DESCRIPTION
µ
PD75108 is a 4-bit single-chip microcomputer integrating timer/event counters, serial interface, and vector
interrupt function, in addition to a CPU, ROM, RAM, and I/O ports, on a single chip. Operating at high speeds,
the microcomputer allows data to be manipulated in units of 1, 4, or 8 bits. In addition, various bit manipulation
instructions are provided to reinforce I/O manipulation capability. Equipped with I/Os for interfacing with
peripheral circuits operating on a different supply voltage, outputs that can directly drive LEDs, and analog
inputs,
µ
PD75108 is suitable for controlling such systems as VTRs, acoustic products, button telephones, radio
communications equipment, and printers. A pin-compatible EPROM model is also available for evaluation of
system development and small-scale production of application systems.
Detailed functions are described in the following user’s manual. Be sure to read it for designing.
µ
PD751XX Series User’s Manual: IEM-922
FEATURES
Internal memory
Program memory (ROM)
: 8068
×
8 bits (
µ
PD75108)
: 6016
×
8 bits (
µ
PD75106)
: 4096
×
8 bits (
µ
PD75104)
Data memory (RAM)
: 512
×
4 bits (
µ
PD75108)
: 320
×
4 bits (
µ
PD75106, 75104)
New architecture “75X series” rivaling 8-bit microcomputers
43 systematically organized instructions
A wealth of bit manipulation instructions
8-bit data transfer, compare, operation, increment, and decrement instructions
1-byte relative branch instructions
GETI instruction executing 2-/3-byte instruction with one byte
High speed. Minimum instruction execution time: 0.95
µ
s (at 4.19 MHz), 5 V
Power-saving, instruction time change function: 0.95
µ
s/1.91
µ
s/15.3
µ
s (at 4.19 MHz)
I/O port pins as many as 58
Three channels of 8-bit timers
8-bit serial interface
Multiplexed vector interrupt function
Model with PROM is available:
µ
PD75P108B (One-time PROM, EPROM)
NEC Corporation 1989
Document No. IC-2520B
(O. D. No. IC-6906B)
Date Published January 1994 P
Printed in Japan
DATA SHEET
MOS INTEGRATED CIRCUIT
µ
PD75104, 75106, 75108
4-BIT SINGLE-CHIP MICROCOMPUTER
The mark shows major revised points.
The information in this document is subject to change without notice.
Unless there are differences among
µ
PD75104, 75106, and 75108 functions,
µ
PD75108 is treated as the
representative model throughout this manual.
µ
PD75104, 75106, 75108
2
ORDERING INFORMATION
Part Number Package Quality Grade
µ
PD75104CW-xxx 64-pin plastic shrink DIP (750 mil) Standard
µ
PD75104GF-xxx-3BE 64-pin plastic QFP (14 × 20 mm) Standard
µ
PD75106CW-xxx 64-pin plastic shrink DIP (750 mil) Standard
µ
PD75106GF-xxx-3BE 64-pin plastic QFP (14 × 20 mm) Standard
µ
PD75108CW-xxx 64-pin plastic shrink DIP (750 mil) Standard
µ
PD75108GF-xxx-3BE 64-pin plastic QFP (14 × 20 mm) Standard
Remarks: xxx is ROM code number.
Please refer to “Quality Grade on NEC Semiconductor Devices” (Document Number IEI-1209) published by
NEC Corporation to know the specification of quality grade on the devices and its recommended applications.
µ
PD75104, 75106, 75108
3
FUNCTIONAL OUTLINE
Item Specifications
Number of Basic Instructions 43
Minimum Instruction Changeable in three steps: 0.95
µ
s, 1.91
µ
s, and 15.3
µ
s at 4.19 MHz
Execution Time
ROM 8064 × 8 bits (
µ
PD75108), 6016 × 8 bits (
µ
PD75106), 4096 × 8 bits (
µ
PD75104)
RAM 512 × 4 bits (
µ
PD75108), 320 × 4 bits (
µ
PD75106, 75104)
General-Purpose Register 4 bits × 8 × 4 banks (memory mapped)
Three accumulators selectable according to the bit length of manipulated data:
1-bit accumulator (CY), 4-bit accumulator (A), and 8-bit accumulator (XA)
58 port pins
CMOS input pins: 10
I/O Port CMOS I/O pins (can directly drive LEDs): 32
Medium voltage N-ch open-drain I/O pins: 12
(can directly drive LEDs. Pull-up resistor can be connected to each bit)
Comparator input pins (4-bit accuracy): 4
8-bit timer/event counter × 2
Timer/Counter 8-bit basic interval timer (can be used as watchdog timer)
8 bits
Serial Interface LSB first/MSB first mode selectable
Two transfer modes (transfer/reception and reception only modes)
Vector Interrupt External: 3, Internal: 4
Test Input External: 2
Standby STOP and HALT modes
Various bit manipulation instructions (set, reset, test, Boolean operation)
Instruction Set 8-bit data transfer, compare, operation, increment, and decrement
1-byte relative branch instructions
GETI instruction constituting 2 or 3-byte instruction with 1 byte
Power-ON reset circuit (mask option)
Others Bit manipulation memory (bit sequential buffer: 16 bits)
Package 64-pin plastic shrink DIP (750 mil)
64-pin plastic QFP (14 × 20 mm)
Internal Memory
Accumulator
µ
PD75104, 75106, 75108
4
CONTENTS
1. PIN CONFIGURATION (TOP VIEW)............................................................................................... 6
2. BLOCK DIAGRAM ........................................................................................................................... 8
3. PIN FUNCTIONS.............................................................................................................................. 9
3.1 PORT PINS............................................................................................................................................. 9
3.2 PINS OTHER THAN PORTS ................................................................................................................. 10
3.3 PIN INPUT/OUTPUT CIRCUITS ........................................................................................................... 11
3.4 RECOMMENDED PROCESSING OF UNUSED PINS .......................................................................... 12
3.5 NOTES ON USING THE P00/INT4, AND RESET PINS ...................................................................... 13
4. MEMORY CONFIGURATION .......................................................................................................... 14
5. PERIPHERAL HARDWARE FUNCTIONS........................................................................................ 20
5.1 PORTS .................................................................................................................................................... 20
5.2 CLOCK GENERATOR CIRCUIT ............................................................................................................ 21
5.3 CLOCK OUTPUT CIRCUIT .................................................................................................................... 22
5.4 BASIC INTERVAL TIMER ..................................................................................................................... 23
5.5 TIMER/EVENT COUNTER ..................................................................................................................... 23
5.6 SERIAL INTERFACE .............................................................................................................................. 25
5.7 PROGRAMMABLE THRESHOLD PORT (ANALOG INPUT PORT) .................................................... 27
5.8 BIT SEQUENTIAL BUFFER .... 16 BITS ............................................................................................... 28
5.9 POWER-ON FLAG (MASK OPTION) .................................................................................................... 28
6. INTERRUPT FUNCTIONS................................................................................................................ 28
7. STANDBY FUNCTIONS .................................................................................................................. 30
8. RESET FUNCTION........................................................................................................................... 31
9. INSTRUCTION SET ......................................................................................................................... 34
µ
PD75104, 75106, 75108
5
10. APPLICATION EXAMPLES.............................................................................................................. 43
10.1 VTR SYSTEM CONTROLLER ............................................................................................................... 43
10.2 VTR CAMERA ........................................................................................................................................ 43
10.3 COMPACT DISC PLAYER ..................................................................................................................... 44
10.4 AUTOMOBILE APPLICATIONS (TRIP COMPUTER)............................................................................ 44
10.5 PUSHBUTTON TELEPHONE ................................................................................................................ 45
10.6 DISPLAY PAGER ................................................................................................................................... 45
10.7 PLAIN PAPER COPIER (PPC) ............................................................................................................... 46
10.8 PRINTER CONTROLLER ....................................................................................................................... 46
11. MASK OPTION SELECTION ........................................................................................................... 47
12. ELECTRICAL SPECIFICATIONS ...................................................................................................... 48
13. CHARACTERISTIC DATA ................................................................................................................ 57
14. PACKAGE DRAWINGS ................................................................................................................... 62
15. RECOMMENDED SOLDERING CONDITIONS ............................................................................... 65
APPENDIX A. FUNCTIONAL DIFFERENCES AMONG PRODUCTS IN
µ
PD751XX SERIES ......... 66
APPENDIX B. DEVELOPMENT TOOLS .............................................................................................. 67
APPENDIX C. RELATED DOCUMENTS .............................................................................................. 68
µ
PD75104, 75106, 75108
6
1. PIN CONFIGURATION (Top View)
64-Pin Plastic Shrink DIP (750 mil)
P13/INT3 1
V32
V64
33
SS
µ
PD75104CW-
PD75106CW-
PD75108CW-
×××
×××
×××
P12/INT2
P11/INT1
P10/INT0
PTH03
PTH02
PTH01
PTH00
TI0
TI1
P23
P22/PCL
2
3
4
5
6
7
8
9
10
11
12
P21 PTO1 13
P20 PTO0 14
P9063 P9162 P9261 P9360 P8059 P8158 P8257 P8356 P7055 P7154 P7253 P7352 P6051
P03/SI 15 P6150
P02/SO 16 P6249
P01/SCK 17 P6348
P00/INT4 18 X147
P123 19 X246
P122 20 RESET45
P121 21 P5044
P120 22 P5143
P133 23 P5242
P132 24 P5341
P131 25 P4040
P130 26 P4139
P143 27 P4238
P142 28 P4337
P141 29 P3036
P140 30 P3135
NC 31 P3234
DD
µ
µ
P33
51 P1311P41
64
P42
P43
P30
P31
P32
P33
V
NC
P140
P141
P142
P143
P130
63 62 61 60 59 58 57 56 55 54 53 52
DD
20 21 22 23 24 25 26 27 28 29 30 31 32
P81
P80
P93
P92
P91
P90
V
P13/INT3
P12/INT2
P11/INT1
P10/INT0
PTH03
PTH02
SS
µ
PD75104GF-
PD75106GF-
PD75108GF-
×××
×××
×××
µ
µ
-3BE
-3BE
-3BE
50 P1322P40
49 P1333P53
48 P1204P52
47 P1215P51
46 P1226P50
45 P1237RESET
44 P00/INT48X2
43 P01/SCK9X1
42 P02/SO10P63
41 P03/SI11P62
40 P20/PTO012P61
39 P21/PTO113P60
38 P22/PCL14P73
37 P2315P72
36 TI116P71
35 TI017P70
34 PTH0018P83
33 PTH0119P82
64-Pin Plastic QFP (14 × 20 mm)
µ
PD75104, 75106, 75108
7
Pin names
P00-P03 : Port 0 SCK : Serial Clock Input/Output
P10-P13 : Port 1 SO : Serial Output
P20-P23 : Port 2 SI : Serial Input
P30-P33 : Port 3 PTO0, PTO1 : Timer Output
P40-P43 : Port 4 PCL : Clock Output
P50-P53 : Port 5 PTH00-PTH03 : Comparator Input
P60-P63 : Port 6 INT0, INT1, INT4 : External Vector Interrupt Input
P70-P73 : Port 7 INT2, INT3 : External Test Input
P80-P83 : Port 8 TI0, TI1 : Timer Input
P90-P93 : Port 9 X1, X2 : Clock Oscillation Pin
P120-P123 : Port 12 RESET : Reset Input
P130-P133 : Port 13 NC : No Connection
P140-P143 : Port 14
µ
PD75104, 75106, 75108
8
2. BLOCK DIAGRAM
TI0
PTO0/P20
BASIC
INTERVAL
TIMER
INTBT PROGRAM
COUNTER* ALU CY SP (8)
BANK
GENERAL REG.
