8-/16-Channel Analog Multiplexers ADG506A/ADG507A

FEATURES

44 V Supply Maximum Rating
V_{SS} to V_{DD} Analog Signal Range
Single/Dual Supply Specifications
Wide Supply Ranges (10.8 V to 16.5 V)
Extended Plastic Temperature Range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
Low Power Dissipation (28 mW max)
Low Leakage (20 pA typ)
Available in 28-Lead DIP, SOIC, PLCC, TSSOP and LCCC Packages
Superior Alternative to:
DG506A, HI-506
DG507A, HI-507

GENERAL DESCRIPTION

The ADG506A and ADG507A are CMOS monolithic analog multiplexers with 16 channels and dual 8 channels, respectively. The ADG506A switches one of 16 inputs to a common output, depending on the state of four binary addresses and an enable input. The ADG507A switches one of eight differential inputs to a common differential output, depending on the state of three binary addresses and an enable input. Both devices have TTL and 5 V CMOS logic compatible digital inputs.
The ADG506A and ADG507A are designed on an enhanced L^{2} MOS process, which gives an increased signal capability of V_{SS} to V_{DD} and enables operation over a wide range of supply voltages. The devices can operate comfortably anywhere in the 10.8 V to 16.5 V single or dual supply range. These multiplexers also feature high switching speeds and low R_{ON}.

PRODUCT HIGHLIGHTS

1. Single/Dual Supply Specifications with a Wide Tolerance The devices are specified in the 10.8 V to 16.5 V range for both single and dual supplies.
2. Extended Signal Range

The enhanced $\mathrm{LC}^{2} \mathrm{MOS}$ processing results in a high breakdown and an increased analog signal range of V_{SS} to V_{DD}.
3. Break-Before-Make Switching

Switches are guaranteed break-before-make so input signals are protected against momentary shorting.
4. Low Leakage

Leakage currents in the range of 20 pA make these multiplexers suitable for high precision circuits.

REV. C

[^0]
FUNCTIONAL BLOCK DIAGRAM

ORDERING GUIDE

Mode1 ${ }^{1}$	Temperature Range	Package Option
ADG506AKN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{N}-28$
ADG506AKR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	R-28
ADG506AKP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{P}-28 \mathrm{~A}$
ADG506ABQ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{Q}-28$
ADG506ATQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{Q}-28$
ADG506ATE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	E-28A
ADG507AKN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{N}-28$
ADG507AKR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	R-28
ADG507AKP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{P}-28 \mathrm{~A}$
ADG507AKRU	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	RU-28
ADG507ABQ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{Q}-28$
ADG507ATQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{Q}-28$
ADG507ATE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{E}-28 \mathrm{~A}$

NOTES

${ }^{1}$ To order MIL-STD-883, Class B processed parts, add /883B to part number. See Analog Devices' Military/Aerospace Reference Manual (1994) for military data sheet.
${ }^{2}$ E = Leadless Ceramic Chip Carrier (LCCC); N = Plastic DIP; P = Plastic Leaded Chip Carrier (PLCC); Q = Cerdip; R = 0.3" Small Outline IC (SOIC); RU $=$ Thin Shrink Small Outline Package (TSSOP).

ADG506A/ADG507A-SPECIFICATIONS

Dual Supply (vor $=+10.8 \mathrm{~V}$ to $+16.5 \mathrm{~V}, \mathrm{v}_{S S}=-10.8 \mathrm{~V}$ to -16.5 V unless otherwise noted)

