a general term to refer to the TIM1 to TIM11 timers.
2. Guaranteed by design.
Symbol Parameter Conditions(3)
3. The maximum timer frequency on APB1 is 50 MHz and on APB2 is up to 100 MHz, by setting the TIMPRE
bit in the RCC_DCKCFGR register, if APBx prescaler is 1 or 2 or 4, then TIMxCLK = HCKL, otherwise
TIMxCLK >= 4x PCLKx.
Min Max Unit
tres(TIM) Timer resolution time
AHB/APBx prescaler=1
or 2 or 4, fTIMxCLK =
100 MHz
1-
tTIMxCLK
11.9 - ns
AHB/APBx prescaler>4,
fTIMxCLK = 100 MHz
1-
tTIMxCLK
11.9 - ns
fEXT Timer external clock
frequency on CH1 to CH4 fTIMxCLK = 100 MHz
0fTIMxCLK/2 MHz
050MHz
ResTIM Timer resolution - 16/32 bit
tCOUNTER
16-bit counter clock
period when internal clock
is selected
fTIMxCLK = 100 MHz 0.0119 780 µs
tMAX_COUNT Maximum possible count
with 32-bit counter
--
65536 ×
65536 tTIMxCLK
fTIMxCLK = 100 MHz -51.1S
DocID029161 Rev 7 131/209
STM32F423xH Electrical characteristics
175
6.3.19 Communications interfaces
I2C interface characteristics
The I2C interface meets the requirements of the standard I2C communication protocol with
the following restrictions: the I/O pins SDA and SCL are mapped to are not “true” open-
drain. When configured as open-drain, the PMOS connected between the I/O pin and VDD is
disabled, but is still present.
The I2C characteristics are described in Table 64. Refer also to Section 6.3.16: I/O port
characteristics for more details on the input/output alternate function characteristics (SDA
and SCL).
The I2C bus interface supports standard mode (up to 100 kHz) and fast mode (up to 400
kHz). The I2C bus frequency can be increased up to 1 MHz. For more details about the
complete solution, contact your local ST sales representative.
Table 64. I2C characteristics
Symbol Parameter
Standard mode I2C(1)(2) Fast mode I2C(1)(2)
Unit
Min Max Min Max
tw(SCLL) SCL clock low time 4.70 - 1.30 -
µs
tw(SCLH) SCL clock high time 4.0 - 0.60 -
tsu(SDA) SDA setup time 0.25 - 0.10 -
th(SDA) SDA data hold time 0 - 0 -
tv(SDA,ACK) SDA data hold time - 3.45(3) -0.90
(4)
tr(SDA)
tr(SCL)
SDA and SCL rise time - 0.100 - 0.30
tf(SDA)
tf(SCL)
SDA and SCL fall time - 0.30 - 0.30
th(STA) Start condition hold time 4 - 0.6 -
tsu(STA)
Repeated Start condition setup
time 4.7 - 0.6 -
tsu(STO) Stop condition setup time 4 - 0.60 -
tw(STO:STA)
Stop to Start condition time (bus
free) 4.70 - 1.3 -
tSP
Pulse width of the spikes that are
suppressed by the analog filter
for standard fast mode
- - 0.05 0.10(5)
CbCapacitive load for each bus line - 400 - 400 pF
1. Guaranteed by design.
2. fPCLK1 must be at least 2 MHz to achieve standard mode I2C frequencies. It must be at least 4 MHz to achieve fast mode
I2C frequencies, and a multiple of 10 MHz to reach the 400 kHz maximum I2C fast mode clock.
3. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined region
of the falling edge of SCL.
4. The maximum data hold time has only to be met if the interface does not stretch the low period of SCL signal.
5. The minimum width of the spikes filtered by the analog filter is above tSP (max)
Electrical characteristics STM32F423xH
132/209 DocID029161 Rev 7
Figure 38. I2C bus AC waveforms and measurement circuit
1. RS = series protection resistor.
2. RP = external pull-up resistor.
3. VDD_I2C is the I2C bus power supply.
Table 65. SCL frequency (fPCLK1= 50 MHz, VDD = VDD_I2C = 3.3 V)(1)(2)
1. RP = External pull-up resistance, fSCL = I2C speed
2. For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the
tolerance on the achieved speed is ±2%. These variations depend on the accuracy of the external
components used to design the application.
fSCL (kHz)
I2C_CCR value
RP = 4.7 kΩ
400 0x8019
300 0x8021
200 0x8032
100 0x0096
50 0x012C
20 0x02EE
06Y9
53
,&EXV
9''B,&
670)[[
6'$
6&/
WI6'$ WU6'$
WK67$
WZ6&//
WZ6&/+
WVX6'$
WU6&/ WI6&/
WK6'$
67$575(3($7('
WVX67$
WVX672
6723 WZ67267$
9''B,&
5356
56
67$57
67$57
6'$
6&/
DocID029161 Rev 7 133/209
STM32F423xH Electrical characteristics
175
FMPI2C characteristics
The following table presents FMPI2C characteristics.
Refer also to Section 6.3.16: I/O port characteristics for more details on the input/output
function characteristics (SDA and SCL).
Table 66. FMPI2C characteristics(1)
Parameter
Standard mode Fast mode Fast+ mode
Unit
Min Max Min Max Min Max
fFMPI2CC FMPI2CCLK frequency 2 - 8 - 18 -
µs
tw(SCLL) SCL clock low time 4.7 - 1.3 - 0.5 -
tw(SCLH) SCL clock high time 4.0 - 0.6 - 0.26 -
tsu(SDA) SDA setup time 0.25 - 0.10 - 0.05 -
tH(SDA) SDA data hold time 0 - 0 - 0 -
tv(SDA,ACK) Data, ACK valid time - 3.45 - 0.9 - 0.45
tr(SDA)
tr(SCL) SDA and SCL rise time - 1.0 - 0.30 - 0.12
tf(SDA)
tf(SCL) SDA and SCL fall time - 0.30 - 0.30 -0 0.12
th(STA) Start condition hold time 4 - 0.6 - 0.26 -
tsu(STA) Repeated Start condition
setup time 4.7 - 0.6 - 0.26 -
tsu(STO) Stop condition setup time 4 - 0.6 - 0.26 -
tw(STO:STA) Stop to Start condition time
(bus free) 4.7 - 1.3 - 0.5 -
tSP
Pulse width of the spikes that
are suppressed by the
analog filter for standard and
fast mode
- - 0.05 0.1 0.05 0.1
CbCapacitive load for each bus
Line - 400 - 400 - 550(2) pF
1. Based on characterization results.
2. Can be limited. Maximum supported value can be retrieved by referring to the following formulas:
tr(SDA/SCL) = 0.8473 x Rp x Cload
Rp(min) = (VDD -VOL(max)) / IOL(max)
Electrical characteristics STM32F423xH
134/209 DocID029161 Rev 7
Figure 39. FMPI2C timing diagram and measurement circuit
06Y9
53
,&EXV
670)[[
6'$
6&/
WI6'$ WU6'$
WK67$
WZ6&//
WZ6&/+
WVX6'$
WU6&/ WI6&/
WK6'$
67$575(3($7('
WVX67$
WVX672
6723 WZ67267$
5356
56
67$57
67$57
6'$
6&/
53
9''B,& 9''B,&
53
DocID029161 Rev 7 135/209
STM32F423xH Electrical characteristics
175
SPI interface characteristics
Unless otherwise specified, the parameters given in Table 67 for the SPI interface are
derived from tests performed under the ambient temperature, fPCLKx frequency and VDD
supply voltage conditions summarized in Table 17, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 10
Capacitive load C = 30 pF
Measurement points are done at CMOS levels: 0.5VDD
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate
function characteristics (NSS, SCK, MOSI, MISO for SPI).
Table 67. SPI dynamic characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
fSCK
1/tc(SCK)
SPI clock frequency
Master mode,
SPI1,4,5
3.0 V < VDD < 3.6 V
--50
MHz
Master mode,
SPI1,4,5
2.7 V < VDD < 3.6 V
--42
Master mode
SPI1,4,5
1.7 V < VDD < 3.6 V
--25
Master transmitter mode
SPI1,4,5
1.71 V < VDD < 3.6 V
--50
Slave receiver mode
SPI1,4,5
1.71 V < VDD < 3.6 V
--50
Slave mode transmitter/full duplex
SPI1,4,5
2.7 V < VDD < 3.6 V
--40
(2)
Slave mode transmitter/full duplex
SPI1,4,5
1.71 V < VDD < 3.6 V
--26
Master & Slave mode,
SPI2/3
1.71 V < VDD < 3.6 V
--25
tsu(NSS) NSS setup time Slave mode, SPI presc = 2 4*TPCLK --ns
th(NSS) NSS hold time Slave mode, SPI presc = 2 2*TPCLK --ns
tw(SCKH)
tw(SCKL)
SCK high and low time Master mode TPCLK - 2 TPCLK TPCLK +2 ns
tsu(MI) Data input setup time Master mode 2.5 - - ns
tsu(SI) Slave mode 4.5 - -
th(MI) Data input hold time Master mode 5 - - ns
th(SI) Slave mode 2 - -
Electrical characteristics STM32F423xH
136/209 DocID029161 Rev 7
Figure 40. SPI timing diagram - slave mode and CPHA = 0
ta(SO) Data output access time Slave mode 7 - 21 ns
tdis(SO) Data output disable time Slave mode 5 - 12 ns
tv(SO) Data output valid time
Slave mode (after enable edge),
2.7 V < VDD < 3.6 V -712.5
nsSlave mode (after enable edge),
1.71 V < VDD < 3.6 V -719
tv(MO) Master mode - 2 3
th(SO) Data output hold time
Slave mode
1.71 V < VDD < 3.6 V 6--
ns
th(MO) Master mode 1.5 - -
1. Guaranteed by characterization results.
2. Maximum frequency in Slave transmitter mode is determined by the sum of tv(SO) and tsu(MI) which has to fit into SCK low or
high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master
having tsu(MI) = 0 while Duty(SCK) = 50%
Table 67. SPI dynamic characteristics(1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
DocID029161 Rev 7 137/209
STM32F423xH Electrical characteristics
175
Figure 41. SPI timing diagram - slave mode and CPHA = 1
Figure 42. SPI timing diagram - master mode
DLE
166LQSXW
W68166 WF6&. WK166
6&.LQSXW
&3+$ 
&32/ 
&3+$ 
&32/ 
WZ6&.+
WZ6&./
WD62 WY62 WK62 WU6&.
WI6&. WGLV62
0,62
287387
026,
,1387
WVX6, WK6,
06%287
06%,1
%,7287 /6%287
/6%,1
%,7,1
DLF
6&.2XWSXW
&3+$
026,
287387
0,62
,13 87
&3+$
/6%287
/6%,1
&32/ 
&32/ 
% , 7287
166LQSXW
WF6&.
WZ6&.+
WZ6&./
WU6&.
WI6&.
WK0,
+LJK
6&.2XWSXW
&3+$
&3+$
&32/ 
&32/ 
WVX0,
WY02 WK02
06%,1 %,7,1
06%287
Electrical characteristics STM32F423xH
138/209 DocID029161 Rev 7
I2S interface characteristics
Unless otherwise specified, the parameters given in Table 68 for the I2S interface are
derived from tests performed under the ambient temperature, fPCLKx frequency and VDD
supply voltage conditions summarized in Table 17, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 10
Capacitive load C = 30 pF
Measurement points are done at CMOS levels: 0.5VDD
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate
function characteristics (CK, SD, WS).
Note: Refer to the I2S section of RM0430 reference manual for more details on the sampling
frequency (FS).
fMCK, fCK, and DCK values reflect only the digital peripheral behavior. The values of these
parameters might be slightly impacted by the source clock precision. DCK depends mainly
on the value of ODD bit. The digital contribution leads to a minimum value of
(I2SDIV/(2*I2SDIV+ODD) and a maximum value of (I2SDIV+ODD)/(2*I2SDIV+ODD). FS
maximum value is supported for each mode/condition.
Table 68. I2S dynamic characteristics(1)
Symbol Parameter Conditions Min Max Unit
fMCK I2S Main clock output - 256 * 8K 256 * Fs(2) MHz
fCK I2S clock frequency Master data: 32 bits - 64 * Fs MHz
Slave data: 32 bits - 64 * Fs
DCK I2S clock frequency duty cycle Slave receiver 30 70 %
tv(WS) WS valid time Master mode - 3.5
ns
th(WS) WS hold time Master mode 1.5 -
tsu(WS) WS setup time Slave mode 2.5 -
th(WS) WS hold time Slave mode 0.5 -
tsu(SD_MR) Data input setup time Master receiver 3 -
tsu(SD_SR) Slave receiver 2.5 -
th(SD_MR) Data input hold time Master receiver 5 -
th(SD_SR) Slave receiver 1.5 -
tv(SD_ST) Data output valid time Slave transmitter (after enable edge) - 15
tv(SD_MT) Master transmitter (after enable edge) - 6
th(SD_ST) Data output hold time Slave transmitter (after enable edge) 3.5 -
th(SD_MT) Master transmitter (after enable edge) 1.5 -
1. Guaranteed by characterization results.
2. The maximum value of 256xFs is 50 MHz (APB1 maximum frequency).
DocID029161 Rev 7 139/209
STM32F423xH Electrical characteristics
175
Figure 43. I2S slave timing diagram (Philips protocol)
1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
Figure 44. I2S master timing diagram (Philips protocol)
1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
Electrical characteristics STM32F423xH
140/209 DocID029161 Rev 7
SAI characteristics
Unless otherwise specified, the parameters given in Tabl e 69 for SAI are derived from tests
performed under the ambient temperature, fPCLKx frequency and VDD supply voltage
conditions summarized in Table 17, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 10
Capacitive load C=30 pF
Measurement points are performed at CMOS levels: 0.5VDD
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate
function characteristics (SCK,SD,WS).
Table 69. SAI characteristics(1)
Symbol Parameter Conditions Min Max Unit
fMCKL SAI Main clock output - 256 * 8K 256 * Fs(2) MHz
FSCK SAI clock frequency Master data: 32 bits - 128 * Fs MHz
Slave data: 32 bits - 128 * Fs
tv(FS) FS valid time
Master mode
2.7 V <= VDD <= 3.6 V -19
ns
Master mode
1.71 V <= VDD <= 3.6 V -28