DECODE
AND
CONTROL
ROM
PROGRAM
MEMORY
8064 8BITS
: PD75108
6016 8BITS
: PD75106
4096 8BITS
: PD75104
µ
µ
µ
RAM
DATA MEMORY
512 4BITS
: PD75108
320 4BITS
: PD75106, 75104
×
×
××
×
µ
µ
f /2
XX N
CPU CLOCK
Φ
PCL/P22 X1 X2 V
DD
V
SS
RESET
CLOCK
OUTPUT
CONTROL
CLOCK
DIVIDER CLOCK
GENERATOR STAND BY
CONTROL
TIMER/EVENT
COUNTER
#0
TIMER/EVENT
COUNTER
#1
SERIAL
INTERFACE
INTERRUPT
CONTROL
PROGRAM-
MABLE
THRESHOLD
PORT #0
TI1
PTO1/P21
SI/P03
SO/P02
SCK/P01
INT0/P10
INT1/P11
INT2/P12
INT3/P13
INT4/P00
PTH00-PTH03 4
4
4
4
4
4
4
4
4
4
4
4
4
4
BIT SEQ.
BUFFER (16)
PORT 0 P00 - P03
P10 - P13PORT 1
PORT 2
PORT 3
PORT 4
PORT 5
PORT 6
PORT 7
PORT 8
PORT 9
PORT 12
PORT 13
PORT 14
P20 - P23
P30 - P33
P40 - P43
P50 - P53
P60 - P63
P70 - P73
P80 - P83
P90 - P93
P120 - P123
P130 - P133
P140 - P143
*: 13 bits: PD75106, 75108
12 bits: PD75104
µ
µ
INTT0
INTT1
INTSIO
µ
PD75104, 75106, 75108
9
3. PIN FUNCTIONS
3.1 PORT PINS
I/O
Pin Name I/O
Shared with:
Function At Reset Circuit
TYPE*1
P00 Input INT4 B
P01 I/O SCK F
4-bit input port (PORT 0) Input
P02 I/O SO E
P03 Input SI B
x
P10 INT0
P11 INT1
Input 4-bit input port (PORT 1) Input B
P12 INT2
P13 INT3
P20*3PTO0
P21*3PTO1
I/O 4-bit I/O port (PORT 2) Input E
P22*3PCL x
P23*3
4-bit programmable I/O port (PORT 3)
P30-P33*3I/O Input E
Can be specified for input or output bitwise.
P40-P43*3I/O 4-bit I/O port (PORT 4) Input E
o
P50-P53*3I/O 4-bit I/O port (PORT 5) Input E
4-bit programmable I/O port (PORT 6)
P60-P63*3I/O Input E
Can be specified for input or output bitwise. o
P70-P73*3I/O 4-bit I/O port (PORT 7) Input E
P80-P83*3I/O 4-bit I/O port (PORT 8) Input E
o
P90-P93*3I/O 4-bit I/O port (PORT 9) Input E
4-bit N-ch open-drain I/O port (PORT 12)
Built-in pull-up resistors can be specified in bit
P120-P123*3I/O units by mask option.
Open-drain withstanding voltage: 12 V o
4-bit N-ch open-drain I/O port (PORT 13)
Built-in pull-up resistors can be specified in bit
P130-P133*3I/O units by mask option.
Open-drain withstanding voltage: 12 V
4-bit N-ch open-drain I/O port (PORT 14)
Built-in pull-up resistors can be specified in bit
P140-P143*3I/O Input*2M
units by mask option.
Open-drain withstanding voltage: 12 V
*1: Circles indicate Schmitt trigger input pins.
2: With drain open: high impedance
With pull-up resistor connected: high level
3: Can directly drive LEDs.
8-Bit
I/O
Input*2M
Input*2M
µ
PD75104, 75106, 75108
10
3.2 PINS OTHER THAN PORTS
I/O
Pin Name I/O
Shared with:
Function At Reset Circuit
TYPE*1
PTH00-PTH03 Input 4-bit variable threshold voltage analog input port N
TI0 External event pulse inputs for timer/event counter.
Input Also serves as edge-detected vector interrupt input. B
TI1 1-bit input also possible.
PTO0 P20
I/O Outputs for timer/event counter Input E
PTO1 P21
SCK I/O P01 Serial clock I/O Input F
SO I/O P02 Serial data output Input E
SI Input P03 Serial data input Input B
Edge-detected vectored interrupt input (both rising and
INT4 Input P00 Input B
falling edges detected)
INT0 P10 Edge-detected vectored interrupt inputs (valid
Input Input B
INT1 P11 edge selectable)
INT2 P12
Input Edge-detected testable inputs (rising edge detected) Input B
INT3 P13
PCL I/O P22 Clock output Input E
Crystal/ceramic system clock oscillator connections.
X1, X2 Input external clock to X1, and signal in reverse phase
with X1 to X2.
RESET Input System reset input (low level active type) B
NC*2 No Connection
VDD Positive power supply
VSS ——GND ——
*1: Circles indicate Schmitt trigger input pins.
2: Connect the NC pin directly to the VDD pin when
µ
PD75P108B and a printed circuit board are shared.
µ
PD75104, 75106, 75108
11
3.3 PIN INPUT/OUTPUT CIRCUITS
The following shows a simplified input/output circuit diagram for each pin of the
µ
PD75108.
TYPE A TYPE E
TYPE B TYPE F
IN
V
DD
Input buffer of CMOS standard
P–ch
N–ch
IN
Schmitt trigger input with hysteresis characteristics
data
output
disable
Type D
Type A
IN/OUT
TYPE D TYPE M
data
output
disable
Type D
Type B
IN/OUT
data
output
disable
OUT
Push pull output that can be set in a output
high impedance state (both Pch and Nch are off)
V
DD
P-ch
N-ch
I/O circuit consisting of Type D push-pull output circuit
and Type A input buffer
I/O circuit consisting of Type D push-pull output and Type
B Schmitt trigger input
V
DD
P.U.R.
(mask option) IN/OUT
data
output
disable
N-ch
(+12 V
withstand)
Medium-voltage input
buffer (+12 V withstand)
P.U.R.: Pull-Up Resistor
µ
PD75104, 75106, 75108
12
TYPE N
IN +
Comparator
V (threshold voltage)
REF
3.4 RECOMMENDED PROCESSING OF UNUSED PINS
Pin Recommended connections
PTH00-PTH03
TI0 Connect to VSS or VDD
TI1
P00 Connect to VSS
P01-P03 Connect to VSS or VDD
P10-P13 Connect to VSS
P20-P23
P30-P33
P40-P43
P50-P53
P60-P63 Input: Connect to VSS or VDD
P70-P73
P80-P83 Output: Open
P90-P93
P120-P123
P130-P133
P140-P143
RESET*1Connect to VDD
NC*2Open
*1: Connect this pin to the VDD pin only when a power-ON reset circuit
is provided as a mask option.
2: Connect the NC pin to the VDD pin when
µ
PD75P108 and a printed
circuit board are shared.
µ
PD75104, 75106, 75108
13
3.5 NOTES ON USING THE P00/INT4, AND RESET PINS
In addition to the functions described in Sections 3.1 and 3.2, an exclusive function for setting the test mode,
in which the internal fuctions of the
µ
PD75108 are tested (solely used for IC tests), is provided to the P00/INT4
and
RESET
pins.
If a voltage exceeding VDD is applied to either of these pins, the
µ
PD75108 is put into test mode. Therefore,
even when the
µ
PD75108 is in normal operation, if noise exceeding the VDD is input into any of these pins, the
µ
PD75108 will enter the test mode, and this will cause problems for normal operation.
As an example, if the wiring to the P00/INT4 pin or the
RESET
pin is long, stray noise may be picked up
and the above montioned problem may occur.
Therefore, all wiring to these pins must be made short enough to not pick up stray noise. If noise cannot
be avoided, suppress the noise using a capacitor or diode as shown in the figure below.
Connect a capacitor across P00/INT4 and
RESET
, and VDD.
Connect a diode across P00/INT4 and
RESET
, and VDD.
VDD
VDD
P00/INT4, RESET
VDD
VDD
P00/INT4, RESET
µ
PD75104, 75106, 75108
14
4. MEMORY CONFIGURATION
Program memory (ROM) ... 8064 × 8 bits (0000H-1F7FH) :
µ
PD75108
... 6016 × 8 bits (0000H-177FH) :
µ
PD75106
... 4096 × 8 bits (0000H-0FFFH) :
µ
PD75104
0000H, 0001H : Vector table to which address from which program is started is written after reset
0002H-000BH: Vector table to which address from which program is started is written after interrupt
0020H-007FH: Table area referenced by GETI instruction
Data memory (RAM)
Data area ....512 × 4 bits (000H–1FFH):
µ
PD75108
320 × 4 bits (000H-13FH) :
µ
PD75106, 75104
Peripheral hardware area .... 128 × 4 bits (F80H–FFFH)
µ
PD75104, 75106, 75108
15
(a)
µ
PD75108
765
MBE RBE 0
MBE RBE 0
MBE RBE 0
MBE RBE 0
MBE RBE 0
MBE RBE 0
Internal reset start address (upper 5 bits)
Internal reset start address (lower 8 bits)
INTBT/INT4 start address (upper 5 bits)
INTBT/INT4 start address (lower 8 bits)
INT0/INT1 start address (upper 5 bits)
INT0/INT1 start address (lower 8 bits)
INTSIO start address (upper 5 bits)
INTSIO start address (lower 8 bits)
INTT0 start address (upper 5 bits)
INTT0 start address (lower 8 bits)
INTT1 start address (upper 5 bits)
INTT1 start address (lower 8 bits)
0000H
0002H
0004H
0006H
0008H
000AH
0020H
007FH
0080H
07FFH
0800H
0FFFH
1000H
1F7FH
GETI instruction reference table
0
BRCB
! caddr
instruction
branch
address
CALLF
! faddr
instruction
entry
address
BR ! addr
instruction
branch address
CALL ! addr
instruction
subroutine
entry address
BR $addr
instruction
relational
branch address
(–15 to –1,
+2 to +16)
Branch destination
address and
subroutine entry
address for
GETI instruction
Address
BRCB ! caddr
instruction
branch address
Remarks: In addition to the above addresses, program can be branched to addresses specified by the PC
with the contents of its lower 8 bits changed by BR PCDE or BR PCXA instruction.
Fig. 4-1 Program Memory Map (1/3)
µ
PD75104, 75106, 75108
16
(b)
µ
PD75106
Remarks: In addition to the above addresses, program can be branched to addresses specified by the PC
with the contents of its lower 8 bits changed by BR PCDE or BR PCXA instruction.