Parameter	$$		$\begin{array}{r} \text { ADG } \\ \text { ADG } \\ \text { B Ve } \\ +25^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & 06 \mathrm{~A} \\ & \text { 07A } \\ & \text { sion } \\ & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{array}{r} \text { ADG } \\ \text { ADG } \\ \text { T Ve } \\ +25^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & 506 \mathrm{~A} \\ & \text { 507 } \\ & \text { rsion } \\ & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Units	Comments
ANALOG SWITCH Analog Signal Range R_{ON} $\mathrm{R}_{\text {ON }}$ Drift R_{ON} Match	V_{SS} V_{DD} 280 450 300 0.6 5	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}} \\ & \mathrm{~V}_{\mathrm{DD}} \\ & \\ & 600 \\ & 400 \end{aligned}$	V_{SS} V_{DD} 280 450 300 0.6 5	$V_{S S}$ $V_{D D}$ 600 400	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}} \\ & \mathrm{~V}_{\mathrm{DD}} \\ & 280 \\ & 450 \\ & \\ & 300 \\ & 0.6 \\ & 5 \end{aligned}$	V_{SS} $V_{D D}$ 600 400	V min V max Ω typ Ω max Ω max Ω max $\% /{ }^{\circ} \mathrm{C}$ typ \% typ	$\begin{aligned} & -10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq+10 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=1 \mathrm{~mA} ; \text { Test Circuit } 1 \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}(\pm 10 \%), \mathrm{V}_{\mathrm{SS}}=-15 \mathrm{~V}(\pm 10 \%) \\ & \mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}(\pm 5 \%), \mathrm{V}_{\mathrm{SS}}=-15 \mathrm{~V}(\pm 5 \%) \\ & -10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq+10 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=1 \mathrm{~mA} \\ & -10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq+10 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=1 \mathrm{~mA} \end{aligned}$
I_{S} (OFF), Off Input Leakage I_{D} (OFF), Off Output Leakage ADG506A ADG507A $\mathrm{I}_{\mathrm{D}}(\mathrm{ON})$, On Channel Leakage ADG506A ADG507A $\mathrm{I}_{\text {DIFF }}$, Differential Off Output Leakage (ADG507A Only)	$\begin{aligned} & 0.02 \\ & 1 \\ & 0.04 \\ & 1 \\ & 1 \\ & 0.04 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 50 \\ & 200 \\ & 100 \\ & 200 \\ & 100 \\ & 25 \end{aligned}$	$\begin{aligned} & 0.02 \\ & 1 \\ & 0.04 \\ & 1 \\ & 1 \\ & 0.04 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 50 \\ & 200 \\ & 100 \\ & 200 \\ & 100 \\ & 25 \end{aligned}$	$\begin{aligned} & 0.02 \\ & 1 \\ & 0.04 \\ & 1 \\ & 1 \\ & 0.04 \\ & 1 \\ & 1 \end{aligned}$	50 200 100 200 100 25	nA typ nA max nA typ nA max nA max nA typ nA max nA max $n A \max$	$\begin{aligned} & \mathrm{V} 1= \pm 10 \mathrm{~V}, \mathrm{~V} 2=\mp 10 \mathrm{~V} ; \text { Test Circuit } 2 \\ & \mathrm{~V} 1= \pm 10 \mathrm{~V}, \mathrm{~V} 2=\mp 10 \mathrm{~V} ; \text { Test Circuit } 3 \\ & \mathrm{~V} 1= \pm 10 \mathrm{~V}, \mathrm{~V} 2=\mp 10 \mathrm{~V} ; \text { Test Circuit } 4 \\ & \mathrm{~V} 1= \pm 10 \mathrm{~V}, \mathrm{~V} 2=\mp 10 \mathrm{~V} ; \text { Test Circuit } 5 \end{aligned}$
DIGITAL CONTROL $\mathrm{V}_{\text {INH }}$, Input High Voltage $\mathrm{V}_{\text {INL }}$, Input Low Voltage $\mathrm{I}_{\mathrm{INL}}$ or $\mathrm{I}_{\text {INH }}$ C_{IN} Digital Input Capacitance	8	$\begin{aligned} & 2.4 \\ & 0.8 \\ & 1 \end{aligned}$	8	$\begin{aligned} & 2.4 \\ & 0.8 \\ & 1 \end{aligned}$	8	$\begin{aligned} & 2.4 \\ & 0.8 \\ & 1 \end{aligned}$	V min V max $\mu \mathrm{A} \max$ pF max	$\mathrm{V}_{\mathrm{IN}}=0$ to V_{DD}