th(FS) FS hold time Master mode 13 -
Slave mode 0 -
tsu(FS) FS setup time Slave mode 3 -
tsu(SD_ A_MR) Data input setup time Master receiver 0.5 -
tsu(SD_B_SR) Slave receiver 1.5 -
th(SD_ A_MR) Data input hold time Master receiver 5 -
th(SD_B_SR) Slave receiver 2.5 -
tv(SD_B_ST) Data output valid time
Slave transmitter (after enable edge)
2.7 V <= VDD <= 3.6 V -15
Slave transmitter (after enable edge)
1.71 V <= VDD <= 3.6 V -28
th(SD_B_ST) Data output hold time Slave transmitter (after enable edge) 10 -
tv(SD_A_MT) Data output valid time
Master transmitter (after enable edge)
2.7 V <= VDD <= 3.6 V -15
Master transmitter (after enable edge)
1.71 V <= VDD <= 3.6 V -29
th(SD_A_MT) Data output hold time Master transmitter (after enable edge) 13 -
1. Guaranteed by characterization results.
2. 256 * Fs maximum corresponds to 45 MHz (APB2 maximum frequency)
DocID029161 Rev 7 141/209
STM32F423xH Electrical characteristics
175
Figure 45. SAI master timing waveforms
Figure 46. SAI slave timing waveforms
-36
3!)?3#+?8
3!)?&3?8
OUTPUT
F3#+
3!)?3$?8
TRANSMIT
TV&3
3LOTN
3!)?3$?8
RECEIVE
TH&3
3LOTN
TV3$?-4 TH3$?-4
3LOTN
TSU3$?-2 TH3$?-2
-36
3!)?3#+?8
3!)?&3?8
INPUT
3!)?3$?8
TRANSMIT
TSU&3
3LOTN
3!)?3$?8
RECEIVE
TW#+(?8 TH&3
3LOTN
TV3$?34 TH3$?34
3LOTN
TSU3$?32
TW#+,?8
TH3$?32
F3#+
Electrical characteristics STM32F423xH
142/209 DocID029161 Rev 7
QSPI interface characteristics
Unless otherwise specified, the parameters given in the following tables for QSPI are
derived from tests performed under the ambient temperature, fAHB frequency and VDD
supply voltage conditions summarized in Table 17, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 11
Capacitive load C=20pF
Measurement points are done at CMOS levels: 0.5VDD
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate
function characteristics.
Table 70. QSPI dynamic characteristics in SDR mode(1)
Symbol Parameter Conditions Min Typ Max Unit
fSCK
1/tc(SCK)
QSPI clock frequency
2.7 V < VDD < 3.6 V
Cload = 20 pF --100
MHz
1.71 V < VDD < 3.6 V
Cload = 15 pF --80
tw(CKH) QSPI clock high and low - t(CK) / 2 - 1 - t(CK) / 2
ns
tw(CKL) t(CK) / 2 - t(CK) / 2 + 1
ts(IN) Data input setup time - 1.5 - -
th(IN) Data input hold time - 3 - -
tv(OUT) Data output valid time 2.7 V < VDD < 3.6 V - 0.5 1
1.71 V < VDD < 3.6 V - 0.5 3
th(OUT) Data output hold time - 0 - 0
1. Guaranteed by characterization results.
Table 71. QSPI dynamic characteristics in DDR mode(1)
Symbol Parameter Conditions Min Typ Max Unit
fSCK
1/tc(SCK)
QSPI clock frequency
2.7 V < VDD < 3.6 V
Cload = 20 pF -- 80
MHz
1.71 V< VDD < 3.6 V
Cload = 15 pF -- 70
DocID029161 Rev 7 143/209
STM32F423xH Electrical characteristics
175
USB OTG full speed (FS) characteristics
This interface is present in USB OTG FS controller.
tw(CKH) QSPI clock high and low time - t(CK) / 2 - 1 - t(CK) / 2
ns
tw(CKL) t(CK) / 2 - t(CK) / 2 + 1
tsr(IN),
tsf(IN)
Data input setup time 2.7 V < VDD < 3.6 V 0.5 - -
1.71 V < VDD < 3.6 V 0.5 - -
thr(IN),
thf(IN)
Data input hold time 2.7 V<VDD<3.6 V 2 - -
1.71 V<VDD<3.6 V 2 - -
tvr(OUT),
tvf(OUT)
Data output valid time 2.7 V<VDD<3.6 V - 8.5 9
1.71 V<VDD<3.6 V - 8.5 11.5
thr(OUT),
thf(OUT)
Data output hold time - 7.5 - -
1. Guaranteed by characterization results.
Table 71. QSPI dynamic characteristics in DDR mode(1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
Table 72. USB OTG FS startup time
Symbol Parameter Max Unit
tSTARTUP(1)
1. Guaranteed by design.
USB OTG FS transceiver startup time 1 µs
Table 73. USB OTG FS DC electrical characteristics
Symbol Parameter Conditions Min.(1)
1. All the voltages are measured from the local ground potential.
Typ. Max.(1) Unit
Input
levels
VDD
USB OTG FS operating
voltage 3.0(2) -3.6V
VDI(3) Differential input sensitivity I(USB_FS_DP/DM) 0.2 - -
V
VCM(3) Differential common mode
range Includes VDI range 0.8 - 2.5
VSE(3) Single ended receiver
threshold 1.3 - 2.0
Output
levels
VOL Static output level low RL of 1.5 kΩ to 3.6 V(4) --0.3
V
VOH Static output level high RL of 15 kΩ to VSS(4) 2.8 - 3.6
RPD
PA11, PA12
(USB_FS_DM/DP) VIN = VDD
17 21 24
kΩ
PA9 (OTG_FS_VBUS) 0.65 1.1 2.0
RPU
PA11, PA12
(USB_FS_DM/DP) VIN = VSS 1.5 1.8 2.1
PA9 (OTG_FS_VBUS) VIN = VSS 0.25 0.37 0.55
Electrical characteristics STM32F423xH
144/209 DocID029161 Rev 7
Note: When VBUS sensing feature is enabled, PA9 should be left at their default state (floating
input), not as alternate function. A typical 200 µA current consumption of the embedded
sensing block (current to voltage conversion to determine the different sessions) can be
observed on PA9 when the feature is enabled.
Figure 47. USB OTG FS timings: definition of data signal rise and fall time
CAN (controller area network) interface
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate
function characteristics (CANx_TX and CANx_RX).
2. The USB OTG FS functionality is ensured down to 2.7 V but not the full USB full speed electrical
characteristics which are degraded in the 2.7-to-3.0 V VDD voltage range.
3. Guaranteed by design.
4. RL is the load connected on the USB OTG FS drivers.
Table 74. USB OTG FS electrical characteristics(1)
1. Guaranteed by design.
Driver characteristics
Symbol Parameter Conditions Min Max Unit
trRise time(2)
2. Measured from 10% to 90% of the data signal. For more detailed informations, refer to USB Specification -
Chapter 7 (version 2.0).
CL = 50 pF 420ns
tfFall time(2) CL = 50 pF 4 20 ns
trfm Rise/ fall time matching tr/tf90 110 %
VCRS Output signal crossover voltage 1.3 2.0 V
DLE
&URVVRYHU
SRLQWV
'LIIHUHQWLDO
GDWDOLQHV
9
&56
9
66
W
I
W
U
DocID029161 Rev 7 145/209
STM32F423xH Electrical characteristics
175
6.3.20 12-bit ADC characteristics
Unless otherwise specified, the parameters given in Table 75 are derived from tests
performed under the ambient temperature, fPCLK2 frequency and VDDA supply voltage
conditions summarized in Table 17.
Table 75. ADC characteristics
Symbol Parameter Conditions Min Typ Max Unit
VDDA Power supply VDDA VREF+ < 1.2 V 1.7(1) -3.6
VVREF+ Positive reference voltage 1.7(1) -V
DDA
VREF- Negative reference voltage - - 0 -
fADC ADC clock frequency VDDA = 1.7(1) to 2.4 V 0.6 15 18 MHz
VDDA = 2.4 to 3.6 V 0.6 30 36 MHz
fTRIG(2) External trigger frequency
fADC = 30 MHz,
12-bit resolution - - 1764 kHz
---171/f
ADC
VAIN Conversion voltage range(3) -0 (VSSA or VREF-
tied to ground) -V
REF+ V
RAIN(2) External input impedance See Equation 1 for
details --50kΩ
RADC(2)(4) Sampling switch resistance - - - 6 kΩ
CADC(2) Internal sample and hold
capacitor --47pF
tlat(2) Injection trigger conversion
latency
fADC = 30 MHz - - 0.100 µs
---3
(5) 1/fADC
tlatr(2) Regular trigger conversion
latency
fADC = 30 MHz - - 0.067 µs
---2
(5) 1/fADC
tS(2) Sampling time fADC = 30 MHz 0.100 - 16 µs
- 3 - 480 1/fADC
tSTAB(2) Power-up time - - 2 3 µs
tCONV(2) Total conversion time (including
sampling time)
fADC = 30 MHz
12-bit resolution 0.50 - 16.40 µs
fADC = 30 MHz
10-bit resolution 0.43 - 16.34 µs
fADC = 30 MHz
8-bit resolution 0.37 - 16.27 µs
fADC = 30 MHz
6-bit resolution 0.30 - 16.20 µs
9 to 492 (tS for sampling +n-bit resolution for successive
approximation) 1/fADC
Electrical characteristics STM32F423xH
146/209 DocID029161 Rev 7
Equation 1: RAIN max formula
The formula above (Equation 1) is used to determine the maximum external impedance
allowed for an error below 1/4 of LSB. N = 12 (from 12-bit resolution) and k is the number of
sampling periods defined in the ADC_SMPR1 register.
fS(2)
Sampling rate
(fADC = 30 MHz, and
tS = 3 ADC cycles)
12-bit resolution
Single ADC - - 2 Msps
IVREF+(2)
ADC VREF DC current
consumption in conversion
mode
- - 300 500 µA
IVDDA(2)
ADC VDDA DC current
consumption in conversion
mode
--1.61.8mA
1. VDDA minimum value of 1.7 V is possible with the use of an external power supply supervisor (refer to Section 3.17.2:
Internal reset OFF).
2. Guaranteed by characterization results.
3. VREF+ is internally connected to VDDA and VREF- is internally connected to VSSA.
4. RADC maximum value is given for VDD=1.7 V, and minimum value for VDD=3.3 V.
5. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 75.
Table 75. ADC characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
Table 76. ADC accuracy at fADC = 18 MHz(1)
1. Better performance could be achieved in restricted VDD, frequency and temperature ranges.
Symbol Parameter Test conditions Typ Max(2)
2. Guaranteed by characterization results.
Unit
ET Total unadjusted error
fADC =18 MHz
VDDA = 1.7 to 3.6 V
VREF = 1.7 to 3.6 V
VDDA VREF < 1.2 V
±3 ±4
LSB
EO Offset error ±2 ±3
EG Gain error ±1 ±3
ED Differential linearity error ±1 ±2
EL Integral linearity error ±2 ±3
RAIN
k0.5()
fADC CADC 2N2+
()ln××
---------------------------------------------------------------- RADC
=
DocID029161 Rev 7 147/209
STM32F423xH Electrical characteristics
175
Table 77. ADC accuracy at fADC = 30 MHz(1)
1. Better performance could be achieved in restricted VDD, frequency and temperature ranges.
Symbol Parameter Test conditions Typ Max(2)
2. Guaranteed by characterization results.
Unit
ET Total unadjusted error
fADC = 30 MHz,
RAIN < 10 kΩ,
VDDA = 2.4 to 3.6 V,
VREF = 1.7 to 3.6 V,
VDDA VREF < 1.2 V
±2 ±5
LSB
EO Offset error ±1.5 ±2.5
EG Gain error ±1.5 ±4
ED Differential linearity error ±1 ±2
EL Integral linearity error ±1.5 ±3
Table 78. ADC accuracy at fADC = 36 MHz(1)
1. Better performance could be achieved in restricted VDD, frequency and temperature ranges.
Symbol Parameter Test conditions Typ Max(2)
2. Guaranteed by characterization results.
Unit
ET Total unadjusted error
fADC =36 MHz,
VDDA = 2.4 to 3.6 V,
VREF = 1.7 to 3.6 V
VDDA VREF < 1.2 V
±4 ±7
LSB
EO Offset error ±2 ±3
EG Gain error ±3 ±6
ED Differential linearity error ±2 ±3
EL Integral linearity error ±3 ±6
Table 79. ADC dynamic accuracy at fADC = 18 MHz - limited test conditions(1)
Symbol Parameter Test conditions Min Typ Max Unit
ENOB Effective number of bits fADC =18 MHz
VDDA = VREF+= 1.7 V
Input Frequency = 20 kHz
Temperature = 25 °C
10.3 10.4 - bits
SINAD Signal-to-noise and distortion ratio 64 64.2 -
dBSNR Signal-to-noise ratio 64 65 -
THD Total harmonic distortion - -72 -67
1. Guaranteed by characterization results.
Table 80. ADC dynamic accuracy at fADC = 36 MHz - limited test conditions(1)
Symbol Parameter Test conditions Min Typ Max Unit
ENOB Effective number of bits fADC = 36 MHz
VDDA = VREF+ = 3.3 V
Input Frequency = 20 kHz
Temperature = 25 °C
10.6 10.8 - bits
SINAD Signal-to noise and distortion ratio 66 67 -
dBSNR Signal-to noise ratio 64 68 -
THD Total harmonic distortion - -72 -70
1. Guaranteed by characterization results.
Electrical characteristics STM32F423xH
148/209 DocID029161 Rev 7
Note: ADC accuracy vs. negative injection current: injecting a negative current on any analog
input pins should be avoided as this significantly reduces the accuracy of the conversion
being performed on another analog input. It is recommended to add a Schottky diode (pin to
ground) to analog pins which may potentially inject negative currents.
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in
Section 6.3.16 does not affect the ADC accuracy.
Figure 48. ADC accuracy characteristics
1. See also Table 77.
2. Example of an actual transfer curve.
3. Ideal transfer curve.
4. End point correlation line.
5. ET = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves.
EO = Offset Error: deviation between the first actual transition and the first ideal one.
EG = Gain Error: deviation between the last ideal transition and the last actual one.
ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one.
EL = Integral Linearity Error: maximum deviation between any actual transition and the end point
correlation line.
AIC
%/
%'
, 3")$%!,