Fig. 4-1 Program Memory Map (2/3)
765
MBE RBE 0
MBE RBE 0
MBE RBE 0
MBE RBE 0
MBE RBE 0
MBE RBE 0
Internal reset start address (upper 5 bits)
Internal reset start address (lower 8 bits)
INTBT/INT4 start address (upper 5 bits)
INTBT/INT4 start address (lower 8 bits)
INT0/INT1 start address (upper 5 bits)
INT0/INT1 start address (lower 8 bits)
INTSIO start address (upper 5 bits)
INTSIO start address (lower 8 bits)
INTT0 start address (upper 5 bits)
INTT0 start address (lower 8 bits)
INTT1 start address (upper 5 bits)
INTT1 start address (lower 8 bits)
0000H
0002H
0004H
0006H
0008H
000AH
0020H
007FH
0080H
07FFH
0800H
0FFFH
1000H
177FH
GETI instruction reference table
0
BRCB
! caddr
instruction
branch
address
CALLF
! faddr
instruction
entry
address
BR ! addr
instruction
branch address
CALL ! addr
instruction
subroutine
entry address
BR $addr
instruction
relational
branch address
(–15 to +16)
Branch destination
address and
subroutine entry
address for
GETI instruction
Address
BRCB ! caddr
instruction
branch address
µ
PD75104, 75106, 75108
17
(c)
µ
PD75106
765
MBE RBE 0
MBE RBE 0
MBE RBE 0
MBE RBE 0
MBE RBE 0
MBE RBE 0
Internal reset start address (upper 4 bits)
Internal reset start address (lower 8 bits)
INTBT/INT4 start address (upper 4 bits)
INTBT/INT4 start address (lower 8 bits)
INT0/INT1 start address (upper 4 bits)
INT0/INT1 start address (lower 8 bits)
INTSIO start address (upper 4 bits)
INTSIO start address (lower 8 bits)
INTT0 start address (upper 4 bits)
INTT0 start address (lower 8 bits)
INTT1 start address (upper 4 bits)
INTT1 start address (lower 8 bits)
000H
002H
004H
006H
008H
00AH
020H
07FH
080H
7FFH
800H
FFFH
GETI instruction reference table
0
CALLF
! faddr
instruction
entry
address
BRCB ! caddr
instruction
branch address
CALL ! addr
instruction
subroutine
entry address
Address 4
0
0
0
0
0
0
BR $addr
instruction
relational
branch address
(–15 to +16)
Branch destination
address and
subroutine entry
address for
GETI instruction
Remarks: In addition to the above addresses, program can be branched to addresses specified by the PC
with the contents of its lower 8 bits changed by BR PCDE or BR PCXA instruction.
Fig. 4-1 Program Memory Map (3/3)
µ
PD75104, 75106, 75108
18
(a)
µ
PD75108
000H
01FH
0FFH
100H
1FFH
F80H
FFFH
Data memory Memory bank
(32 × 4)
256× 4
Not provided
128× 4
Bank 0
General-purpose
register area
Stack area
Data memory
Static RAM
(512× 4)
Peripheral hardware area
256× 4 Bank 1
Bank 15
Fig. 4-2 Data Memory Map(1/2)
µ
PD75104, 75106, 75108
19
(b)
µ
PD75106, 75104
000H
01FH
0FFH
100H
13FH
F80H
FFFH
Data memory Memory bank
(32 × 4)
256× 4
Not provided
128× 4
Bank 0
General-purpose
register area
Stack area
General-
purpose
Static RAM
(320× 4)
Peripheral hardware area
64 × 4 Bank 1
Bank 15
Fig. 4-2 Data Memory Map(2/2)
µ
PD75104, 75106, 75108
20
5. PERIPHERAL HARDWARE FUNCTIONS
5.1 PORTS
I/O ports are classified into the following 3 kinds:
CMOS input (PORT0, 1) : 8
CMOS input/output (PORT2, 3, 4, 5, 6, 7, 8, 9): 32
N-ch open-drain input/output (PORT12, 13, 14) :12
Total : 52
PORT0
PORT1
PORT3
PORT6
PORT2
PORT4
PORT5
PORT7
PORT8
PORT9
PORT12
PORT13
PORT14
Function
4-bit input
4-bit I/O*
4-bit I/O*
(N-ch open- drain.
12V)
Table 5-1 Port Function
Operation and Features
Can always be read or tested regardless of opera-
tion mode of shared pin
Can be set in input or output mode bitwise
Can be set in input or output mode in units of 4 bits.
Ports 4 and 5, 6 and 7, 8 and 9 can be used in pairs
to input or output 8-bit data
Can be set in input or output mode in units of 4 bits.
Ports 12 and 13 can be used in pairs to input or
output 8-bit data
Port
(Symbol) Remarks
Shared with SI, SO, SCK, and
INT0 to 4 pins
Port 2 pins are shared with
PTO0, PTO1, and PCL pins
Each bit can be connected to
pull-up resistor by mask option
*: Can directly drive LED.
µ
PD75104, 75106, 75108
21
5.2 CLOCK GENERATOR CIRCUIT
The clock generator circuit generates clocks to control CPU operation modes by supplying clocks to the CPU and
peripheral hardware. In addition, this circuit can change the instruction execution time.
0.95
µ
s/1.91
µ
s/15.3
µ
s (operating at 4.19 MHz)
· Basic interval timer (BT)
· Clock output circuit
· Timer/event counter
· Serial interface
f or
XX
f
X
1/2 1/16
1/8 to 1/4096
Frequency civider
X1
X2
System clock
generator
circuit
Oscillation
stops
Selector
1/4
Frequency
divider
· CPU
· Clock output
circuit
HALT F/F
S
RQ
PCC
PCC0
PCC1
PCC2
PCC3
4
Internal bus
HALT*
STOP*
Clears
PCC2,
PCC3 STOP F/F
QS
R
Wait release signal from BT
RES (internal reset) signal
Standby release signal from
interrupt control circuit
Φ
*: Execution of the instruction
Remarks 1: fXX = Crystal/ceramic oscillator
2: fX= External clock frequency
3: PCC: Processor clock control register
4: One clock cycle (tCY) of Φ is one machine cycle of an instruction. For tCY, refer to AC
characteristics in 12. ELECTRICAL SPECIFICATIONS.
Fig. 5-1 Clock Generator Block Diagram
µ
PD75104, 75106, 75108
22
5.3 CLOCK OUTPUT CIRCUIT
The clock output circuit outputs clock pulse from the P22/PCL pin. This clock output circuit is used to output
clock pulses to the remote control output, peripheral LSIs, etc.
Clock output (PCL) : Φ, 524, 262 kHz (operating at 4.19 MHz)
Selector
Output
buffer
PCL/P22
Bit 2 of PMGBPORT2.2
Port 2 input/
output mode
specification
bit
P22 output
latch
Internal bus
CLOM3 CLOM2 CLOM1 CLOM0 CLOM
4
Φ
f
X
/2
3
f
X
/2
4
From the
clock
generator
X
X
Fig. 5-2 Clock Output Circuit Configuration
µ
PD75104, 75106, 75108
23
5.4 BASIC INTERVAL TIMER
The basic interval timer has these functions:
Interval timer operation which generates a reference time interrupt
Watchdog timer application which detects a program runaway
Selects the wait time for releasing the standby mode and counts the wait time
Reads out the count value
Remarks
: *: Instruction execution
Fig. 5-3 Basic Interval Timer Configuration
From the
clock generator
f
X
/2
5
f
X
/2
7
f
X
/2
9
f
X
/2
12
MPX
Clear
Basic interval timer
(8-bit frequency divider circuit)
3
48
BT
Clear
Set
signal BT
interrupt
request flag
IRQBT
Wait release signal
for standby release
Vector
interrupt
request
signal
Internal bus
BTM3 BTM2 BTM1 BTM0 BTM
SET1*
X
X
X
X
5.5 TIMER/EVENT COUNTER
µ
PD75108 contains two channels of timer/event counters.
These two channels are almost identical in terms of configuration and function except the count pulse (CP) that
can be selected and the function to supply clocks to the serial interface.
The functions of the timer/event counter include:
Programmable interval timer operation
Output of square wave at an arbitrary frequency to PTOn pin
Event counter operation
Input of TIn pin signal as external interrupt input signal
Dividing TIn pin input by N to output to PTOn pin (frequency divider operation)
Supply of serial shift clock to serial interface circuit (channel 0 only)
Reading counting status
µ
PD75104, 75106, 75108
24
Internal bus
888
Modulo register (8)TMn7 TMn6 TMn5 TMn4 TMn3 TMn2 TMn1 TMn0
TIn
Input buffer
TIn
MPX CP
From
clock
generator
circuit
Timer operation start
SET1* TMn TMODn
Tn
Clear
RES
Remarks:
Comparator (8)
Count register (8)
TOUT
F/F
Coincidence
TOFn
To
selector
TMn1 TMn0
Edge
detector
circuit
To
enable
flag
P2n
output
latch
Port 2
I/O
mode
TOEn TOn PORT2.n Bit 2 of PGMB
To serial
interface
(channel 0 only)
P2n/PTOn
Output
buffer
IRQTn set
signal
IRQTn clear
signal
Fig. 5-4 Timer/Event Counter Block Diagram (n = 0, 1)
* indicates the instruction execution.
8
8
µ
PD75104, 75106, 75108
25
5.6 SERIAL INTERFACE
The
µ
PD75108 is equipped with clock 8-bit serial interface that operates in the following two modes:
Operation stop mode
Three-line serial I/O mode
µ
PD75104, 75106, 75108
26
Internal bus
8
88
P03/SI
P02/SO
P01/SCK
SIO0
Shift register (8)
SIO7
SIO
QS
R
Clear
Serial clock
counter (3)
Overflow
MPX
*: "SET1" indicates execution of the instruction.
Φ
f /2
XX 4
f /2
XX 10
TOF0 (from timer channel 0)
Serial start
SIOM7 SIOM6 SIOM5 SIOM4 SIOM3 SIOM2 SIOM1 SIOM0
SET1*
SIOM
IRQSIO
set signal
IRQSIO
clear signal
Fig. 5-5 Serial Interface Block Diagram
µ
PD75104, 75106, 75108
27
5.7 PROGRAMMABLE THRESHOLD PORT (ANALOG INPUT PORT)
µ
PD75108 is equipped with a 4-bit analog input port (consisting of PTH00 to PTH03 pins) whose threshold voltage
is programmable.
This programmable threshold port is configured as shown in Figure 5-6.
The threshold voltage (VREF) can be changed in 16 steps (VDD × 0.5/16 – VDD × 15.5/16), and analog signals can be
directly input.
When VREF is set to VDD × 7.5/16, the programmable threshold port can also be used as a digital signal input port.
Input buffer
PTH00
PTH01
PTH02
PTH03
+
+
+
+
V
DD
Internal bus
Programmable threshold port
input latch (4)
Operates
/stops PTH0
8
4
MPX
PTHM7
PTHM6
PTHM5
PTHM4
PTHM3
PTHM2
PTHM1
PTHM0
PTHM
1
2R
1
2R
R
R
V
REF
Fig. 5-6 Programmable Threshold Port Configuration
µ
PD75104, 75106, 75108
28
5.8 BIT SEQUENTIAL BUFFER .... 16 BITS
The bit sequential buffer is a data memory specifically provided for bit manipulation. With this buffer,
addresses and bit specifications can be sequentially up-dated in bit manipulation operation. Therefore, this
buffer is very useful for processing long data in bit units.
Remarks:
For the pmem.@L addressing, the specification bit is shifted according to the L register.
Fig. 5-7 Bit Sequential Buffer Format
5.9 POWER-ON FLAG (MASK OPTION)
The power-ON flag (PONF) is set to only when the power-ON reset circuit operates and power-ON reset signal
has been generated (see Fig. 8-1).
The PONF flag is mapped at bit 0 of memory space address FD1H, and can be manipulated by a bit manipulation
instruction. However, it cannot be set by the SET1 instruction.
6. INTERRUPT FUNCTIONS
The
µ
PD75108 has 7 different interrupt sources and can perform multiplexed interrupt processing with
priority assigned.
In addition to that, the
µ
PD75108 is also provided with two types of edge detection testable inputs.
The interrupt control circuit of the
µ
PD75108 has these functions:
Hardware controlled vector interrupt function which can control whether or not to accept an interrupt by
using the interrupt enable flag (IExxx) and interrupt master enable flag (IME).
The interrupt start address can be arbitrarily set.
Multiplexed interrupt function that can specify priority by the interrupt priority selector register (IPS).
Interrupt request flag (IRQxxx) test function (an interrupt generation can be confirmed by means of
software).
Standby mode release (Interrupts to be released can be selected by the interrupt enable flag).