```DYNAMIC CHARACTERISTICS \(\mathrm{t}_{\text {TRANSITION }}{ }^{1}\) \(\mathrm{t}_{\text {OPEN }}{ }^{1}\) \(\mathrm{t}_{\mathrm{ON}}(\mathrm{EN})^{1}\) \(\mathrm{t}_{\mathrm{OFF}}(\mathrm{EN})^{1}\)```	$\begin{aligned} & 200 \\ & 300 \\ & 50 \\ & 25 \\ & 200 \\ & 300 \\ & 200 \\ & 300 \end{aligned}$	$\begin{aligned} & 400 \\ & 10 \\ & 400 \\ & 400 \end{aligned}$	$\begin{aligned} & 200 \\ & 300 \\ & 50 \\ & 25 \\ & 200 \\ & 300 \\ & 200 \\ & 300 \end{aligned}$	$\begin{aligned} & 400 \\ & 10 \\ & 400 \\ & 400 \end{aligned}$	$\begin{aligned} & 200 \\ & 300 \\ & 50 \\ & 25 \\ & 200 \\ & 300 \\ & 200 \\ & 300 \end{aligned}$	$\begin{aligned} & 400 \\ & 10 \\ & 400 \\ & 400 \end{aligned}$	ns typ ns max   ns typ   ns min   ns typ   ns max   ns typ   ns max	V1 $= \pm 10 \mathrm{~V}, \mathrm{~V} 2=+10 \mathrm{~V}$; Test Circuit 6   Test Circuit 7   Test Circuit 8   Test Circuit 8
OFF Isolation $\begin{aligned} & \mathrm{C}_{S}(\mathrm{OFF}) \\ & \mathrm{C}_{\mathrm{D}}(\mathrm{OFF}) \\ & \text { ADG506A } \\ & \text { ADG507A } \\ & \mathrm{Q}_{\text {INJ }}, \text { Charge Injection } \end{aligned}$	$\begin{aligned} & 68 \\ & 50 \\ & 5 \\ & 44 \\ & 22 \\ & 4 \end{aligned}$		$\begin{aligned} & 68 \\ & 50 \\ & 5 \\ & 44 \\ & 22 \\ & 4 \end{aligned}$		$\begin{aligned} & 68 \\ & 50 \\ & 5 \\ & 44 \\ & 22 \\ & 4 \end{aligned}$		dB typ   dB min   pF typ   pF typ   pF typ   pC typ	$\begin{aligned} & \mathrm{V}_{\mathrm{EN}}=0.8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{S}}=7 \mathrm{~V} \mathrm{rms}, \mathrm{f}=100 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{EN}}=0.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EN}}=0.8 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} ; \text { Test Circuit } 9 \end{aligned}$
POWER SUPPLY   $I_{D D}$   $\mathrm{I}_{\mathrm{SS}}$   Power Dissipation	$\begin{aligned} & 0.6 \\ & 20 \\ & 10 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 0.2 \\ & 28 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 20 \\ & 10 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 0.2 \\ & 28 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 20 \\ & 10 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 0.2 \\ & 28 \end{aligned}$	mA typ $m A \max$ $\mu \mathrm{A}$ typ mA max mW typ mW max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{INL}} \text { or } \mathrm{V}_{\mathrm{INH}} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IN}} \text { or } \mathrm{V}_{\mathrm{INH}} \end{aligned}$

## NOTES

${ }^{1}$ Sample tested at $+25^{\circ} \mathrm{C}$ to ensure compliance.
Specifications subject to change without notice.

Single Supply $\left(\mathrm{V}_{00}=+10.8 \mathrm{v}\right.$ to $+16.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{sS}}=\mathrm{GND}=0 \mathrm{~V}$ unless otherwise noted)

Parameter	$$		$$		$\begin{gathered} \text { ADG506A } \\ \text { ADG507A } \\ \text { T Version } \\ +\mathbf{- 5 5 ^ { \circ } \mathrm { C } \text { to }} \\ +25^{\circ} \mathrm{C}+125^{\circ} \mathrm{C} \end{gathered}$		Units	Comments
ANALOG SWITCH   Analog Signal Range   $\mathrm{R}_{\mathrm{ON}}$   $\mathrm{R}_{\text {ON }}$ Drift   $\mathrm{R}_{\mathrm{ON}}$ Match	$\mathrm{V}_{\mathrm{SS}}$ $\mathrm{V}_{\mathrm{DD}}$ 500 700 0.6 5	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}} \\ & \mathrm{~V}_{\mathrm{DD}} \\ & \\ & 1000 \end{aligned}$	$\mathrm{V}_{\mathrm{SS}}$ $\mathrm{V}_{\mathrm{DD}}$ 500 700 0.6 5	$\mathrm{V}_{\mathrm{ss}}$ $V_{D D}$ $1000$	$\mathrm{V}_{\mathrm{SS}}$ $\mathrm{V}_{\mathrm{DD}}$ 500 700 0.6 5	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}} \\ & \mathrm{~V}_{\mathrm{DD}} \\ & \\ & 1000 \end{aligned}$	V min   V max   $\Omega$ typ   $\Omega$ max   $\% /{ }^{\circ} \mathrm{C}$ typ   \% typ	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq+10 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=0.5 \mathrm{~mA}$; Test Circuit 1 $\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq+10 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=0.5 \mathrm{~mA} \\ & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq+10 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=0.5 \mathrm{~mA} \end{aligned}$