    


%4
%$
%,

6$$!
633!
62%&
 ORDEPENDINGONPACKAGE=
6$$!

;,3" )$%!,

DocID029161 Rev 7 149/209
STM32F423xH Electrical characteristics
175
Figure 49. Typical connection diagram using the ADC
1. Refer to Table 75 for the values of RAIN, RADC and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 5 pF). A high Cparasitic value downgrades conversion accuracy. To remedy this,
fADC should be reduced.
ELW
FRQYHUWHU
6DPSOHDQGKROG$'&
FRQYHUWHU
5$,1 $,1[
9$,1 &SDUDVLWLF
9''
97
9
97
9
,/$
5$'&
&$'&
069
Electrical characteristics STM32F423xH
150/209 DocID029161 Rev 7
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 50 or Figure 51,
depending on whether VREF+ is connected to VDDA or not. The 10 nF capacitors should be
ceramic (good quality). They should be placed them as close as possible to the chip.
Figure 50. Power supply and reference decoupling (VREF+ not connected to VDDA)
1. VREF+ and VREF- inputs are both available on UFBGA100. VREF+ is also available on LQFP100. When
VREF+ and VREF- are not available, they are internally connected to VDDA and VSSA.
670)
)Q)
)Q)
95()
9''$
966$95()
DLE
DocID029161 Rev 7 151/209
STM32F423xH Electrical characteristics
175
Figure 51. Power supply and reference decoupling (VREF+ connected to VDDA)
1. VREF+ and VREF- inputs are both available on UFBGA100. VREF+ is also available on LQFP100. When
VREF+ and VREF- are not available, they are internally connected to VDDA and VSSA.
6.3.21 Temperature sensor characteristics
670)
)Q)
DLF
95()9''$
95()966$ 