Address bit
Symbol
L register
32103210 32103210
L = F L = C L = B L = 8 L = 7 L = 4 L = 3 L = 0
BSB3 BSB2 BSB1 BSB0
DECS L
INCS L
FC3H FC2H FC1H FC0H
µ
PD75104, 75106, 75108
29
Internal bus
22
IM1 IM0
IRQBT
INT4
/P00
INT0
/P10
INT1
/P11
INT2
/P12
INT
BT
INTSIO
INTT0
Both edge
detection
circuit
Edge
detection
circuit
Edge
detection
circuit
Rising edge
detection
circuit
Falling edge
detection
circuit
IRQ4
IRQ0
IRQ1
IRQSIO
IRQT0
IRQT1
IRQ2
Interrupt enable flag (IE )××× IME
Decoder
IST
Priority control
circuit
Vector table
address
generator
Standby
release signal
Fig. 6-1 Interrupt Control Block Diagram
9
IRQ3
IPS
24
INTT1
INT3
/P13
Interrupt
request flag
µ
PD75104, 75106, 75108
30
7. STANDBY FUNCTIONS
The
µ
PD75108 has two different standby modes (STOP mode and HALT mode) to reduce the power
consumption of the microcomputer chip while waiting for program execution.
Table 7-1 Each Status in Standby Mode
Setting Instruction STOP instruction HALT instruction
Clock Generator
circuit
Basic Interval
Timer
Operates (sets IRQBT at reference
time intervals)
Operates only when input of external
SCK or output of TO0 is selected as
serial clock (where external TI0 is input
to timer/event counter 0)
Operates when serial clock other
than Φ is specified
Operates
Stops
Serial Interface
Clock output
STOP Mode HALT Mode
Clock oscillation stops Only CPU clock Φ is stopped
Operation
Status
Timer/Event
Counter
circuit
Operates only when TIn pin input
signal is specified as count clock
Operates when clock other than CPU
clock Φ is used
Stops
CPU Stops
Release Signal Interrupt request signal enabled by interrupt enable flag, or RESET input
Stops
µ
PD75104, 75106, 75108
31
8. RESET FUNCTION
The reset (
RES
) signal generator circuit is configured as shown in Figure 8-1.
RESET
SWB
SWA
Power-ON
reset
generator
circuit
Internal reset signal
(RES)
Power-ON
flag (PONF)
Execution of bit
manipulation
instruction*
Internal bus
*: PONF cannot be set to 1 by SET1 instruction.
Fig. 8-1 Reset Signal Generator Circuit
The Power-ON reset generator circuit generates an internal reset signal when the supply voltage rises. This pulse
can be used in three ways by specifying a mask option through SWA and SWB shown in Fig. 8-1. (Refer to 11. MASK
OPTION SELECTION.)
The reset operations performed by the Power-On reset circuit and the RESET input signal are illustrated in Figs.
8-2 and 8-3, respectively.
Supply voltage
0 V
Internal reset signal
(RES)
Wait*
(approx. 31.3 ms: 4.19 MHz)
HALT mode Operation mode
Internal reset operation
*: The wait time does not include the time required after the
RES
signal has been generated until the
oscillation starts.
Fig. 8-2 Reset by Power-ON Reset Circuit
µ
PD75104, 75106, 75108
32
Wait*
(31.3 ms: 4.19 MHz)
HALT mode Operation mode
Operation mode
or standby mode
RESET input
Internal reset operation
*: The wait time does not include the time required after the
RES
signal has been generated until the
oscillation starts.
Fig. 8-3 Reset by RESET Signal
The status of each internal hardware device after the reset operation has been performed is shown in Table 8-
1.
µ
PD75104, 75106, 75108
33
Table 8-1 Hardware Device Status After Reset
RESET input during Power-ON Reset or RESET
standby mode Input during Operation
Lower 4 bits of program Lower 4 bits of program
memory address 000H are memory address 000H are
Program Counter (PC) set to PC12-8,*1 and set to PC12-8,*1 and
contents of address 001H contents of address 001H
are set to PC7-0. are set to PC7-0.
Carry Flag (CY) Retained Undefined
Skip Flags (SK0-SK2) 0 0
PSW Interrupt Status Flags (IST0, 1) 0 0
Bit 6 of program memory Bit 6 of program memory
Bank Enable Flags (MBE, RBE) address 000H is set in address 000H is set in
RBE, and bit 7 is set in RBE, and bit 7 is set in
MBE. MBE.
Stack Pointer (SP) Undefined Undefined
Data Memory (RAM) Retained*2Undefined
General-Purpose Registers (X,A,H,L,D,E,B,C) Retained Undefined
Bank Selector Registers (MBS, RBS) 0, 0 0, 0
Counter (BT) Undefined Undefined
Mode Register (BTM) 0 0
Counter (Tn) 0 0
Modulo Register (TMODn) FFH FFH
Mode Register (TMn) 0 0
TOEn, TOFn 0, 0 0, 0
Serial Interface Shift Register (SIO) Retained Undefined
Mode Register (SIOM) 0 0
Processor Clock Control Register 0 0
(PCC)
Clock Output Mode Register 0 0
(CLOM)
Interrupt Request Rlags Reset (0) Reset (0)
(IRQxxx)
Interrupt Enable Flags (IExxx) 0 0
Interrupt Priority Selector Register (IPS) 0 0
INT0, 1 Mode Registers 0, 0 0, 0
(IM0, IM1)
Output Buffer OFF OFF
Digital Port Output Latch Cleared (0) Cleared (0)
I/O Mode Registers 0 0
(PMGA, PMGB, PMGC)
PTH00-PTH03 Input Latches Undefined Undefined
Analog Port Mode Register (PTHM) 0 0
Power-ON Flag (PONF) Retained 1 or undefined*2
Bit Sequential Buffer (BSB0-BSB3) 0 0
*1: PC11-8 for
µ
PD75104
2: Power-ON reset: 1
RESET
input during operation: undefined
Note: Data at data memory addresses 0F8H to 0FDH become undefined when the
RESET
signal has been input.
Hardware
Basic interval timer
Timer/Event Counter
(n = 0, 1)
Clock Generator Circuit,
Clock Output Circuit
µ
PD75104, 75106, 75108
34
9. INSTRUCTION SET
(1) Operand representation and description
Describe one or more operands in the operand field of each instruction according to the operand
representation and description methods of the instruction (for details, refer to RA75X Assembler Package
User's Manual - Language (EEU-730)). With some instructions, only one operand should be selected from
several operands. The uppercase characters, +, and – are keywords and must be described as is.
Describe an appropriate numeric value or label as immediate data.
The symbols in the register and flag symbols can be described as labels in the places of mem, fmem,
pmem, and bit (for details, refer to
µ
PD751XX Series User‘s Manual (IEM-922)). However, fmem and pmem
restricts the label that can be described.
Representation Description
reg X, A, B, C, D, E, H, L
reg1 X, B, C, D, E, H, L
rp XA, BC, DE, HL
rp1 BC, DE, HL
rp2 BC, DE
rp' XA, BC, DE, HL, XA', BC', DE', HL'
rp'1 BC, DE, HL, XA', BC', DE', HL'
rpa HL, HL+, HL–, DE, DL
rpa1 DE, DL
n4 4-bit immediate data or label
n8 8-bit immediate data or label
mem 8-bit immediate data or label*
bit 2-bit immediate data or label
fmem FB0H to FBFH,FF0H to FFFH immediate data or label
pmem FC0H to FFFH immediate data or label
µ
PD75104 0000H to 0FFFH immediate data or label
addr
µ
PD75106 0000H to 177FH immediate data or label
µ
PD75108 0000H to 1F7FH immediate data or label
caddr 12-bit immediate data or label
faddr 11-bit immediate data or label
taddr 20H to 7FH immediate data (where bit0 = 0) or label
PORTn PORT0 - PORT9, PORT12 - PORT14
IExxx IEBT, IESIO, IET0, IET1, IE0 - IE4
RBn RB0 - RB3
MBn MB0, MB1, MB15
*: Only even address can be described as mem for 8-bit data processing.
µ
PD75104, 75106, 75108
35
(2) Legend of operation field
A : A register; 4-bit accumulator
B : B register; 4-bit accumulator
C : C register; 4-bit accumulator
D : D register; 4-bit accumulator
E : E register; 4-bit accumulator
H : H register; 4-bit accumulator
L : L register; 4-bit accumulator
X : X register; 4-bit accumulator
XA : Register pair (XA); 8-bit accumulator
BC : Register pair (BC); 8-bit accumulator
DE : Register pair (DE); 8-bit accumulator
HL : Register pair (HL); 8-bit accumulator
XA' : Expansion register pair (XA')
BC' : Expansion register pair (BC')
DE' : Expansion register pair (DE')
HL' : Expansion register pair (HL')
PC : Program counter
SP : Stack pointer
CY : Carry flag; or bit accumulator
PSW : Program status word
MBE : Memory bank enable flag
RBE : Register bank enable flag
PORTn : Port n (n = 0 - 9, 12 - 14)
IME : Interrupt mask enable flag
IPS : Interrupt priority selection register
IExxx : Interrupt enable flag
RBS : Register bank selection register
MBS : Memory bank selection register
PCC : Processor clock control register
.: Delimiter of address and bit
(xx) : Contents addressed by xx
xxH : Hexadecimal data
µ
PD75104, 75106, 75108
36
(4) Machine cycle field
In this field, S indicates the number of machine cycles required when an instruction having a skip
function skips. The value of S varies as follows:
When no instruction is skipped ........................................................................ S = 0
When 1-byte or 2-byte instruction is skipped................................................. S = 1
When 3-byte instruction (BR ! adder or CALL ! adder) is skipped .............. S = 2
Note
: The GETI instruction is skipped in one machine cycle.
One machine cycle equals to one cycle of the CPU clock Φ, (= tCY), and can be changed in three steps
depending on the setting of the processor clock control register (PCC).
(3) Symbols in addressing area field
*1 MB = MBE . MBS
(MBS = 0, 1, 15)
*2 MB = 0
*3 MBE = 0 : MB = 0 (00H-7FH) Data memory
MB = 15 (80H-FFH) addressing
MBE = 1 : MB = MBS (MBS = 0, 1, 15)
*4 MB = 15, fmem = FB0H-FBFH,
FF0H-FFFH
*5 MB = 15, pmem = FC0H-FFFH
*6
µ
PD75104 addr = 0000H-0FFFH
µ
PD75106 addr = 0000H-177FH
µ
PD75108 addr = 0000H-1F7FH
*7 addr = (Current PC) – 15 to (Current PC) – 1
(Current PC) + 2 to (Current PC) + 16 Program memory
*8
µ
PD75104 caddr = 0000H-0FFFH (PC11 = 0) addressing
µ
PD75106 caddr = 0000H-0FFFH (PC12 = 0) or 1000H-177FH (PC12 = 1)
µ
PD75108 caddr = 0000H-0FFFH (PC12 = 0) or 1000H-1F7FH (PC12 = 1)
*9 faddr = 000H-7FFH
*10 taddr = 020H-07FH
Remarks MB indicates memory bank that can be accessed.
In *2, MB = 0 regardless of MBE and MBS.
In *4 and *5, MB = 15 regardless of MBE and MBS.
*6 to *10 indicate areas that can be addressed.
µ
PD75104, 75106, 75108
37
Ma-
Instruc- Mne- Operand Bytes chine Operation Addressing Skip
tions monics Cyc- Area Conditions
les
Transfer MOV A, #n4 1 1 A n4 String effect A
reg1, #n4 2 2 reg1 n4
XA, #n8 2 2 XA n8 String effect A
HL, #n8 2 2 HL n8 String effect B
rp2, #n8 2 2 rp2 n8
A, @HL 1 1 A (HL) *1
A, @HL+ 1 2+S A (HL), then L L+1 *1 L = 0
A, @HL– 1 2+S A (HL), then L L–1 *1 L = FH
A, @rpa1 1 1 A (rpa1) *2
XA, @HL 2 2 XA (HL) *1
@HL, A 1 1 (HL) A*1
@HL, XA 2 2 (HL) XA *1
A,mem 2 2 A (mem) *3
XA, mem 2 2 XA (mem) *3
mem, A 2 2 (mem) A*3
mem, XA 2 2 (mem) XA *3
A, reg 2 2 A reg
XA, rp' 2 2 XA rp'
reg1, A 2 2 reg1 A
rp'1, XA 2 2 rp'1 XA
XCH A, @HL 1 1 A (HL) *1
A, @HL+ 1 2+S A (HL), then L L+1 *1 L = 0
A, @HL– 1 2+S A (HL), then L L–1 *1 L = FH
A, @rpa1 1 1 A (rpa1) *2
XA, @HL 2 2 XA (HL) *1
A, mem 2 2 A (mem) *3
XA, mem 2 2 XA (mem) *3
A, reg1 1 1 A reg1
XA, rp' 2 2 XA rp'
MOVT XA, @PCDE 1 3
µ
PD75104
XA (PC11-8+DE)ROM
µ
PD75106, 75108
XA (PC12-8+DE)ROM
XA, @PCXA 1 3
µ
PD75104
XA (PC11-8+XA)ROM
µ
PD75106, 75108
XA (PC12-8+XA)ROM
Table
Refer-
ence
µ
PD75104, 75106, 75108
38
Ma-
Instruc- Mne- Operand Bytes chine Operation Addressing Skip
tions monics Cyc- Area Conditions
les
Bit MOV1 CY,fmem.bit 2 2 CY (fmem.bit) *4
transfer CY,pmem.@L 2 2 CY (pmem7-2+L3-2.bit(L1-0)) *5
CY,@H+mem. 2 2 CY (H+mem3-0.bit) *1
bit
fmem.bit,CY 2 2 (fmem.bit) CY *4
pmem.@L,CY 2 2 (pmem7-2+L3-2.bit(L1-0)) CY *5
@H+mem.bit, 2 2 (H+mem3-0.bit) CY *1
CY
Arith- ADDS A, #n4 1 1+S A A+n4 carry
metic XA, #n8 2 2+S XA XA+n8 carry
opera- A, @HL 1 1+S A A+(HL) *1 carry
tion XA, rp’ 2 2+S XA XA+rp’ carry
rp’1, XA 2 2+S rp’1 rp’1+XA carry
ADDC A, @HL 1 1 A, CY A+(HL)+CY *1
XA, rp’ 2 2 XA, CY XA+rp’+CY
rp’1, XA 2 2 rp’1,CY rp’1+XA+CY
SUBS A, @HL 1 1+S A A-(HL). *1 borrow
XA, rp’ 2 2+S XA XA-rp’ borrow
rp’1, XA 2 2+S rp’1 rp’1-XA borrow
SUBC A, @HL 1 1 A, CY A-(HL)-CY *1
XA, rp’ 2 2 XA, CY XA-rp’-CY
rp’1, XA 2 2 rp’1,CY rp’1-XA-CY
AND A, #n4 2 2 A A n4
A, @HL 1 1 A A (HL) *1
XA, rp’ 2 2 XA XA rp’
rp’1, XA 2 2 rp’1 rp’1 XA
OR A, #n4 2 2 A A n4
A, @HL 1 1 A A (HL) *1
XA, rp’ 2 2 XA XA rp’
rp’1, XA 2 2 rp’1 rp’1 XA
XOR A, #n4 2 2 A A n4
A, @HL 1 1 A A (HL) *1
XA, rp’ 2 2 XA XA rp’
rp’1, XA 2 2 rp’1 rp’1 XA
RORC A 1 1 CY A0, A3 CY, An-1 An
NOT A 2 2 A A
Incre- INCS reg 1 1+S reg reg+1 reg = 0
ment/ rp1 1 1+S rp1 rp1+1 rp1 = 00H
decre- @HL 2 2+S (HL) (HL)+1 *1 (HL) = 0
ment mem 2 2+S (mem) (mem)+1 *3 (mem) = 0
DECS reg 1 1+S reg reg-1 reg = FH
rp’ 2 2+S rp’ rp’-1 rp’ = FFH
Accumulator
Manipulation
µ
PD75104, 75106, 75108
39
Ma-
Instruc- Mne- Operand Bytes chine Operation Addressing Skip
tions monics Cyc- Area Conditions
les
Com- SKE reg, #n4 2 2+S Skip if reg = n4 reg = n4
pare @HL, #n4 2 2+S Skip if (HL) = n4 *1 (HL) = n4
A, @HL 1 1+S Skip if A = (HL) *1 A = (HL)
XA, @HL 2 2+S Skip if XA = (HL) *1 XA = (HL)
A, reg 2 2+S Skip if A = reg A = reg
XA, rp’ 2 2+S Skip if XA = rp’ XA = rp’
Carry SET1 CY 1 1 CY 1
flag CLR1 CY 1 1 CY 0
Manipu- SKT CY 1 1+S Skip if CY = 1 CY = 1
lation NOT1 CY 1 1 CY CY
Memory/ SET1 mem.bit 2 2 (mem.bit) 1 *3
Bit fmem.bit 2 2 (fmem.bit) 1 *4
Manipu- pmem.@L 2 2 (pmem7-2 + L3-2.bit(L1-0)) 1*5
lation @H+mem.bit 2 2 (H + mem3-0.bit) 1*1
CLR1 mem.bit 2 2 (mem.bit) 0 *3
fmem.bit 2 2 (fmem.bit) 0 *4
pmem.@L 2 2 (pmem7-2 + L3-2.bit(L1-0)) 0*5
@H+mem.bit 2 2 (H+mem3-0.bit) 0*1
SKT mem.bit 2 2+S Skip if (mem.bit) = 1 *3 (mem.bit) = 1
fmem.bit 2 2+S Skip if (fmem.bit) = 1 *4 (fmem.bit) = 1
pmem.@L 2 2+S
Skip if (pmem7-2+L3-2.bit (L1-0)) = 1
*5 (pmem.@L) = 1
@H+mem.bit 2 2+S Skip if (H + mem3-0.bit) = 1 *1
(@H+mem.bit) = 1
SKF mem.bit 2 2+S Skip if (mem.bit) = 0 *3 (mem.bit) = 0
fmem.bit 2 2+S Skip if (fmem.bit) = 0 *4 (fmem.bit) = 0
pmem.@L 2 2+S
Skip if (pmem7-2 +L3-2.bit (L1-0)) = 0
*5 (pmem.@L) = 0
@H+mem.bit 2 2+S Skip if (H + mem3-0.bit) = 0 *1
(@H+mem.bit) = 0
SKTCLR
fmem.bit 2 2+S Skip if (fmem.bit) = 1 and clear *4 (fmem.bit) = 1
pmem.@L 2 2+S Skip if (pmem7-2+L3-2.bit *5 (pmem.@L) = 1
(L1-0)) = 1 and clear
@H+mem.bit 2 2+S
Skip if (H+mem3-0.bit) = 1 and clear
*1
(@H+mem.bit) = 1
AND1 CY,fmem.bit 2 2 CY CY (fmem.bit) *4
CY,pmem.@L 2 2
CY CY (pmem7-2+L3-2.bit(L1-0))
*5
CY,@H+mem.bit
2 2 CY
CY (H+mem3-0.bit) *1
OR1 CY,fmem.bit 2 2 CY
CY (fmem.bit) *4
CY,pmem.@L 2 2
CY CY (pmem7-2+L3-2.bit (L1-0))
*5
CY,@H+mem.bit
2 2 CY
CY (H+mem3-0.bit) *1
XOR1 CY,fmem.bit 2 2 CY
CY (fmem.bit) *4
CY,pmem.@L 2 2
CY CY
(pmem7-2+L3-2.bit (L1-0))
*5
CY,@H+mem.bit
2 2 CY
CY (H+mem3-0.bit) *1
µ
PD75104, 75106, 75108
40
Ma-
Instruc- Mne- Operand Bytes chine Operation Addressing Skip
tions monics Cyc- Area Conditions
les
Branch BR addr
µ
PD75104 *6
PC11-0 addr
The most suitable instruction
is selectable from among
BRCB ! caddr, and BR $ addr
depending on the assembler.
µ
PD75106, 75108
PC12-0 addr
The most suitable instruction
is selectable from among BR
! addr, BRCB ! caddr, and BR
$ addr depending on the
assembler.
! addr 3 3
µ
PD75106, 75108 *6
PC12-0 addr
$ addr 1 2
µ
PD75104 *7
PC11-0 addr
µ
PD75106, 75108
PC12-0 addr
BRCB ! caddr 2 2
µ
PD75104 *8
PC11-0 caddr11-0
µ
PD75106, 75108
PC12-0 PC12 + caddr11-0
BR PCDE 2 3
µ
PD75104
PC11-0 PC11-8 + DE
µ
PD75106, 75108
PC12-0 PC12-8 + DE
PCXA 2 3
µ
PD75104
PC11-0 PC11-8 + XA
µ
PD75106, 75108
PC12-0 PC12-8 + XA
Subrou- CALL ! addr 3 3
µ
PD75104 *6
tine/ (SP-4)(SP-1)(SP-2)PC11-0
Stack (SP-3) MBE, RBE, 0, 0
Control PC11-0 addr, SP SP-4
µ
PD75106, 75108
(SP-4)(SP-1)(SP-2) PC11-0
(SP-3) MBE, RBE, 0, PC12
PC12-0 addr, SP SP-4
µ
PD75104, 75106, 75108
41
Ma-
Instruc- Mne- Operand Bytes chine Operation Addressing Skip
tions monics Cyc- Area Conditions
les
CALLF ! faddr 2 2
µ
PD75104 *9
(SP-4)(SP-1)(SP-2) PC11-0
(SP-3) MBE, RBE, 0, 0
PC11-0 ←0, faddr, SP SP-4
µ
PD75106, 75108
(SP-4)(SP-1)(SP-2) PC11-0
(SP-3) MBE, RBE, 0, PC12
PC12-0 00, faddr, SP SP-4
RET 1 3
µ
PD75104
MBE, RBE, x, x (SP+1)
PC11-0 (SP)(SP+3)(SP+2)
SP SP+4
µ
PD75106, 75108
MBE, RBE, x, PC12 (SP+1)
PC11-0 (SP)(SP+3)(SP+2)
SP SP+4
RETS 1 3+S
µ
PD75104 Unconditioned
MBE, RBE, x, x (SP+1)
PC11-0 (SP)(SP+3)(SP+2)
SP SP+4,
then skip unconditionally
µ
PD75106, 75108
MBE, RBE, x, PC12 (SP+1)
PC11-0 (SP)(SP+3)(SP+2)
SP SP+4,
then skip unconditionally
RETI 1 3
µ
PD75104
MBE, RBE, x, x (SP+1)
PC11-0 (SP)(SP+3)(SP+2)
PSW (SP+4)(SP+5), SP SP+6
µ
PD75106, 75108
MBE, RBE, x, PC12 (SP+1)
PC11-0 (SP)(SP+3)(SP+2)
PSW (SP+4)(SP+5), SP SP+6
PUSH rp 1 1 (SP-1)(SP-2) rp, SP SP-2
BS 2 2 (SP-1) MBS, (SP-2) RBS,
SP SP-2
POP rp 1 1 rp (SP+1)(SP), SP SP+2
BS 2 2 MBS (SP+1), RBS (SP),
SP SP+2
Subrou-
tine/
Stack
Control
(Cont‘d)
µ
PD75104, 75106, 75108
42
Ma-
Instruc- Mne- Operand Bytes chine Operation Addressing Skip
tions monics Cyc- Area Conditions
les
Inter- EI 2 2 IME (IPS.3) 1
rupt IExxx 2 2 IExxx 1
Control DI 2 2 IME (IPS.3) 0
IExxx 2 2 IExxx 0
I/O IN* A, PORTn 2 2 A PORTn (n = 0-9, 12-14)
XA, PORTn 2 2
XA
PORTn+1,PORTn
(n = 4, 6, 8, 12)
OUT* PORTn, A 2 2 PORTn A (n = 2-9, 12-14)
PORTn, XA 2 2 PORTn+1, PORTn XA(n = 4, 6, 8, 12)
CPU HALT 2 2 Set HALT Mode (PCC.2 1)
Control STOP 2 2 Set STOP Mode (PCC.3 1)
NOP 1 1 No Operation
Special SEL RBn 2 2 RBS n (n = 0-3)
MBn 2 2 MBS n (n = 0, 1, 15)
GETI taddr 1 3
µ
PD75104 *10
• Where TBR instruction,
PC11-0 (taddr)3-0+(taddr+1)
• Where TCALL instruction,
(SP-4)(SP-1)(SP-2) PC11-0
(SP-3) MBE, RBE, 0, 0
PC11-0 (taddr)3-0+(taddr+1)
SP SP-4
• Except for TBR and TCALL Depends on
instructions, referenced
Instruction execution of instruction
(taddr)(taddr+1)
µ
PD75106, 75108
• Where TBR instruction,
PC12-0 (taddr)4-0+(taddr+1)
• Where TCALL instruction,
(SP-4)(SP-1)(SP-2) PC11-0
(SP-3) MBE, RBE, 0, PC12
PC12-0 (taddr)4-0+(taddr+1)
SP SP-4
• Except for TBR and TCALL Depends on
instructions, referenced
Instruction execution of instruction
(taddr)(taddr+1)
*: When executing the IN/OUT instruction, MBE = 0, or MBE = 1, and MBS = 15.