Table 81. Temperature sensor characteristics
Symbol Parameter Min Typ Max Unit
TL(1) VSENSE linearity with temperature - ±1±C
Avg_Slope(1) Average slope - 2.5 - mV/°C
V25(1) Voltage at 25 °C - 0.76 - V
tSTART(2) Startup time - 6 10 µs
TS_temp(2) ADC sampling time when reading the temperature (1 °C accuracy) 10 - - µs
1. Guaranteed by characterization results.
2. Guaranteed by design.
Table 82. Temperature sensor calibration values
Symbol Parameter Memory address
TS_CAL1 TS ADC raw data acquired at temperature of 30 °C, VDDA= 3.3 V 0x1FFF 7A2C - 0x1FFF 7A2D
TS_CAL2 TS ADC raw data acquired at temperature of 110 °C, VDDA= 3.3 V 0x1FFF 7A2E - 0x1FFF 7A2F
Electrical characteristics STM32F423xH
152/209 DocID029161 Rev 7
6.3.22 VBAT monitoring characteristics
6.3.23 Embedded reference voltage
The parameters given in Table 84 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 17.
Table 83. VBAT monitoring characteristics
Symbol Parameter Min Typ Max Unit
R Resistor bridge for VBAT -50-KΩ
QRatio on VBAT measurement - 4 -
Er(1) Error on Q –1 - +1 %
TS_vbat(2)(2) ADC sampling time when reading the VBAT
1 mV accuracy 5--µs
1. Guaranteed by design.
2. Shortest sampling time can be determined in the application by multiple iterations.
Table 84. Embedded internal reference voltage
Symbol Parameter Conditions Min Typ Max Unit
VREFINT Internal reference voltage –40 °C < TA < +125 °C 1.18 1.21 1.24 V
TS_vrefint(1) ADC sampling time when reading the
internal reference voltage -10--µs
VRERINT_s(2) Internal reference voltage spread over the
temperature range VDD = 3V ± 10mV - 3 5 mV
TCoeff(2) Temperature coefficient - - 30 50 ppm/°C
tSTART(2) Startup time - - 6 10 µs
1. Shortest sampling time can be determined in the application by multiple iterations.
2. Guaranteed by design
Table 85. Internal reference voltage calibration values
Symbol Parameter Memory address
VREFIN_CAL
Raw data acquired at temperature of
30 °C VDDA = 3.3 V 0x1FFF 7A2A - 0x1FFF 7A2B
DocID029161 Rev 7 153/209
STM32F423xH Electrical characteristics
175
6.3.24 DAC electrical characteristics
Table 86. DAC characteristics
Symbol Parameter Conditions Min Typ Max Unit Comments
VDDA
Analog supply
voltage -1.7
(1) -3.6 V
VREF+
Reference supply
voltage -1.7
(1) -3.6VV
REF+ VDDA
VSSA Ground - 0 - 0 V -
RLOAD(2) Resistive load
DAC
output
buffer ON
RLOAD
connected
to VSSA
5- -kΩ-
RLOAD
connected
to VDDA
25 - - kΩ-
RO(2) Impedance output
with buffer OFF ---15kΩ
When the buffer is OFF, the
Minimum resistive load between
DAC_OUT and VSS to have a 1%
accuracy is 1.5 MΩ
CLOAD(2) Capacitive load - - - 50 pF
Maximum capacitive load at
DAC_OUT pin (when the buffer is
ON).
DAC_OUT
min(2)
Lower DAC_OUT
voltage with buffer
ON
-0.2 --V
It gives the maximum output
excursion of the DAC.
It corresponds to 12-bit input
code (0x0E0) to (0xF1C) at
VREF+ = 3.6 V and (0x1C7) to
(0xE38) at VREF+ = 1.7 V
DAC_OUT
max(2)
Higher DAC_OUT
voltage with buffer
ON
---
VDDA
0.2 V
DAC_OUT
min(2)
Lower DAC_OUT
voltage with buffer
OFF
--0.5-mV
It gives the maximum output
excursion of the DAC.
DAC_OUT
max(2)
Higher DAC_OUT
voltage with buffer
OFF
---
VREF+
1LSB
V
IVREF+(4)
DAC DC VREF
current
consumption in
quiescent mode
(Standby mode)
- - 170 240
µA
With no load, worst code (0x800)
at VREF+ = 3.6 V in terms of DC
consumption on the inputs
--5075
With no load, worst code (0xF1C)
at VREF+ = 3.6 V in terms of DC
consumption on the inputs
IDDA(4)
DAC DC VDDA
current
consumption in
quiescent mode(3)
- - 280 380 µA With no load, middle code
(0x800) on the inputs
- - 475 625 µA
With no load, worst code (0xF1C)
at VREF+ = 3.6 V in terms of DC
consumption on the inputs
Electrical characteristics STM32F423xH
154/209 DocID029161 Rev 7
DNL(4)
Differential non
linearity Difference
between two
consecutive code-
1LSB)
- - - ±0.5 LSB Given for the DAC in 10-bit
configuration.
---±2 LSB
Given for the DAC in 12-bit
configuration.
INL(4)
Integral non
linearity (difference
between measured
value at Code i and
the value at Code i
on a line drawn
between Code 0
and last Code
1023)
---±1LSB
Given for the DAC in 10-bit
configuration.
---±4LSB
Given for the DAC in 12-bit
configuration.
Offset(4)
Offset error
(difference between
measured value at
Code (0x800) and
the ideal value =
VREF+/2)
---±10mV
Given for the DAC in 12-bit
configuration
---±3LSB
Given for the DAC in 10-bit at
VREF+ = 3.6 V
---±12LSB
Given for the DAC in 12-bit at
VREF+ = 3.6 V
Gain
error(4) Gain error - - - ±0.5 % Given for the DAC in 12-bit
configuration
tSETTLING(
4)
Settling time (full
scale: for a 10-bit
input code transition
between the lowest
and the highest
input codes when
DAC_OUT reaches
final value ±4LSB
--36µs
CLOAD 50 pF,
RLOAD 5 kΩ
THD(4)
Total Harmonic
Distortion
Buffer ON
----dB
CLOAD 50 pF,
RLOAD 5 kΩ
Update
rate(2)
Max frequency for a
correct DAC_OUT
change when small
variation in the input
code (from code i to
i+1LSB)
---1MS/s
CLOAD 50 pF,
RLOAD 5 kΩ
tWAKEUP(4)
Wakeup time from
off state (Setting the
ENx bit in the DAC
Control register)
--6.510µs
CLOAD 50 pF, RLOAD 5 kΩ
input code between lowest and
highest possible ones.
PSRR+ (2)
Power supply
rejection ratio (to
VDDA) (static DC
measurement)
- - –67 –40 dB No RLOAD, CLOAD = 50 pF
Table 86. DAC characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit Comments
DocID029161 Rev 7 155/209
STM32F423xH Electrical characteristics
175
Figure 52. 12-bit buffered /non-buffered DAC
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly
without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the
DAC_CR register.
1. VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.17.2:
Internal reset OFF).
2. Guaranteed by design.
3. The quiescent mode corresponds to a state where the DAC maintains a stable output level to ensure that no dynamic
consumption occurs.
4. Guaranteed by characterization results.
DLD

%XIIHU
ELW
GLJLWDOWR
DQDORJ
FRQYHUWHU
%XIIHUHGQRQEXIIHUHG'$&
'$&[B287
5/2$'
&/2$'
Electrical characteristics STM32F423xH
156/209 DocID029161 Rev 7
6.3.25 DFSDM characteristics
Unless otherwise specified, the parameters given in Table 87 for DFSDM are derived from
tests performed under the ambient temperature, fAPB2 frequency and VDD supply voltage
conditions summarized in Table 17: General operating conditions.
Output speed is set to OSPEEDRy[1:0] = 10
Capacitive load C = 30 pF
Measurement points are done at CMOS levels: 0.5 * VDD
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate
function characteristics (DFSDM_CKINy, DFSDM_DATINy, DFSDM_CKOUT for DFSDM).
Table 87. DFSDM characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
fDFSDMCLK DFSDM clock 1.71 < VDD < 3.6 V - - fSYSCLK
MHz
fCKIN
(1/TCKIN)
Input clock
frequency
SPI mode
(SITP[1:0] = 0,1),
External clock mode
(SPICKSEL[1:0] = 0,
1.71 < VDD < 3.6 V
--
20
(fDFBDMCLK / 4
SPI mode
(SITP[1:0] = 0,1),
External clock mode
(SPICKSEL[1:0] = 0,
2.7 < VDD < 3.6 V
--
20
(fDFBDMCLK / 4
SPI mode
(SITP[1:0] = 0,1),
Internal clock mode
(SPICKSEL[1:0] 0,
1.71 < VDD < 3.6 V
--
20
(fDFBDMCLK / 4
SPI mode (SITP[1:0] = 0,1),
Internal clock mode
(SPICKSEL[1:0] 0,
2.7 < VDD < 3.6 V
--
20
(fDFBDMCLK / 4
fCKOUT
Output clock
frequency 1.71 < VDD < 3.6 V - - 20
DuCyCKOUT
Output clock
frequency duty
cycle
1.71 < VDD < 3.6 V 45 50 55 %
DocID029161 Rev 7 157/209
STM32F423xH Electrical characteristics
175
twh(CKIN)
twl(CKIN)
Input clock high
and low time
SPI mode
(SITP[1:0] = 01),
External clock mode
(SPICKSEL[1:0] = 0)
1.71 < VDD < 3.6 V
tCKIN / 2 - 0.5 tCKIN / 2 -
ns
tsu
Data input
setup time
SPI mode
(SITP[1:0]=01),
External clock mode
(SPICKSEL[1:0] = 0)
1.71 < VDD < 3.6 V
3.5 - -
th
Data input hold
time
SPI mode
(SITP[1:0]=01),
External clock mode
(SPICKSEL[1:0] = 0)
1.71 < VDD < 3.6 V
2.5 - -
TManchester
Manchester
data period
(recovered
clock period)
Manchester mode
(SITP[1:0] = 10 or 11),
Internal clock mode
(SPICKSEL[1:0] 0)
1.71 < VDD < 3.6 V
(CKOUTDIV + 1)
* tDFBDMCLK
-(2 * CKOUTDIV
) * tDFBDMCLK
1. Data based on characterization results.
Table 87. DFSDM characteristics(1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
Electrical characteristics STM32F423xH
158/209 DocID029161 Rev 7
Figure 16: DFSDM timing diagram
06Y9
63,&.6(/ 
63,&.6(/ 
63,&.6(/ 
')6'0B&.287
WVX
WZO WZK WUWI
WK
WVX WK
6,73 
6,73 
')6'0B'$7,1\ ')6'0B
&.,1\
63,&.6(/ 
WVX WK
WVX WK
6,73 
6,73 
')6'0B'$7,1\