Remarks: TBR and TCALL instructions are assembler instructions for GETI instruction table definition.
.........................................................
.........................................................
......................................................... .............................
......................................................... .............................
µ
PD75104, 75106, 75108
43
10. APPLICATION EXAMPLES
10.1 VTR SYSTEM CONTROLLER
PD75108
µ
Remote
controller
signal
receiver
Operation
mode LED
indicator
Servo
system
control
circuit
Motor
driver
circuit,
etc.
High-
current
output System
controller/
tape counter/
remote controller/
remaining tape
computation INT
INT
Comparator
input
INT
Audio video system
control circuit
12 V
SIO
Key
matrix
Take-up reel pulse
Supply reel pulse
Sensor circuit
Exposure sensor
Tape start/end
sensor
On-screen
display
controller
PD752
timer/tuner/OSD
µ
××
PWM output
MNOS
PD6252
PD6253
PD6254
µ
µ
µ
TunerFIP
10.2 VTR CAMERA
PD75108
µ
Operation
mode LED
indicator
Servo
system
control
circuit
INT
Motor
plunger
driver
circuit,
etc.
System control/
editing
function
INT
Key matrix
(including
message
input)
Reel pulse
Battery sensor
Sensor circuit
Exposure sensor
Tape start/end
sensor
Power-
down
detector
On-screen
display
controller
12 V
Audio video system
control circuit
Comparator
input
High-
current
output
µ
PD75104, 75106, 75108
44
10.3 COMPACT DISC PLAYER
PD75108
µ
SIO
INT
Servo
control
IC
Loading
control
circuit
Remote
controller
signal
receiver
High-
current
output
Key
matrix
LED
indication
10.4 AUTOMOBILE APPLICATIONS (TRIP COMPUTER)
PD75108
µ
SIO
INT0
INT1
TI
TO
Vehicle speed
detection
Number of
revolutions
detection
Fuel
comsumption
Key position
Gear position
Key input
Mode select
Numerical
input
Buzzer
Display
driver
PD6300
PD6323
PD6332
µ
µ
µ
Clock
Alarm
Average
speed
Arrival
time, etc.
µ
PD75104, 75106, 75108
45
10.5 PUSHBUTTON TELEPHONE
Filter
PD75108
µ
Comparator
input
SIO
INT
TO
Code ROM
Piezoelectric
buzzer
Switch
RAM
PD4464
µ
LED indicator
Battery
check
LCD indicator
LCD controller/
driver
PD7228/7229
µ
High-
current
output
Hook switch
To main
equipment
LED
indicator
Key
matrix
Data
receiver
circuit
Data
transmitter
circuit
TO
PD75108
µ
Filter
SIO PD7228G
µ
LCD
controller/
driver LCD indicator
Microphone
Speaker
Transmitter/
receiver
MPX
High-
current
output
Transmitter/
receiver/
speaker
selector
Communication
circuit
Speaker
amplifier
Microphone
amplifier
Call sound
10.6 DISPLAY PAGER
µ
PD75104, 75106, 75108
46
10.7 PLAIN PAPER COPIER (PPC)
PD75108
µ
TO
Comparator
input
Motor/relay
driver
circuit
Switch
Piezoelectric
buzzer
12 V
High-
current
output
LED indicator
Key matrix
Sensor circuit,
heater
temperature, toner
drum pressure, etc.
10.8 PRINTER CONTROLLER
PD75108
µ
Host machine
PD0 to PD7
STRB
BUSY
TxD
INT
SI
TO
12 V
High
current
Key matrix LED
Motor
driver
control
circuit
Dot
matrix
head
driver
circuit
Piezoelectric
buzzer
µ
PD75104, 75106, 75108
47
11. MASK OPTION SELECTION
µ
PD75108 has the following mask options. Options to be built in can be selected.
(1) Pin
Pin Mask Option
P120 - P123
P130 - P133 Pull-down resistor can be built in bitwise.
P140 - P143
(2) Power-ON reset generation circuit, power-ON flag (PONF)
One from the following three ways can be selected.
Switching Selection Power-On Reset Power-On Flag Internal Reset Signal
(Refer to Fig. 8-1.) Generation Circuit (PONF) (RES)
SWA SWB
ON ON Provided Provided Generates automatically
ON OFF Provided Provided Not generates autoamtically
OFF OFF Not provided Not provided
µ
PD75104, 75106, 75108
48
12. ELECTRICAL SPECIFICATIONS
ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)
Parameter Symbol Conditions Ratings Unit
Supply Voltage VDD -0.3 to +7.0 V
VI1 Other than ports 12, 13, 14 -0.3 to VDD+0.3 V
Input Voltage VI2*1Ports 12 to 14 w/pull-up -0.3 to VDD+0.3 V
resistor
Open drain -0.3 to +13 V
Output Voltage VO-0.3 to VDD+0.3 V
High-Level Output IOH 1 pin -15 mA
Current All pins -30 mA
Low-Level Output IOL*21 pin Peak 30 mA
Current rms 15 mA
Total of ports 0, 2 to 4, 12 to 14 Peak 100 mA
rms 60 mA
Total of ports 5 to 9 Peak 100 mA
rms 60 mA
Operating Temperature Topt -40 to +85 °C
Storage Temperature Tstg -65 to +150 °C
*1: The power supply impedance (pull-up resistance) must be 50 k or higher when a voltage higher than
10 V is applied to ports 12, 13, and 14.
2: rms = Peak value x Duty
µ
PD75104, 75106, 75108
49
OSCILLATOR CIRCUIT CHARACTERISTICS
(Ta = -40 to +85°C, VDD = 2.7 to 6.0 V)
Oscillator Recommended Item Conditions MIN. TYP. MAX. Unit
Constants
Ceramic Oscillation VDD = Oscillation 2.0 5.0 MHz
frequency(fXX)*1voltage range
Oscillation stabiliza- After VDD come to
tion time*2MIN. of oscillation
voltage range 4ms
Crystal Oscillation 2.0 4.19 5.0 MHz
frequency (fXX)*1
Oscillation stabiliza- VDD = 4.5 to 6.0 V 10 ms
tion time*2
30 ms
External Clock X1 input frequency 2.0 5.0 MHz
(fX)*1
X1 input high-,
low-level widths
(tXH, tXL) 100 250 ns
*1: The oscillation frequency and X1 input frequency are indicated only to express the characteristics
of the oscillator circuit. For instruction execution time, refer to AC Characteristics.
2: Time required for oscillation to stabilize after VDD has come to MIN. of oscillation volrage range
or the STOP mode has been released.
3: When the oscillation frequency is 4.19 MHz < fx 5.0 MHz, do not select PCC = 0011 as the
instruction execution time: otherwise, one machine cycle is set to less than 0.95
µ
s, falling short
of the rated minimum value of 0.95
µ
s.
Note: When using the oscillation circuit of the system clock, wire the portion enclosed in dotted line
in the figures as follows to avoid adverse influences on the wiring capacity:
Keep the wiring length as short as possible.
Do not cross the wiring over the other signal lines. Also, do not route the wiring in the vicinity
of lines through which a high alternating current flows.
Always keep the ground point of the capacitor of the osccillator circuit at the same potential
as VSS. Do not connect the ground pattern through which a high current flows.
Do not extract signals from the oscillation circuit.
X1 X2
C1 C2
X1 X2
C1 C2
X1 X2
PD74HCU04
µ
*3
*3
*3
µ
PD75104, 75106, 75108
50
RECOMMENDED OSCILLATOR CIRCUITS CONSTANTS
RECOMMENDED CERAMIC OSCILLATORS
External Oscillation
Manufacturer Product Name Capacitance (pF) Voltage Range (V)
C1 C2 MIN. MAX.
CSA 2.00MG 30 30 2.7 6.0
Murata Mfg. CSA 4.19MG 30 30 3.0 6.0
Co., Ltd. CSA 4.19MGU 30 30 2.7 6.0
CST 4.19T Provided Provided 3.0 6.0
KBR-2.0MS 100 100 3.0 6.0
Kyoto Ceramic KBR-4.0MS 33 33 3.0 6.0
Co., Ltd. KBR-4.19MS 33 33 3.0 6.0
KBR-4.9152M 33 33 3.0 6.0
RECOMMENDED CRYSTAL OSCILLATOR
External Oscillation
Manufacturer Product Name Capacitance (pF) Voltage Range (V)
C1 C2 MIN. MAX.
Kinseki HC-49/U 22 22 2.7 6.0
µ
PD75104, 75106, 75108
51
DC CHARACTERISTICS (Ta = -40 to +85°C, VDD = 2.7 to 6.0 V)
Item Symbol Conditions MIN. TYP. MAX. Unit
VIH1 Other than below 0.7VDD VDD V
High-Level VIH2 Ports 0, 1, TI0, 1, RESET 0.8 VDD VDD V
Input Voltage Pull-up resistor 0.7 VDD VDD V
Open drain 0.7 VDD 12 V
VIH4 X1, X2 VDD-0.5 VDD V
VIL1 Other than below 0 0.3 VDD V
Low-Level Input Voltage VIL2 Ports 0, 1, TI0, 1, RESET 0 0.2 VDD V
VIL3 X1, X2 0 0.4 V
VDD = 4.5 to 6.0 V,IOH = -1 mA VDD-1.0 V
IOH = -100
µ
AVDD-0.5 V
VDD = Ports 0, 2 to 9, IOL = 15 mA 0.35 2.0 V
4.5 to 6.0 V Ports 12 to 14, IOL = 10 mA 0.35 2.0 V
VDD = 4.5 to 6.0 V, IOL = 1.6 mA 0.4 V
IOL = 400
µ
A 0.5 V
ILIH1 Other than below 3
µ
A
ILIH2 X1,X2 20
µ
A
ILIH3 VIN = 12 V Ports 12 to 14 (open drain) 20
µ
A
Low-Level ILIL1 Other than X1, X2 –3
µ
A
Input Leakage Current ILIL2 X1, X2 –20
µ
A
High-Level ILOH1 VOUT = VDD Other than below 3
µ
A
Output Leakage Current ILOH2 VOUT = 12 V Ports 12 to 14 (open drain) 20
µ
A
Low-Level Output ILOL VOUT = 0 V –3
µ
A
Leakage Current
VDD = 5 V±10% 15 40 70 k
10 80 k
4.19MHz VDD = 5 V±10%*239mA
crystal VDD = 3 V±10%*30.55 1.5 mA
Supply Current*1oscillator HALT VDD = 5 V±10% 600 1800
µ
A
C1 = C2 = 22pF mode VDD = 3±10% 200 600
µ
A
IDD3 STOP mode, VDD = 3 V±10% 0.1 10
µ
A
*1: The current flowing into the internal pull-up resistor, power-ON reset circuit (mask option), and comparator
circuit is not included.
2: When the high-speed mode is set by setting the processor clock control register (PCC) to 0011.
3: When the low-speed mode is set by setting the PCC to 0000.
Low-Level Output Voltage VOL
High-Level Output Voltage VOH
VIN = VDD
VIN = 0 V
High-Level Input Leakage
Current
Internal Pull-Up Resistor*1RLPorts 12 to 14
IDD1
IDD2
VIH3 Ports 12 to 14
µ
PD75104, 75106, 75108
52
CAPACITANCE (Ta = 25°C, VDD = 0 V)
Parameter Symbol Conditions MIN. TYP. MAX. Unit
Input Capacitance CIN f = 1 MHz 15 pF
Output Capacitance COUT Pins other than thosemeasured are at 0 V 15 pF
Input/Output CIO 15 pF
Capacitance
COMPARATOR CHARACTERISTICS (Ta = -40 to +85°C, VDD = 4.5 to 6.0 V)
Parameter Symbol Conditions MIN. TYP. MAX. Unit
Comparison Accuracy VACOMP ±100 mV
Threshold Voltage VTH 0VDD V
PTH Input voltage VIPTH 0VDD V
Comparator circuit PTHM7 is set to “1” 1 mA
current dissipation
POWER-ON RESET CIRCUIT CHARACTERISTICS (MASK OPTION) (Ta = -40 to +85°C)
Parameter Symbol Conditions MIN. TYP. MAX. Unit
Power-On Reset
High-Level VDDH 4.5 6.0 V
Operating Voltage
Power-On Reset
Low-Level VDDL 0 0.2 V
Operating Voltage
Supply Voltage tr10 *1
µ
s
Rise Time
Supply Voltage toff 1s
Off Time
Power-On Reset Circuit IDDPR VDD = 5 V±10% 10 100
µ
A
Current Dissipation*2VDD = 2.5 V 2 20
µ
A
*1: 217/fXX (31.3 ms at fXX = 4.19 MHz)
2: Current flowing when power-ON reset circuit or power-ON Flag is incorporeated.
Note: Apply power gradually and smoothly.
V
DD
V
DDH
V
DDL
t
off
t
r
µ
PD75104, 75106, 75108
53
AC CHARACTERISTICS (Ta = -40 to +85°C, VDD = 2.7 to 6.0 V)
Parameter Symbol Conditions MIN. TYP. MAX. Unit
VDD = 4.5 to 6.0 V 0.95 32
µ
s
3.8 32
µ
s
VDD = 4.5 to 6.0 V 0 1 MHz
0 275 kHz
tTIH,VDD = 4.5 to 6.0 V 0.48
µ
s
tTIL 1.8
µ
s
VDD = 4.5 to 6.0 V Input 0.8
µ
s
Output 0.95
µ
s
Input 3.2
µ
s
Output 3.8
µ
s
VDD = 4.5 to 6.0 V Input 0.4
µ
s
Output tKCY/2-50 ns
Input 1.6
µ
s
Output
tKCY/2-150
ns
SI Setup Time tSIK 100 ns
(vs. SCK)
SI Hold Time tKSI 400 ns
(vs. SCK)
VDD = 4.5 to 6.0 V 300 ns
1000 ns
INT0 to 4 tINTH,
5
µ
s
High-/Low-Level Width tINTL
RESET Low-Level Width tRSL 5
µ
s
*: The cycle time of the CPU clock (Φ) is
determined by the input frequency of
the ceramic or crystal oscillator circuit
and the set value of the processor clock
control register. The tCY vs. VDD charac-
teristics are as shown on the right.
0123 456
0.5
1
2
3
4
5
6
V
DD
[V]
t
CY
[ s]
t
CY
vs. V
DD
µ
32
40
Operation
guaranteed
range
7
CPU Clock Cycle Time*
(Minimum Instruction
Execution Time = 1
Machine Cycle)
tCY
TI0, TI1 Input Frequency fTI
TI0, TI1 Input High-/
Low-Level Width
SCK Cycle Time tKCY
SCK High-/Low-Level
Width
tKH,
tKL
SCK ↓→ SO Output
delay Time tKSO
µ
PD75104, 75106, 75108
54
AC TIMING MEASURING POINTS (excluding Ports 0, 1, TI0, TI1, X1, X2, and RESET)
CLOCK TIMING
TI TIMING
Measuring
points
0.7 V
DD
0.3 V
DD
0.7 V
DD
0.3 V
DD
X1 input V
DD
–0.5
0.4
t
XL
t
XH
1/f
X
0.8
TI0, TI1
t
TIL
t
TIH
1/f
TI
0.2
V
DD
V
DD
µ
PD75104, 75106, 75108
55
SERIAL TRANSFER TIMING
SCK
t
KL
t
KH
t
KCY
Output data
t
SIK
t
KSI
t
KSO
Input data
SI
SO
0.8 V
0.2 V
DD
DD
0.8 V
DD
0.2 V
DD
INTERRUPT INPUT TIMING
RESET INPUT TIMING
INT0 to 4
tINTL tINTH
0.8 V
0.2 V
DD
DD
RESET
t
RSL
0.2 V
DD
µ
PD75104, 75106, 75108
56
LOW-VOLTAGE DATA RETENTION CHARACTERISTICS OF DATA MEMORY IN STOP MODE
(Ta = –40 to +85°C)
Parameter Symbol Conditions MIN. TYP. MAX. Unit
Data Retention Supply VDDDR 2.0 6.0 V
Voltage
Data Retention Supply IDDDR VDDDR = 2.0 V 0.1 10
µ
A
Current*1
Release Signal Set Time tSREL 0
µ
s
Oscillation Stabilization tWAIT Released by RESET 217/fXms
Wait Time*2Released by interrupt request *3ms
*1: The current flowing through internal pull-up resistor, power-ON reset circuit (mask option), and
comparator circuit is not included
2: The oscillation stabilization wait time is the time during which the CPU is stopped to prevent
unstable operation when oscillation is started.
3: Depends on the setting of the basic interval timer mode register (BTM) as follows:
BTM3 BTM2 BTM1 BTM0 Wait time ( ): fXX = 4.19 MHz
–0002
20/fXX (approx. 250 ms)
–0112
17/fXX (approx. 31.3 ms)
–1012
15/fXX (approx. 7.82 ms)
–1112
13/fXX (approx. 1.95 ms)
DATA RETENTION TIMING (releasing STOP mode by RESET)
STOP mode
Data retention mode
STOP instruction
execution
V
DD
RESET
V
DDDR
t
SREL
t
WAIT
Operation
mode
Internal reset operation
HALT mode
DATA RETENTION TIMING (standby release signal: releasing STOP mode by interrupt)
STOP mode
Data retention mode
STOP instruction execution
V
DD
V
DDDR
t
SREL
t
WAIT
Operation
mode
HALT mode
Standby release signal
(interrupt request)
µ
PD75104, 75106, 75108
57
13. CHARACTERISTIC DATA
5000
1000
500
100
50
10
5
1
0.5
0123 456
I vs. V Characteristics (crystal oscillation)
DD DD
Supply voltage V [V]
DD
Supply current I [ A]
DD
µ
High-speed mode [0011]
Medium-speed mode [0010]
Low-speed mode [0000]
HALT mode [0100]
STOP mode [1000]
When power-ON
reset circuit and
power-ON flag are
incorporated.
Figure in [ ] indicate
set values of PCC.
Crystal
oscillation
4.194304 MHz
22 pF 22 pF
X1 X2
I vs. f Characteristics (crystal oscillation)
DD XX
Supply current I [mA]
DD
4
f [MHz]
XX
0123 5
3.0
2.5
2.0
1.5
1.0
0.5
0
Figure in [ ] indicate
set values of PCC.
X1 X2
C
1
C
2
High-speed mode [0011]
Medium-speed mode [0010]
Low-speed mode [0000]
HALT mode [0100]
(V = 5.0 V, T = 25˚C)
DD a
a
(T = 25˚C)
µ
PD75104, 75106, 75108
58
DD
5000
1000
500
100
50
10
5
1
0.5
0123456
I vs. V Characteristics (ceramic oscillation)
DD DD
High-speed mode [0011]
Medium-speed mode [0010]
Low-speed mode [0000]
STOP mode [1000]
When power-ON
reset circuit and
power-ON flag are
incorporated.
Figure in [ ] indicate
set values of PCC.
Ceramic
oscillation
4.19 MHz
30 pF 30 pF
X1 X2
I vs. f Characteristics (ceramic oscillation)
XXDD
4
f [MHz]
XX
0123 5
3.0
2.5
2.0
1.5
1.0
0.5
0
Figure in [ ] indicate
set values of PCC.
X1 X2
CC
High-speed mode [0011]
Medium-speed mode [0010]
Low-speed mode [0000]
HALT mode [0100]
HALT mode [0100]
12
a
(T = 25˚C)
(V = 5.0 V, T = 25˚C)
a
Supply voltage V [V]
DD
Supply current I [ A]
DD
µ
Supply current I [mA]
DD
µ
PD75104, 75106, 75108
59
3.0
2.5
2.0
1.5
1.0
0.5
0012345
X1 X2
PD74HCU04
µ
Figures in [ ] indicate
set values of PCC.
I vs. f Characteristics (external clock)
DD X
f vs. V Characteristics
DDTI
f [MHz]
X
1000
TIn input frequency f [kHz]
TI
012345
V [V]
DD
67
500
100
50
High-speed mode [0011]
Medium-speed mode [0010]
Low-speed mode [0000]
HALT mode [0100]
Operation guaranteed
range
(V = 5.0 V, T = 25˚C)
DD a
Supply current I [ A]
DD
µ
µ
PD75104, 75106, 75108
60
V vs. I (Ports 0 and 2 to 9) Characteristics
OL OL
30
20
10
001234
V [V]
OL
Low-level output current of port 0 and 2 to 9 I [mA]
OL
V vs. I (Ports 12 to 14) Characteristics
OL OL
V = 6 V
DD
V = 5 V
DD
01234
V [V]
OL
30
20
10
0
Low-level output current of ports 12 to 14 I [mA]
OL
V = 4 V
DD
V = 3 V
DD
DD
V = 4 V
V = 3 V
DD
V = 6 V
DD
V = 5 V
DD
µ
PD75104, 75106, 75108
61
V vs. I (Ports 0 and 2 to 9) Characteristics
OH OH
–15
–10
–5
001234
V - V [V]
DD OH
High-level output current of port 0 and 2 to 9 I [mA]
OH
V = 6 V
DD
V = 5 V
DD
V = 4 V
DD
V = 3 V
DD
Remarks: Unless otherwise specified, all the characteristic data shown are reference values.