6,73 
6,73 
5HFRYHUHGFORFN
5HFRYHUHGGDWD
')6'0B'$7,1\
0DQFKHVWHUWLPLQJ 63,WLPLQJ63,&.6(/  63,WLPLQJ63,&.6(/ 
WZO WZK WUWI
DocID029161 Rev 7 159/209
STM32F423xH Electrical characteristics
175
6.3.26 FSMC characteristics
Unless otherwise specified, the parameters given in Table 88 to Table 95 for the FSMC
interface are derived from tests performed under the ambient temperature, fHCLK frequency
and VDD supply voltage conditions summarized in Table 16, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 10
Capacitance load C = 30 pF
Measurement points are done at CMOS levels: 0.5.VDD
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output
characteristics.
Asynchronous waveforms and timings
Figure 53 through Figure 56 represent asynchronous waveforms and Table 88 through
Table 95 provide the corresponding timings. The results shown in these tables are obtained
with the following FSMC configuration:
AddressSetupTime = 0x1
AddressHoldTime = 0x1
DataSetupTime = 0x1 (except for asynchronous NWAIT mode, DataSetupTime = 0x5)
BusTurnAroundDuration = 0x0
In all timing tables, the THCLK is the HCLK clock period.
Electrical characteristics STM32F423xH
160/209 DocID029161 Rev 7
Figure 53. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms
1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.
06Y9
'DWD
)60&B1(
)60&B1%/>@
)60&B'>@
TV",?.%
WK'DWDB1(
)60&B12(
$GGUHVV
)60&B$>@
TV!?.%
)60&B1:(
WVX'DWDB1(
WZ1(
WY12(B1( WK1(B12(
WK'DWDB12(
WK$B12(
WK%/B12(
WVX'DWDB12(
)60&B1$'9
WY1$'9B1(
WZ1$'9
)60&B1:$,7
WVX1:$,7B1(
WK1(B1:$,7
WZ12(
DocID029161 Rev 7 161/209
STM32F423xH Electrical characteristics
175
Table 88. Asynchronous non-multiplexed SRAM/PSRAM/NOR -
read timings(1)(2)
1. CL = 30 pF.
2. Based on characterization.
Symbol Parameter Min Max Unit
tw(NE) FSMC_NE low time 2 * tHCLK - 1 2 * tHCLK + 1
ns
tv(NOE_NE) FSMC_NEx low to FSMC_NOE low 0 0.5
tw(NOE) FSMC_NOE low time 2 * tHCLK - 1 2 * tHCLK + 1
th(NE_NOE)
FSMC_NOE high to FSMC_NE high hold
time 0-
tv(A_NE) FSMC_NEx low to FSMC_A valid - 0.5
th(A_NOE) Address hold time after FSMC_NOE high 0 -
tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 0.5
th(BL_NOE) FSMC_BL hold time after FSMC_NOE high 0 -
tsu(Data_NE) Data to FSMC_NEx high setup time tHCLK - 2 -
tsu(Data_NOE) Data to FSMC_NOEx high setup time tHCLK - 2 -
th(Data_NOE) Data hold time after FSMC_NOE high 0 -
th(Data_NE) Data hold time after FSMC_NEx high 0 -
tv(NADV_NE) FSMC_NEx low to FSMC_NADV low - 0
tw(NADV) FSMC_NADV low time - tHCLK + 1
Table 89. Asynchronous non-multiplexed SRAM/PSRAM/NOR read -
NWAIT timings(1)(2)
1. CL = 30 pF.
2. Based on characterization.
Symbol Parameter Min Max Unit
tw(NE) FSMC_NE low time 7 * tHCLK + 1 7 * tHCLK + 1
ns
tw(NOE) FSMC_NWE low time 5 * tHCLK - 1 5 * tHCLK + 1
tw(NWAIT) FSMC_NWAIT low time tHCLK - 0.5 -
tsu(NWAIT_NE)
FSMC_NWAIT valid before FSMC_NEx
high 5 * tHCLK + 1.5 -
th(NE_NWAIT)
FSMC_NEx hold time after
FSMC_NWAIT invalid 4 * tHCLK + 1 -
Electrical characteristics STM32F423xH
162/209 DocID029161 Rev 7
Figure 54. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms
1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.
Table 90. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings(1)(2)
Symbol Parameter Min Max Unit
tw(NE) FSMC_NE low time 3 * tHclk - 1 3 * tHclk - 1
ns
tv(NWE_NE) FSMC_NEx low to FSMC_NWE low tHCLK - 1 tHCLK + 0.5
tw(NWE) FSMC_NWE low time tHCLK - 1.5 tHCLK + 0.5
th(NE_NWE) FSMC_NWE high to FSMC_NE high hold time tHCLK -
tv(A_NE) FSMC_NEx low to FSMC_A valid - 0
th(A_NWE) Address hold time after FSMC_NWE high tHCLK - 0.5 -
tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 0.5
th(BL_NWE) FSMC_BL hold time after FSMC_NWE high tHCLK - 0.5 -
tv(Data_NE) Data to FSMC_NEx low to Data valid - tHCLK + 2.5
th(Data_NWE) Data hold time after FSMC_NWE high tHCLK -
tv(NADV_NE) FSMC_NEx low to FSMC_NADV low - 0
tw(NADV) FSMC_NADV low time - tHCLK + 1
06Y9
1%/
'DWD
)60&B1([
)60&B1%/>@
)60&B'>@
TV",?.%
WK'DWDB1:(
)60&B12(
$GGUHVV
)60&B$>@
TV!?.%
WZ1:(
)60&B1:(
WY1:(B1( WK1(B1:(
WK$B1:(
WK%/B1:(
WY'DWDB1(
WZ1(
)60&B1$'9
WY1$'9B1(
WZ1$'9
)60&B1:$,7
WVX1:$,7B1(
WK1(B1:$,7
DocID029161 Rev 7 163/209
STM32F423xH Electrical characteristics
175
Figure 55. Asynchronous multiplexed PSRAM/NOR read waveforms
1. CL = 30 pF.
2. Based on characterization.
Table 91. Asynchronous non-multiplexed SRAM/PSRAM/NOR write -
NWAIT timings(1)(2)
1. CL = 30 pF.
2. Based on characterization.
Symbol Parameter Min Max Unit
tw(NE) FSMC_NE low time 8 * tHCLK - 1 8 * tHCLK + 1
ns
tw(NWE) FSMC_NWE low time 6 * tHCLK - 1.5 6 * tHCLK + 0.5
tsu(NWAIT_NE) FSMC_NWAIT valid before FSMC_NEx high 6 * tHCLK - 1 -
th(NE_NWAIT)
FSMC_NEx hold time after FSMC_NWAIT
invalid 4 * tHCLK + 2 -
06Y9
1%/
'DWD
)60&B1%/>@
)60&B$'>@
TV",?.%
WK'DWDB1(
$GGUHVV
)60&B$>@
TV!?.%
)60&B1:(
WY$B1(
$GGUHVV
)60&B1$'9
WY1$'9B1(
WZ1$'9
WVX'DWDB1(
TH!$?.!$6
)60&B1(
)60&B12(
WZ1(
WZ12(
WY12(B1( WK1(B12(
WK$B12(
WK%/B12(
WVX'DWDB12( WK'DWDB12(
)60&B1:$,7
WVX1:$,7B1(
WK1(B1:$,7
Electrical characteristics STM32F423xH
164/209 DocID029161 Rev 7
Table 92. Asynchronous multiplexed PSRAM/NOR read timings(1)(2)
1. CL = 30 pF.
2. Based on characterization.
Symbol Parameter Min Max Unit
tw(NE) FSMC_NE low time 3 * tHCLK - 1 3 * tHCLK + 1
ns
tv(NOE_NE) FSMC_NEx low to FSMC_NOE low 2 * tHCLK 2 * tHCLK + 0.5
tw(NOE) FSMC_NOE low time tHCLK - 1 tHCLK + 1
th(NE_NOE)
FSMC_NOE high to FSMC_NE high hold
time 0-
tv(A_NE) FSMC_NEx low to FSMC_A valid - 0.5
tv(NADV_NE) FSMC_NEx low to FSMC_NADV low 0 0.5
tw(NADV) FSMC_NADV low time tHCLK - 0.5 tHCLK + 1
th(AD_NADV)
FSMC_AD(address) valid hold time after
FSMC_NADV high) tHCLK + 0.5 -
th(A_NOE) Address hold time after FSMC_NOE high tHCLK - 0.5 -
th(BL_NOE) FSMC_BL time after FSMC_NOE high 0 -
tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 0.5
tsu(Data_NE) Data to FSMC_NEx high setup time tHCLK - 2 -
tsu(Data_NOE) Data to FSMC_NOE high setup time tHCLK - 2 -
th(Data_NE) Data hold time after FSMC_NEx high 0 -
th(Data_NOE) Data hold time after FSMC_NOE high 0 -
Table 93. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings(1)(2)
1. CL = 30 pF.
2. Based on characterization.
Symbol Parameter Min Max Unit
tw(NE) FSMC_NE low time 8 * tHCLK - 1 8 * tHCLK + 1
ns
tw(NOE) FSMC_NWE low time 5 * tHCLK - 1.5 5 * tHCLK + 0.5
tsu(NWAIT_NE)
FSMC_NWAIT valid before FSMC_NEx
high 5 * tHCLK + 1.5 -
th(NE_NWAIT)
FSMC_NEx hold time after
FSMC_NWAIT invalid 4 * tHCLK + 1 -
DocID029161 Rev 7 165/209
STM32F423xH Electrical characteristics
175
Figure 56. Asynchronous multiplexed PSRAM/NOR write waveforms
06Y9
1%/
'DWD
)60&B1([
)60&B1%/>@
)60&B$'>@
TV",?.%
WK'DWDB1:(
)60&B12(
$GGUHVV
)60&B$>@
TV!?.%
WZ1:(
)60&B1:(
WY1:(B1( WK1(B1:(
WK$B1:(
WK%/B1:(
WY$B1(
WZ1(
$GGUHVV
)60&B1$'9
WY1$'9B1(
WZ1$'9
WY'DWDB1$'9
TH!$?.!$6
)60&B1:$,7
WVX1:$,7B1(
WK1(B1:$,7
Electrical characteristics STM32F423xH
166/209 DocID029161 Rev 7
Synchronous waveforms and timings
Figure 57 through Figure 60 represent synchronous waveforms and Table 96 through
Table 99 provide the corresponding timings. The results shown in these tables are obtained
with the following FSMC configuration:
BurstAccessMode = FSMC_BurstAccessMode_Enable;
MemoryType = FSMC_MemoryType_CRAM;
WriteBurst = FSMC_WriteBurst_Enable;
CLKDivision = 1; (0 is not supported, see the STM32F446 reference manual: RM0390)
DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM
Table 94. Asynchronous multiplexed PSRAM/NOR write timings(1)(2)
Symbol Parameter Min Max Unit
tw(NE) FSMC_NE low time 4 * THCLK - 1 4 * THCLK + 1
ns
tv(NWE_NE) FSMC_NEx low to FSMC_NWE low THCLK - 1 THCLK + 0.5
tw(NWE) FSMC_NWE low time 2 * THCLK - 0.5 2 * THCLK - 0.5
th(NE_NWE) FSMC_NWE high to FSMC_NE high hold time THCLK - 0.5 -
tv(A_NE) FSMC_NEx low to FSMC_A valid - 0
tv(NADV_NE) FSMC_NEx low to FSMC_NADV low 0 0.5
tw(NADV) FSMC_NADV low time THCLK THCLK + 1
th(AD_NADV)
FSMC_AD (address) valid hold time after FSMC_NADV
high) THCLK + 0.5 -
th(A_NWE) Address hold time after FSMC_NWE high THCLK + 0.5 -
th(BL_NWE) FSMC_BL hold time after FSMC_NWE high THCLK - 0.5 -
tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 0.5
tv(Data_NADV) FSMC_NADV high to Data valid - THCLK + 2.5
th(Data_NWE) Data hold time after FSMC_NWE high THCLK -
1. CL = 30 pF.
2. Guaranteed by characterization results.
Table 95. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings(1)(2)
Symbol Parameter Min Max Unit
tw(NE) FSMC_NE low time 9 * THCLK - 1 9 * THCLK + 1
ns
tw(NWE) FSMC_NWE low time 7 * THCLK - 0.5 7 * THCLK + 0.5
tsu(NWAIT_NE) FSMC_NWAIT valid before FSMC_NEx high 6 * THCLK + 2 -
th(NE_NWAIT) FSMC_NEx hold time after FSMC_NWAIT invalid 4 * THCLK - 1 -
1. CL = 30 pF.
2. Guaranteed by characterization results.
DocID029161 Rev 7 167/209
STM32F423xH Electrical characteristics
175
In all timing tables, the THCLK is the HCLK clock period (with maximum
FSMC_CLK = 90 MHz).
Figure 57. Synchronous multiplexed NOR/PSRAM read timings
06Y9
)60&B&/.
)60&B1([
)60&B1$'9
)60&B$>@
)60&B12(
)60&B$'>@ $'>@ ' '
)60&B1:$,7
:$,7&)* E:$,732/E
)60&B1:$,7
:$,7&)* E:$,732/E
WZ&/. WZ&/.
'DWDODWHQF\ 
%867851 
WG&/./1([/ WG&/.+1([+
WG&/./1$'9/
WG&/./$9
WG&/./1$'9+
WG&/.+$,9
WG&/./12(/ WG&/.+12(+
WG&/./$'9
WG&/./$',9
WVX$'9&/.+
WK&/.+$'9
WVX$'9&/.+ WK&/.+$'9
WVX1:$,79&/.+ WK&/.+1:$,79
WVX1:$,79&/.+ WK&/.+1:$,79
WVX1:$,79&/.+ WK&/.+1:$,79
Electrical characteristics STM32F423xH
168/209 DocID029161 Rev 7
Table 96. Synchronous multiplexed NOR/PSRAM read timings(1)(2)
Symbol Parameter Min Max Unit
tw(CLK) FSMC_CLK period 2 * THCLK - 0.5 -
ns
td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x=0..2) - 2
td(CLKH_NExH) FSMC_CLK high to FSMC_NEx high (x= 0…2) THCLK + 0.5 -
td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 1
td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 0 -
td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x=16…25) - 2.5
td(CLKH-AIV) FSMC_CLK high to FSMC_Ax invalid (x=16…25) THCLK -
td(CLKL-NOEL) FSMC_CLK low to FSMC_NOE low - 1.5
td(CLKH-NOEH) FSMC_CLK high to FSMC_NOE high THCLK - 0.5 -
td(CLKL-ADV) FSMC_CLK low to FSMC_AD[15:0] valid - 3
td(CLKL-ADIV) FSMC_CLK low to FSMC_AD[15:0] invalid 0 -
tsu(ADV-CLKH) FSMC_A/D[15:0] valid data before FSMC_CLK high 1.5 -
th(CLKH-ADV) FSMC_A/D[15:0] valid data after FSMC_CLK high 3.5 -
tsu(NWAIT-CLKH) FSMC_NWAIT valid before FSMC_CLK high 2.5 -
th(CLKH-NWAIT) FSMC_NWAIT valid after FSMC_CLK high 3.5 -
1. CL = 30 pF.
2. Guaranteed by characterization results.
DocID029161 Rev 7 169/209
STM32F423xH Electrical characteristics
175
Figure 58. Synchronous multiplexed PSRAM write timings
06Y9
)60&B&/.
)60&B1([
)60&B1$'9
)60&B$>@
)60&B1:(
)60&B$'>@ $'>@ ' '
)60&B1:$,7
:$,7&)* E:$,732/E
WZ&/. WZ&/.
'DWDODWHQF\ 
%867851 
WG&/./1([/ WG&/.+1([+
WG&/./1$'9/
WG&/./$9
WG&/./1$'9+
WG&/.+$,9
WG&/.+1:(+
WG&/./1:(/
WG&/.+1%/+
WG&/./$'9
WG&/./$',9 WG&/./'DWD
WVX1:$,79&/.+ WK&/.+1:$,79
WG&/./'DWD
)60&B1%/
Electrical characteristics STM32F423xH
170/209 DocID029161 Rev 7
Table 97. Synchronous multiplexed PSRAM write timings(1)(2)
Symbol Parameter Min Max Unit
tw(CLK) FSMC_CLK period, VDD range= 2.7 to 3.6 V 2 * THCLK - 0.5 -
ns
td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x= 0...2) - 2
td(CLKH-NExH) FSMC_CLK high to FSMC_NEx high (x= 0…2) THCLK + 0.5 -
td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 1
td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 0 -
td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x=16…25) - 2.5
td(CLKH-AIV) FSMC_CLK high to FSMC_Ax invalid (x=16…25) THCLK -
td(CLKL-NWEL) FSMC_CLK low to FSMC_NWE low - 1.5
t(CLKH-NWEH) FSMC_CLK high to FSMC_NWE high THCLK + 0.5 -
td(CLKL-ADV) FSMC_CLK low to FSMC_AD[15:0] valid - 3
td(CLKL-ADIV) FSMC_CLK low to FSMC_AD[15:0] invalid 0 -
td(CLKL-DATA) FSMC_A/D[15:0] valid data after FSMC_CLK low - 4
td(CLKL-NBLL) FSMC_CLK low to FSMC_NBL low 0 2
td(CLKH-NBLH) FSMC_CLK high to FSMC_NBL high THCLK + 0.5 -
tsu(NWAIT-CLKH) FSMC_NWAIT valid before FSMC_CLK high 2 -
th(CLKH-NWAIT) FSMC_NWAIT valid after FSMC_CLK high 3.5 -
1. CL = 30 pF.
2. Guaranteed by characterization results.
DocID029161 Rev 7 171/209
STM32F423xH Electrical characteristics
175
Figure 59. Synchronous non-multiplexed NOR/PSRAM read timings
06Y9
)60&B&/.
)60&B1([
)60&B$>@
)60&B12(
)60&B'>@ ' '
)60&B1:$,7
:$,7&)* E
:$,732/E
)60&B1:$,7
:$,7&)* E
:$,732/E
WZ&/. WZ&/.
'DWDODWHQF\ 
WG&/./1([/ WG&/.+1([+
WG&/./$9 WG&/.+$,9
WG&/./12(/ WG&/.+12(+
WVX'9&/.+ WK&/.+'9
WVX'9&/.+ WK&/.+'9
WVX1:$,79&/.+ WK&/.+1:$,79
WVX1:$,79&/.+ WK&/.+1:$,79
WVX1:$,79&/.+ WK&/.+1:$,79
)60&B1$'9
WG&/./1$'9/ WG&/./1$'9+
Table 98. Synchronous non-multiplexed NOR/PSRAM read timings(1)(2)
Symbol Parameter Min Max Unit
tw(CLK) FSMC_CLK period 2THCLK – 0.5 -
ns
t(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x=0..2) - 2
td(CLKH-NExH) FSMC_CLK high to FSMC_NEx high (x= 0…2) THCLK +0.5 -
td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 0.5
td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 0 -
td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x=16…25) - 2.5
td(CLKH-AIV) FSMC_CLK high to FSMC_Ax invalid (x=16…25) THCLK -
td(CLKL-NOEL) FSMC_CLK low to FSMC_NOE low - 1.5
td(CLKH-NOEH) FSMC_CLK high to FSMC_NOE high THCLK - 0.5 -
tsu(DV-CLKH) FSMC_D[15:0] valid data before FSMC_CLK high 1.5 -
th(CLKH-DV) FSMC_D[15:0] valid data after FSMC_CLK high 3.5 -
tsu(NWAIT-CLKH) FSMC_NWAIT valid before FSMC_CLK high 2.5 -
th(CLKH-NWAIT) FSMC_NWAIT valid after FSMC_CLK high 3.5 -
1. CL = 30 pF.
2. Guaranteed by characterization results.
Electrical characteristics STM32F423xH
172/209 DocID029161 Rev 7
Figure 60. Synchronous non-multiplexed PSRAM write timings
06Y9
)60&B&/.
)60&B1([
)60&B$>@
)60&B1:(
)60&B'>@ ' '
)60&B1:$,7
:$,7&)* E
:$,732/E
WZ&/. WZ&/.
'DWDODWHQF\ 
WG&/./1([/ WG&/.+1([+
WG&/./$9 WG&/.+$,9
WG&/.+1:(+
WG&/./1:(/
WG&/./'DWD
WVX1:$,79&/.+
WK&/.+1:$,79
)60&B1$'9
WG&/./1$'9/ WG&/./1$'9+
WG&/./'DWD
)60&B1%/
WG&/.+1%/+
Table 99. Synchronous non-multiplexed PSRAM write timings(1)(2)
Symbol Parameter Min Max Unit
tw(CLK) FSMC_CLK period 2 * THCLK - 0.5 -
ns
td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x=0..2) - 2
td(CLKH-NExH) FSMC_CLK high to FSMC_NEx high (x= 0…2) THCLK + 0.5 -
td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 0.5
td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 0 -
td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x=16…25) - 2.5
td(CLKH-AIV) FSMC_CLK high to FSMC_Ax invalid (x=16…25) THCLK -
td(CLKL-NWEL) FSMC_CLK low to FSMC_NWE low - 1.5
td(CLKH-NWEH) FSMC_CLK high to FSMC_NWE high THCLK + 1 -
td(CLKL-Data) FSMC_D[15:0] valid data after FSMC_CLK low - 4
td(CLKL-NBLL) FSMC_CLK low to FSMC_NBL low - 2
td(CLKH-NBLH) FSMC_CLK high to FSMC_NBL high THCLK + 1 -
tsu(NWAIT-CLKH) FSMC_NWAIT valid before FSMC_CLK high 2 -
th(CLKH-NWAIT) FSMC_NWAIT valid after FSMC_CLK high 3.5 -
1. CL = 30 pF.
2. Guaranteed by characterization results.
DocID029161 Rev 7 173/209
STM32F423xH Electrical characteristics
175
6.3.27 SD/SDIO MMC/eMMC card host interface (SDIO) characteristics
Unless otherwise specified, the parameters given in Table 100 for the SDIO are derived
from tests performed under the ambient temperature, fPCLK2 frequency and VDD supply
voltage conditions summarized in Table 17, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 10
Capacitive load C = 30 pF
Measurement points are done at CMOS levels: 0.5VDD
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output
characteristics.
Figure 61. SDIO high-speed mode
Figure 62. SD default mode
W:&.+
W&
W:&./
W2+
W29
W,68 W,+
WIWU
DL
&.
'&0'RXWSXW
'&0'LQSXW
Electrical characteristics STM32F423xH
174/209 DocID029161 Rev 7
Table 100. SD / MMC characteristics(1)(2)
Symbol Parameter Conditions Min Typ Max Unit
fPP Clock frequency in data transfer mode - 0 - 50 MHz
- SDIO_CK/fPCLK2 frequency ratio - - - 8 / 3 -
tW(CKL) Clock low time fpp =50MHz 9.5 10.5 - ns
tW(CKH) Clock high time fpp =50MHz 8.5 9.5 -
CMD, D inputs (referenced to CK) in MMC and SD HS mode
tISU Input setup time HS fpp =50MHz 5 - - ns
tIH Input hold time HS fpp =50MHz 1 - -
CMD, D outputs (referenced to CK) in MMC and SD HS mode
tOV Output valid time HS fpp =50MHz - 12 13.5 ns
tOH Output hold time HS fpp =50MHz 10.5 - -
CMD, D inputs (referenced to CK) in SD default mode
tISUD Input setup time SD fpp =25MHz 5--
ns
tIHD Input hold time SD fpp =25MHz 1- -
CMD, D outputs (referenced to CK) in SD default mode
tOVD Output valid default time SD fpp =25 MHz -23
ns
tOHD Output hold default time SD fpp =25 MHz 1- -
1. Guaranteed by characterization results.
2. VDD = 2.7 to 3.6 V.
Table 101. eMMC characteristics VDD = 1.7 V to 1.9 V(1)(2)
Symbol Parameter Conditions Min Typ Max Unit
fPP Clock frequency in data transfer mode - 0 - 50 MHz
- SDIO_CK/fPCLK2 frequency ratio - - - 8 / 3 -
tW(CKL) Clock low time fpp =50MHz 9.5 10.5 - ns
tW(CKH) Clock high time fpp =50MHz 8.5 9.5 -
CMD, D inputs (referenced to CK) in eMMC mode
tISU Input setup time HS fpp =50MHz 3 - - ns
tIH Input hold time HS fpp =50MHz 2.5 - -
CMD, D outputs (referenced to CK) in eMMC mode
tOV Output valid time HS fpp =50MHz - 15 15.5 ns
tOH Output hold time HS fpp =50MHz 13 - -
1. Guaranteed by characterization results.
2. CLOAD = 20 pF.
DocID029161 Rev 7 175/209
STM32F423xH Electrical characteristics
175
6.3.28 RTC characteristics
Table 102. RTC characteristics
Symbol Parameter Conditions Min Max
-f
PCLK1/RTCCLK frequency ratio Any read/write operation
from/to an RTC register 4-
Package information STM32F423xH
176/209 DocID029161 Rev 7
7 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
7.1 WLCSP81 package information
Figure 63. WLCSP81 - 81-ball, 4.039 x 3.951 mm, 0.4 mm pitch wafer level chip scale
package outline
1. Drawing is not to scale.
:/&63B$%B0(B9
7RSYLHZ
:DIHUEDFNVLGH
%RWWRPYLHZ
%XPSVLGH
$2ULHQWDWLRQ
UHIHUHQFH '
(
H
H
H
*
)
H
$EDOO
ORFDWLRQ
DDD
HHH =
-
$
; <
=
=
6,'(9,(:
'(7$,/$
'(7$,/$
$
$
$
$
E[
6HDWLQJSODQH
EEE =

%803
=
GGG 0
FFF0
DocID029161 Rev 7 177/209
STM32F423xH Package information
206
Table 103. WLCSP81 - 81-ball, 4.039 x 3.951 mm, 0.4 mm pitch wafer level chip scale
package mechanical data
Symbol
millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A 0.525 0.555 0.585 0.0207 0.0219 0.0230
A1 - 0.175 - - 0.0069 -
A2 - 0.380 - - 0.0150 -
A3(2)
2. Back side coating
- 0.025 - - 0.0010 -
Ø b(3)
3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.
0.220 0.250 0.280 0.0087 0.0098 0.0110
D 4.004 4.039 4.074 0.1576 0.1590 0.1604
E 3.916 3.951 3.986 0.1542 0.1556 0.1569
e - 0.400 - - 0.0157 -
e1 - 3.200 - - 0.1260 -
e2 - 3.200 - - 0.1260 -
F - 0.4195 - - 0.0165 -
G - 0.3755 - - 0.0148 -
aaa - - 0.100 - - 0.0039
bbb - - 0.100 - - 0.0039
ccc - - 0.100 - - 0.0039
ddd - - 0.050 - - 0.0020
eee - - 0.050 - - 0.0020
Package information STM32F423xH
178/209 DocID029161 Rev 7
Figure 64. WLCSP81- 81-ball, 4.039 x 3.951 mm, 0.4 mm pitch wafer level chip scale
package recommended footprint
Table 104. WLCSP81 recommended PCB design rules (0.4 mm pitch)
Dimension Recommended values
Pitch 0.4 mm
Dpad 0.225 mm
Dsm 0.290 mm typ. (depends on the soldermask
registration tolerance)
Stencil opening 0.250 mm
Stencil thickness 0.100 mm
:/&63B$%B)3B9
'SDG
'VP
DocID029161 Rev 7 179/209
STM32F423xH Package information
206
Device marking for WLCSP81
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 65. WLCSP81 marking example (package top view)
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
06Y9
)+
<::
3URGXFW
LGHQWLILFDWLRQ
$GGLWLRQDO
LQIRUPDWLRQ
'DWHFRGH
3LQLGHQWLILHU
$
Package information STM32F423xH
180/209 DocID029161 Rev 7
7.2 UFQFPN48 package information
Figure 66. UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package outline
1. Drawing is not to scale.
2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.
3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and
solder this back-side pad to PCB ground.
$%B0(B9
'
3LQLGHQWLILHU
ODVHUPDUNLQJDUHD
((
'<
'
(
([SRVHGSDG
DUHD
=