µ
PD75104, 75106, 75108
62
14. PACKAGE DRAWINGS
A
I
J
G
H
F
D N
M
C B M R
64 33
321
K
L
NOTE
Each lead centerline is located within 0.17 mm (0.007 inch) of
its true position (T.P.) at maximum material condition.
P64C-70-750A,C-1
ITEM MILLIMETERS INCHES
A
B
C
D
F
G
H
I
J
K
58.68 MAX.
1.778 (T.P.)
3.2±0.3
0.51 MIN.
4.31 MAX.
1.78 MAX.
L
M
0.17
0.25
19.05 (T.P.)
5.08 MAX.
17.0
N 0~15°
0.50±0.10
0.9 MIN.
R
2.311 MAX.
0.070 MAX.
0.020
0.035 MIN.
0.126±0.012
0.020 MIN.
0.170 MAX.
0.200 MAX.
0.750 (T.P.)
0.669
0.010
0.007
0~15°
+0.004
–0.003
0.070 (T.P.)
1)
Item "K" to center of leads when formed parallel.2)
+0.10
–0.05
+0.004
–0.005
64 PIN PLASTIC SHRINK DIP (750 mil)
µ
PD75104, 75106, 75108
63
64 PIN PLASTIC QFP (14×20)
P64GF-100-3B8,3BE,3BR-2
ITEM MILLIMETERS INCHES
A
B
C
23.6±0.4
20.0±0.2
14.0±0.2
0.929±0.016
0.795
0.551
D 17.6±0.4 0.693±0.016
F 1.0 0.039
G 1.0 0.039
H 0.40±0.10 0.016
I 0.20 0.008
J 1.0 (T.P.) 0.039 (T.P)
K 1.8±0.2 0.071
L 0.8±0.2 0.031
M 0.15 0.006
N 0.10 0.004
P 2.7 0.106
Q 0.1±0.1 0.004±0.004
R 5°±5° 5°±5°
S 3.0 MAX. 0.119 MAX.
+0.008
–0.009
+0.009
–0.008
+0.004
–0.005
+0.008
–0.009
+0.009
–0.008
+0.004
–0.003
NOTE
Each lead centerline is located within 0.20 mm (0.008 inch) of
its true position (T.P.) at maximum material condition.
51
52 32
64
120
19
33
I
J
M
N
H
G
F
A
S
PK
L
M
B
C D
detail of lead end
QR
+0.10
–0.05
µ
PD75104, 75106, 75108
65
15. RECOMMENDED SOLDERING CONDITIONS
It is recommended that
µ
PD75104, 75106, and 75108 be soldered under the following conditions.
For details on the recommended soldering conditions, refer to Information Document "Semiconductor
Devices Mounting Manual" (IEI-616).
For other soldering methods and conditions, please consult NEC.
Table 15-1 Soldering Conditions of Surface Mount Type
µ
PD75108GF - xxx - 3BE: 64-pin plastic QFP (14 x 20 mm)
Soldering Method Soldering Conditions
Infrared Reflow Package peak temperature: 230°C, time: 30 seconds max. IR30-00-1
(210°C min.), number of times: 1
VPS Package peak temperature: 215°C, time: 40 seconds max. VP15-00-1
(200°C min.), number of times: 1
Wave Soldering Soldering bath temperature: 260°C max., time: 10 seconds WS60-00-1
max., number of times: 1,
pre-heating temperature: 120°C max. (package surface
temperature)
Pin Partial Heating Pin temperature: 300°C max.,
time: 3 seconds max. (per side)
Caution: Do not use two or more soldering methods in combination (except the pin partial heating
method).
Symbol for Recommended
Condition
Table 15-2 Soldering Conditions of Through-Hole Type
µ
PD75108CW - xxx : 64-pin plastic shrink DIP (750 mil)
Soldering Method Soldering Conditions
Wave Soldering Soldering bath temperature: 260°C max., Time: 10 seconds max.
(Only for lead part)
Pin Partial Heating Pin temperature: 260°C max., Time: 10 seconds max.
Caution: The wave soldering must be performed at the lead part only. Note that the solder must not be
directly contacted to the package body.
µ
PD75104, 75106, 75108
66
• CMOS I/O: 32
(pull-up resistor as mask
option: 24)
• +12 V open-drain output: 12
(pull-up resistor as mask
option)
LED direct drive: 44
APPENDIX A. FUNCTIONAL DIFFERENCES AMONG PRODUCTS IN PD751XX SERIES
µ
Item PD75104
µ
PD75106
µ
PD75108
µ
PD75112
µ
PD75116
µ
PD75104A
µ
PD75108A
µ
PD75108F
µ
PD75112F
µ
PD75116F
µ
PD75P108B
µ
PD75P116
µ
ROM Configuration Mask ROM PROM
ROM (Bits) 000H-FFFH 0000H-177FH 0000H-1F7FH 0000H-2F7FH 0000H-3F7FH 000H-FFFH 0000H-1F7FH 0000H-1F7FH 0000H-2F7FH 0000H-3F7FH 0000H-1F7FH 0000H-3F7FH
4096 × 8 6016 × 8 8064 × 8 12160 × 8 16256 × 8 4096 × 8 8064 × 8 8064 × 8 12160 × 8 16256 × 8 8064 × 8 16256 × 8
320 × 4
(Bank 0:
256 × 4)
(Bank 1:
64 × 4)
512 × 4
(Bank 0:
256 × 4)
(Bank 1:
256 × 4)
512 × 4
(Bank 0: 256 × 4)
(Bank 1: 256 × 4)
320 × 4
(Bank 0: 256 × 4)
(Bank 1: 64 × 4)
512 × 4
(Bank 0: 256 × 4)
(Bank 1: 256 × 4)
RAM (Bits)
Instruction Set High-end (Only PD75104 and 75104A are not provided with BR!addr instruction.) High end
Total 58
I/O
• CMOS I/O: 32
• +12 V open-drain output: 12
(pull-up resistor as mask option)
LED direct drive: 44
• CMOS I/O: 32
• +10 V open-drain output: 12
(pull-up resistor as mask option)
LED direct drive: 44
• CMOS I/O: 32
• +12 V open-drain output:
12
LED direct drive: 44
• CMOS input: 10
(pull-up resistor as mask
option: 4)
• Comparator input: 44
• CMOS input: 10
• Comparator input: 4
• CMOS input: 10
• Comparator input: 4
Input
I/O
Lines
Power-ON
Reset Circuit
Power-ON Flag
Operating
Voltage Range
Provided (mask option)
µ
None
2.7 to 6.0 V 2.7 to 5.0 V (T
a
= -40 to +50°C)
2.8 to 5.0 V (T
a
= -40 to +60°C) 2.7 to 6.0 V 5 V ± 10%
Minimum
Instruction
Execution
Time
0.95 s (at 5 V)
µ
3 s (at 3 V)
µ
0.95 s (at 4.5 V to 5.0 V)
µ
1.91 s (at 3 V)
µ
0.95 s
(at 5 V)
µ
3 s
(at 3 V)
µ
0.95 s
(at 5 V)
µ
Pin Connections Depends on package Depends on package. Only PD75P108, and 75P116 are provided with
V
PP
pin.
µ
• 64-pin
plastic
shrink DIP
(750 mil)
• 64-pin
ceramic
shrink DIP
(w/window)
• 64-pin
plastic QFP
(14 × 20
mm)
• 64-pin
plastic
shrink DIP
(750 mil)
• 64-pin
plastic QFP
(14 × 20
mm)
• 64-pin plastic QFP (14 × 20 mm)• 64-pin
plastic QFP
(14 × 14
mm)
• 64-pin
plastic QFP
(14 × 14
mm)
• 64-pin
plastic QFP
(14 × 14
mm)
• 64-pin plastic shrink DIP
(750 mil)
• 64-pin plastic QFP (14 × 20
mm)
• 64-pin plastic shrink DIP (750 mil)
• 64-pin plastic QFP (14 × 20 mm)
Package
µ
PD75104, 75106, 75108
67
APPENDIX B. DEVELOPMENT TOOLS
The following development support tools are readily available to support development of systems using
µ
PD75108:
Hardware IE-75000-R*1In-circuit emulator for 75X series
IE-75001-R
IE-75000-R-EM*2Emulation board for IE-75000-R and IE-75001-R
EP-75108CW-R Emulation prove for
µ
PD75108CW
EP-75108GF-R Emulation prove for
µ
PD75108GF. It is provided with a 64-pin conversion
socket, EV-9200G-64
PG-1500 PROM programmer
PA-75P108CW PROM programmer adapter for
µ
PD75P108BCW and 75P108BDW.
It is connected to PG-1500.
PA-75P116GF Programmer adapter for
µ
PD75P108BGF.
It is connected to PG-1500.
Software IE Control Program
PG-1500 Controller
RA75X Relocatable
Assembler
*1: Maintenance product
2: Not provided with IE-75001-R.
3: Ver.5.00/5.00A has a task swap function, but this function cannot be used with this function.
Remarks: For development tools from other companies, refer to 75X Series Selection Guide (IF-151).
EV-9200G-64
Host machine
PC-9800 series (MS-DOSTM Ver.3.30 to Ver.5.00A*3)
IBM PC/ATTM (PC DOSTM Ver.3.1)
PD75104, 75106, 75108
68
APPENDIX C. RELATED DOCUMENTS
µ
PD75104, 75106, 75108
69
1 STATIC ELECTRICITY (ALL MOS DEVICES)
Exercise care so that MOS devices are not adversely influenced by static electricity while being
handled.
The insulation of the gates of the MOS device may be destroyed by a strong static charge.
Therefore, when transporting or storing the MOS device, use a conductive tray, magazine case,
or conductive buffer materials, or the metal case NEC uses for packaging and shipment, and use
grounding when assembling the MOS device system. Do not leave the MOS device on a plastic
plate and do not touch the pins of the device.
Handle boards on which MOS devices are mounted similarly .
2PROCESSING OF UNUSED PINS (CMOS DEVICES ONLY)
Fix the input level of CMOS devices.
Unlike bipolar or NMOS devices, if a CMOS device is operated with nothing connected to its
input pin, intermediate level input may be generated due to noise, and an inrush current may flow
through the device, causing the device to malfunction. Therefore, fix the input level of the device
by using a pull-down or pull-up resistor. If there is a possibility that an unused pin serves as an
output pin (whose timing is not specified), each pin should be connected to VDD or GND through
a resistor.
Refer to “Processing of Unused Pins” in the documents of each devices.
3STATUS BEFORE INITIALIZATION (ALL MOS DEVICES)
The initial status of MOS devices is undefined upon power application.
Since the characteristics of an MOS device are determined by the quantity of injection at the
molecular level, the initial status of the device is not controlled during the production process. The
output status of pins, I/O setting, and register contents upon power application are not guaranteed.
However, the items defined for reset operation and mode setting are subject to guarantee after
the respective operations have been executed.
When using a device with a reset function, be sure to reset the device after power application.
GENERAL NOTES ON CMOS DEVICES
µ
PD75104, 75106, 75108
70
[MEMO]
No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which
may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other
intellectual property rights of third parties b y or arising from use of a device described herein or any
other liability arising from use of such device. No license, either express, implied or otherwise, is granted
under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
The devices listed in this document are not suitable for uses in aerospace equipment, submarine cables,
nuclear reactor control systems and life support systems. If customers intend to use NEC devices for
above applications or they intend to use "Standard" quality grade NEC devices for the applications not
intended by NEC, please contact our sales people in advance.
Application examples recommended by NEC Corporation
Standard: Computer, Office equipment, Communication equipment, Test and Measurement equipment,
Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.
Special: Automotive and Transportation equipment, Traffic control systems, Antidisaster systems,
Anticrime system, etc.
MS-DOS is a trademark of Microsoft Corporation.
PC DOS and PC/AT are trademarks of IBM Corporation.
M4 92.6