'HWDLO=
5W\S

/
&[
SLQFRUQHU
$
6HDWLQJ
SODQH
$
E
H
GGG
'HWDLO<
7
DocID029161 Rev 7 181/209
STM32F423xH Package information
206
Figure 67. UFQFPN48 recommended footprint
1. Dimensions are in millimeters.
Table 105. UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package mechanical data
Symbol
millimeters inches(1)
Min. Typ. Max. Min. Typ. Max.
A 0.500 0.550 0.600 0.0197 0.0217 0.0236
A1 0.000 0.020 0.050 0.0000 0.0008 0.0020
D 6.900 7.000 7.100 0.2717 0.2756 0.2795
E 6.900 7.000 7.100 0.2717 0.2756 0.2795
D2 5.500 5.600 5.700 0.2165 0.2205 0.2244
E2 5.500 5.600 5.700 0.2165 0.2205 0.2244
L 0.300 0.400 0.500 0.0118 0.0157 0.0197
T - 0.152 - - 0.0060 -
b 0.200 0.250 0.300 0.0079 0.0098 0.0118
e - 0.500 - - 0.0197 -
ddd - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.




 







!"?&0?6


 



Package information STM32F423xH
182/209 DocID029161 Rev 7
Device marking for UFQFPN48
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 68. UFQFPN48 marking example (package top view)
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
06Y9
670)
&+8
< ::
$
3LQ
LQGHQWLILHU
3URGXFWLGHQWLILFDWLRQ
'DWHFRGH
5HYLVLRQFRGH
DocID029161 Rev 7 183/209
STM32F423xH Package information
206
7.3 LQFP64 package information
Figure 69. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline
1. Drawing is not to scale.
:B0(B9
$
$
$
6($7,1*3/$1(
FFF &
E
&
F
$
/
/
.
,'(17,),&$7,21
3,1
'
'
'
H







(
(
(
*$8*(3/$1(
PP
Package information STM32F423xH
184/209 DocID029161 Rev 7
Table 106. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat
package mechanical data
Symbol
millimeters inches(1)
Min. Typ. Max. Min. Typ. Max.
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D - 12.000 - - 0.4724 -
D1 - 10.000 - - 0.3937 -
D3 - 7.500 - - 0.2953 -
E - 12.000 - - 0.4724 -
E1 - 10.000 - - 0.3937 -
E3 - 7.500 - - 0.2953 -
e - 0.500 - - 0.0197 -
Κ 3.5° 3.5°
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
ccc - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
DocID029161 Rev 7 185/209
STM32F423xH Package information
206
Figure 70. LQFP64 recommended footprint
1. Dimensions are in millimeters.



 










AIC
Package information STM32F423xH
186/209 DocID029161 Rev 7
Device marking for LQFP64
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 71. LQFP64 marking example (package top view)
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
06Y9
5HYLVLRQFRGH
670)
5+7
3URGXFWLGHQWLILFDWLRQ
'DWHFRGH
<::
3LQ
LQGHQWLILHU
$
DocID029161 Rev 7 187/209
STM32F423xH Package information
206
7.4 LQFP100 package information
Figure 72. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline
1. Drawing is not to scale. Dimensions are in millimeters.
Table 107. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package
mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D 15.800 16.000 16.200 0.6220 0.6299 0.6378
D1 13.800 14.000 14.200 0.5433 0.5512 0.5591
D3 - 12.000 - - 0.4724 -
E 15.800 16.000 16.200 0.6220 0.6299 0.6378
E
)$%.4)&)#!4)/.
0).
'!5'%0,!.%
MM
3%!4).'0,!.%
$
$
$
%
%
%
+
CCC #
#




 

,?-%?6
!
!
!
,
,
C
B
!
Package information STM32F423xH
188/209 DocID029161 Rev 7
Figure 73. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat
recommended footprint
1. Dimensions are in millimeters.
E1 13.800 14.000 14.200 0.5433 0.5512 0.5591
E3 - 12.000 - - 0.4724 -
e - 0.500 - - 0.0197 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 0.0° 3.5° 7.0° 0.0° 3.5° 7.0°
ccc - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 107. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package
mechanical data (continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
 
 

 
 




AIC
DocID029161 Rev 7 189/209
STM32F423xH Package information
206
Device marking for LQFP100
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 74. LQFP100 marking example (package top view)
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
06Y9
670)
9+7$
5HYLVLRQFRGH
3URGXFWLGHQWLILFDWLRQ
'DWHFRGH
3LQ
LQGHQWLILHU
<::
Package information STM32F423xH
190/209 DocID029161 Rev 7
7.5 LQFP144 package information
Figure 75. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package outline
1. Drawing is not to scale.
E
)$%.4)&)#!4)/.
0).
'!5'%0,!.%
MM
3%!4).'
0,!.%
$
$
$
%
%
%
+
CCC #
#




 

!?-%?6
!
!
!
,
,
C
B
!
DocID029161 Rev 7 191/209
STM32F423xH Package information
206
Table 108. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package
mechanical data
Symbol
millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D 21.800 22.000 22.200 0.8583 0.8661 0.8740
D1 19.800 20.000 20.200 0.7795 0.7874 0.7953
D3 - 17.500 - - 0.6890 -
E 21.800 22.000 22.200 0.8583 0.8661 0.8740
E1 19.800 20.000 20.200 0.7795 0.7874 0.7953
E3 - 17.500 - - 0.6890 -
e - 0.500 - - 0.0197 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 0°3.5°7° 0°3.5°7°
ccc - - 0.080 - - 0.0031
Package information STM32F423xH
192/209 DocID029161 Rev 7
Figure 76. LQFP144 - 144-pin,20 x 20 mm low-profile quad flat package
recommended footprint
1. Dimensions are expressed in millimeters.


 




DLH






DocID029161 Rev 7 193/209
STM32F423xH Package information
206
Device marking for LQFP144
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 77. LQFP144 marking example (package top view)
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
06Y9
'DWHFRGH
3LQ
LGHQWLILHU
670)=+7
$
3URGXFWLGHQWLILFDWLRQ
5HYLVLRQFRGH
<::
Package information STM32F423xH
194/209 DocID029161 Rev 7
7.6 UFBGA100 package information
Figure 78. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball
grid array package outline
1. Drawing is not to scale.
Table 109. UFBGA100 - 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball
grid array package mechanical data
Symbol
millimeters inches(1)
Min. Typ. Max. Min. Typ. Max.
A - - 0.600 - - 0.0236
A1 - - 0.110 - - 0.0043
A2 - 0.450 - - 0.0177 -
A3 - 0.130 - - 0.0051 0.0094
A4 - 0.320 - - 0.0126 -
b 0.240 0.290 0.340 0.0094 0.0114 0.0134
D 6.850 7.000 7.150 0.2697 0.2756 0.2815
D1 - 5.500 - - 0.2165 -
E 6.850 7.000 7.150 0.2697 0.2756 0.2815
E1 - 5.500 - - 0.2165 -
e - 0.500 - - 0.0197 -
Z - 0.750 - - 0.0295 -
$&B0(B9
6HDWLQJSODQH
$
H=
=
'
0
EEDOOV
$
(
7239,(:%277209,(:

$EDOO
LGHQWLILHU
H
$
$
<
;
=
GGG =
'
(
HHH =<;
III
0
0=
$
$
$EDOO
LQGH[DUHD
DocID029161 Rev 7 195/209
STM32F423xH Package information
206
Figure 79. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball
grid array package recommended footprint
ddd - - 0.080 - - 0.0031
eee - - 0.150 - - 0.0059
fff - - 0.050 - - 0.0020
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 110. UFBGA100 recommended PCB design rules (0.5 mm pitch BGA)
Dimension Recommended values
Pitch 0.5
Dpad 0.280 mm
Dsm 0.370 mm typ. (depends on the soldermask
registration tolerance)
Stencil opening 0.280 mm
Stencil thickness Between 0.100 mm and 0.125 mm
Table 109. UFBGA100 - 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball
grid array package mechanical data (continued)
Symbol
millimeters inches(1)
Min. Typ. Max. Min. Typ. Max.
$&B)3B9
'SDG
'VP
Package information STM32F423xH
196/209 DocID029161 Rev 7
Device marking for UFBGA100
The following figure gives an example of topside marking orientation versus ball A1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 80. UFBGA100 marking example (package top view)
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
670)
$
<::
ĂůůϭŝĚĞŶƚŝĨŝĐĂƚŝŽŶ
ĚĚŝƚŝŽŶĂůŝŶĨŽƌŵĂƚŝŽŶ
ĂƚĞĐŽĚĞсLJĞĂƌнǁĞĞŬ
06Y9
WƌŽĚƵĐƚŝĚĞŶƚŝĨŝĐĂƚŝŽŶ;ϭͿ
9++
DocID029161 Rev 7 197/209
STM32F423xH Package information
206
7.7 UFBGA144 package information
Figure 81. UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball
grid array package outline
1. Drawing is not to scale.
Table 111. UFBGA144 - 144-ball, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball grid
array package mechanical data
Symbol
millimeters inches(1)
Min. Typ. Max. Min. Typ. Max.
A 0.460 0.530 0.600 0.0181 0.0209 0.0236
A1 0.050 0.080 0.110 0.0020 0.0031 0.0043
A2 0.400 0.450 0.500 0.0157 0.0177 0.0197
A3 - 0.130 - - 0.0051 -
A4 - 0.320 - - 0.0126 -
b 0.360 0.400 0.440 0.0091 0.0110 0.0130
D 9.950 10.000 10.050 0.2736 0.2756 0.2776
D1 8.750 8.800 8.850 0.2343 0.2362 0.2382
E 9.950 10.000 10.050 0.2736 0.2756 0.2776
E1 8.750 8.800 8.850 0.2343 0.2362 0.2382
e 0.750 0.800 0.850 - 0.0197 -
$<B0(B9
6HDWLQJSODQH
$
H)
)
'
0
EEDOOV
$
(
7239,(:%277209,(:

H
$
$
%
$
&
GGG =
'
(
HHH & $ %
III
0
0&
$
$
$EDOO
LGHQWLILHU
$EDOO
LQGH[DUHD
Package information STM32F423xH
198/209 DocID029161 Rev 7
Figure 82. UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball
grid array recommended footprint
Note: Non solder mask defined (NSMD) pads are recommended.
4 to 6 mils solder paste screen printing process.
Stencil opening is 0.400 mm.
Stencil thickness is between 0.100 mm and 0.125 mm.
Pad trace width is 0.120 mm.
F 0.550 0.600 0.650 0.0177 0.0197 0.0217
ddd - - 0.080 - - 0.0039
eee - - 0.150 - - 0.0059
fff - - 0.080 - - 0.0020
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 112. UFBGA144 recommended PCB design rules (0.80 mm pitch BGA)
Dimension Recommended values
Pitch 0.80 mm
Dpad 0.400 mm
Dsm 0.550 mm typ. (depends on the soldermask
registration tolerance)
Table 111. UFBGA144 - 144-ball, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball grid
array package mechanical data (continued)
Symbol
millimeters inches(1)
Min. Typ. Max. Min. Typ. Max.
ϬϮzͺ&Wͺsϭ
'SDG
'VP
DocID029161 Rev 7 199/209
STM32F423xH Package information
206
Device marking for UFBGA144
The following figure gives an example of topside marking orientation versus ball A1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 83. UFBGA144 marking example (package top view)
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
06Y9
< ::
3URGXFW
LGHQWLILFDWLRQ
$GGLWLRQDO
LQIRUPDWLRQ
'DWHFRGH
%DOO$
LQGHQWLILHU
=+-
$
670)
Package information STM32F423xH
200/209 DocID029161 Rev 7
7.8 Thermal characteristics
The maximum chip junction temperature (TJmax) must never exceed the values given in
Table 17: General operating conditions.
The maximum chip-junction temperature, TJ max., in degrees Celsius, may be calculated
using the following equation:
TJ max = TA max + (PD max x Θ
JA)
Where:
TA max is the maximum ambient temperature in °C,
•Θ
JA is the package junction-to-ambient thermal resistance, in °C/W,
PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax),
PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/O max represents the maximum power dissipation on output pins where:
PI/O max = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH),
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the
application.
7.8.1 Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (Still Air). Available from www.jedec.org.
Table 113. Package thermal characteristics
Symbol Parameter Value Unit
Θ
JA
Thermal resistance junction-ambient
LQFP144 - 20 x 20 mm 35
°C/W
Thermal resistance junction-ambient
LQFP100 - 14 x 14 mm 43
Thermal resistance junction-ambient
LQFP64 - 10 x 10 mm 47
Thermal resistance junction-ambient
UFBGA144 - 10 x 10 mm / 0.8 mm pitch 48
Thermal resistance junction-ambient
UFBGA100 - 7 x 7 mm 57
Thermal resistance junction-ambient
WLCSP81 - 4.039 x 3.951 mm 39.7
Thermal resistance junction-ambient
UFQFPN48 - 7 x 7 mm 32
DocID029161 Rev 7 201/209
STM32F423xH Ordering information
206
8 Ordering information
Table 114. Ordering information scheme
Example: STM32 F 423 C H T 6 TR
Device family
STM32 = Arm®-based 32-bit microcontroller
Product type
F = General-purpose
Device subfamily
423 = 423 line with AES
Pin count
C = 48 pins
R = 64 pins
M = 81 pins
V = 100 pins
Z = 144 pins
Flash memory size
H = 1536 Kbytes of Flash memory
Package
H = UFBGA 7 x 7 mm
J = UFBGA 10 x 10 mm
T = LQFP
U = UFQFPN
Y = WLCSP
Temperature range
6 = Industrial temperature range, – 40 to 85 °C
3 = Industrial temperature range, – 40 to 125 °C
Packing
TR = tape and reel
No character = tray or tube
Recommendations when using the internal reset OFF STM32F423xH
202/209 DocID029161 Rev 7
Appendix A Recommendations when using the internal
reset OFF
When the internal reset is OFF, the following integrated features are no longer supported:
The integrated power-on-reset (POR)/power-down reset (PDR) circuitry is disabled.
The brownout reset (BOR) circuitry must be disabled. By default BOR is OFF.
The embedded programmable voltage detector (PVD) is disabled.
VBAT functionality is no more available and VBAT pin should be connected to VDD.
DocID029161 Rev 7 203/209
STM32F423xH Application block diagrams
206
Appendix B Application block diagrams
B.1 Sensor Hub application example
Figure 84. Sensor Hub application example
06Y9
*\URVFRSH
3UHVVXUH
3UR[LPLW\
63,
7HPSHUDWXUH+XPLGLW\
,6
3%3%3%
6/.
'$7$
3%
3%
166
3$
6&.
0,62
026,
3$
3$
3$
3$3$
7;
5;
3$
3$
,&
'$&
3&
26& N
1567
-7$*
*3,2
[ *3,2
8SWR$'&LQSXWV
670)[[
SLQSDFNDJH
6:2
6:&/.
6:',2
0DJQHWRPHWHU
$FFHOHURPHWHU
+267
$PELHQWOLJKW
.
0LFUR
8$57
6'$
6&/
3%3%3$
3&
3%
3$
3&
%227
Application block diagrams STM32F423xH
204/209 DocID029161 Rev 7
B.2 Display application example
Figure 85. Display application example
Note: 16 bit displays interfaces can be addressed with 100 and 144 pins packages.
MSv40843
06Y9
670)[[
SLQSDFNDJH
6:2
6:&/.
6:',2
1:(
$
1(
12(
'
'
'
'
'
'
'
'
3&
*3,2
3&
3&
3&
3&
3%
3&
3&
3&
3$
3$
3$
3$
*3,2
3%
3%
6&/
6'$ ,&
,QWHUUXSW
>''@
N
%227
:5
'&
&6
5'
%DFNOLJKW
FRQWURO
7(7HDULQJ
7RXFK6FUHHQ
&RQWUROOHU
7,0BFK
)60&
'LVSOD\0RGXOH
-7$*
3$
3$
3%
DocID029161 Rev 7 205/209
STM32F423xH Application block diagrams
206
B.3 USB OTG full speed (FS) interface solutions
Figure 86. USB controller configured as peripheral-only and used in Full speed mode
1. External voltage regulator only needed when building a VBUS powered device.
Figure 87. USB peripheral-only Full speed mode with direct connection
for VBUS sense
1. External voltage regulator only needed when building a VBUS powered device.
966
9WR9''86%
9ROWDJHUHJXODWRU
9''86%
26&B,1
26&B287
06Y9
9''
'3
3$
3$ '0
86%6WG%FRQQHFWRU
9%86
670)[[
SLQVSDFNDJHV
966
9WR9''86%
9ROWDJHUHJXODWRU
9''86%
26&B,1
26&B287
06Y9
9''
'3
3$
3$ '0
86%6WG%FRQQHFWRU
9%86
670)[[
SLQVSDFNDJHV
966
9''86%
26&B,1
26&B287
06Y9
9''!9
'3
3$
3$
'0
86%6WG%FRQQHFWRU
9%86
670)[[
SLQVSDFNDJHV
3$
966
9''86%
26&B,1
26&B287
06Y9
9''!9
'3
3$
3$
'0
86%6WG%FRQQHFWRU
9%86
670)[[
SLQVSDFNDJHV
3$
Application block diagrams STM32F423xH
206/209 DocID029161 Rev 7
Figure 88. USB peripheral-only Full speed mode, VBUS detection using GPIO
1. External voltage regulator only needed when building a VBUS powered device.
Figure 89. USB controller configured as host-only and used in full speed mode
2. The current limiter is required only if the application has to support a VBUS powered device. A basic power
switch can be used if 5 V are available on the application board.
966
9''86%
26&B,1
26&B287
06Y9
99''9
'3
3$
3$
'0
86%6WG%FRQQHFWRU
9%86
670)[[
SLQVSDFNDJHV
*3,2
06Y9
670)[[
9''
9%86
'3
966
86%6WG$FRQQHFWRU
'0
*3,2,54
*3,2 (1
2YHUFXUUHQW
9
26&B,1
26&B287
&XUUHQWOLPLWHU
SRZHUVZLWFK 
3$
3$
DocID029161 Rev 7 207/209
STM32F423xH Revision history
208
Revision history
Table 115. Document revision history
Date Revision Changes
02-Sep-2016 1 Initial release.
24-Oct-2016 2 Updated Figure 65: WLCSP81 marking example
(package top view)
13-Dec-2016 3
Updated:
Table 55: EMI characteristics for LQFP144
Table 56: ESD absolute maximum ratings
Table 70: QSPI dynamic characteristics in SDR mode
Table 111: UFBGA144 - 144-ball, 10 x 10 mm,
0.80 mm pitch, ultra fine pitch ball grid array package
mechanical data
Figure 81: UFBGA144 - 144-pin, 10 x 10 mm,
0.80 mm pitch, ultra fine pitch ball grid array package
outline
12-Jan-2017 4 Added:
Table 1: Device summary
07-Mar-2017 5
Updated:
Table 2: STM32F423xH features and peripheral
counts
Table 12: STM32F423xH alternate functions
Added:
Table 11: FSMC pin definition
Revision history STM32F423xH
208/209 DocID029161 Rev 7
19-Jun-2017 6
Added:
Section 4.1: WLCSP81 pinout description
Section 4.2: UFQFPN48 pinout description
Section 4.3: LQFP64 pinout description
Section 4.4: LQFP100 pinout description
Section 4.5: LQFP144 pinout description
Section 4.6: UFBGA100 pinout description
Section 4.7: UFBGA144 pinout description
Section 4.8: Pins definition
Section 4.9: Alternate functions
Updated:
Table 10: STM32F423xH pin definition
Table 11: FSMC pin definition
Figure 38: I2C bus AC waveforms and measurement
circuit
Figure 39: FMPI2C timing diagram and measurement
circuit
15-Sep-2017 7
Updated:
Section 3.29: Digital filter for sigma-delta modulators
(DFSDM)
Table 53: Flash memory endurance and data retention
Table 59: I/O static characteristics
Table 75: ADC characteristics
Table 115. Document revision history
Date Revision Changes
DocID029161 Rev 7 209/209
STM32F423xH
209
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2017 STMicroelectronics – All rights reserved