$\mathrm{I}_{\mathrm{S}}$ (OFF), Off Input Leakage   $\mathrm{I}_{\mathrm{D}}$ (OFF), Off Output Leakage   ADG506A   ADG507A   $\mathrm{I}_{\mathrm{D}}$ (ON), On Channel Leakage   ADG506A   ADG507A   $\mathrm{I}_{\text {DIFF }}$, Differential Off Output   Leakage (ADG507A Only)	$\begin{aligned} & 0.02 \\ & 1 \\ & 0.04 \\ & 1 \\ & 1 \\ & 0.04 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 50 \\ & 200 \\ & 100 \\ & 200 \\ & 100 \\ & 25 \end{aligned}$	$\begin{aligned} & 0.02 \\ & 1 \\ & 0.04 \\ & 1 \\ & 1 \\ & 0.04 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 50 \\ & 200 \\ & 100 \\ & 200 \\ & 100 \\ & 25 \end{aligned}$	$\begin{aligned} & 0.02 \\ & 1 \\ & 0.04 \\ & 1 \\ & 1 \\ & 0.04 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 50 \\ & 200 \\ & 100 \\ & 200 \\ & 100 \\ & 25 \end{aligned}$	nA typ nA max nA typ nA max nA max nA typ nA max nA max nA max	$\mathrm{V} 1=+10 \mathrm{~V} / 0 \mathrm{~V}, \mathrm{~V} 2=0 \mathrm{~V} /+10 \mathrm{~V}$;   Test Circuit 2   $\mathrm{V} 1=+10 \mathrm{~V} / 0 \mathrm{~V}, \mathrm{~V} 2=0 \mathrm{~V} /+10 \mathrm{~V}$;   Test Circuit 3   $\mathrm{V} 1=+10 \mathrm{~V} / 0 \mathrm{~V}, \mathrm{~V} 2=0 \mathrm{~V} /+10 \mathrm{~V}$;   Test Circuit 4   $\mathrm{V} 1=+10 \mathrm{~V} / 0 \mathrm{~V}, \mathrm{~V} 2=0 \mathrm{~V} /+10 \mathrm{~V}$;   Test Circuit 5
DIGITAL CONTROL   $\mathrm{V}_{\text {INH }}$, Input High Voltage   $\mathrm{V}_{\text {INL }}$, Input Low Voltage   $\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$   $\mathrm{C}_{\mathrm{IN}}$ Digital Input Capacitance	8	$\begin{aligned} & 2.4 \\ & 0.8 \\ & 1 \end{aligned}$	8	$\begin{aligned} & 2.4 \\ & 0.8 \\ & 1 \end{aligned}$	8	$\begin{aligned} & 2.4 \\ & 0.8 \\ & 1 \end{aligned}$	V min   V max   $\mu \mathrm{A} \max$   $\mathrm{pF} \max$	$\mathrm{V}_{\mathrm{IN}}=0$ to $\mathrm{V}_{\mathrm{DD}}$
```DYNAMIC CHARACTERISTICS \(\mathrm{t}_{\text {TRANSITION }}{ }^{1}\) topen \(^{1}\) \(\mathrm{t}_{\mathrm{ON}}(\mathrm{EN})^{1}\) \(\mathrm{t}_{\text {OFF }}(\mathrm{EN})^{1}\)```	$\begin{aligned} & 300 \\ & 450 \\ & 50 \\ & 25 \\ & 250 \\ & 450 \\ & 250 \\ & 450 \end{aligned}$	$\begin{aligned} & 600 \\ & 10 \\ & 600 \\ & 600 \end{aligned}$	$\begin{aligned} & 300 \\ & 450 \\ & 50 \\ & 25 \\ & 250 \\ & 450 \\ & 250 \\ & 450 \end{aligned}$	600   10   600   600	$\begin{aligned} & 300 \\ & 450 \\ & 50 \\ & 25 \\ & 250 \\ & 450 \\ & 250 \\ & 450 \end{aligned}$	$\begin{aligned} & 600 \\ & 10 \\ & 600 \\ & 600 \end{aligned}$	ns typ ns max ns typ ns min ns typ ns max ns typ ns max	V1 $=+10 \mathrm{~V} / 0 \mathrm{~V}, \mathrm{~V} 2=+10 \mathrm{~V}$; Test Circuit 6   Test Circuit 7   Test Circuit 8   Test Circuit 8
OFF Isolation $\begin{aligned} & \mathrm{C}_{\mathrm{S}}(\mathrm{OFF}) \\ & \mathrm{C}_{\mathrm{D}}(\mathrm{OFF}) \\ & \text { ADG506A } \\ & \text { ADG507A } \\ & \mathrm{Q}_{\mathrm{INJ}} \text {, Charge Injection } \\ & \hline \end{aligned}$	$\begin{aligned} & 68 \\ & 50 \\ & 5 \\ & 44 \\ & 22 \\ & 4 \end{aligned}$		$\begin{aligned} & 68 \\ & 50 \\ & 5 \\ & 44 \\ & 22 \\ & 4 \end{aligned}$		$\begin{aligned} & 68 \\ & 50 \\ & 5 \\ & 44 \\ & 22 \\ & 4 \end{aligned}$		dB typ dB min pF typ pF typ pF typ pC typ	$\begin{aligned} & \mathrm{V}_{\mathrm{EN}}=0.8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{S}}=3.5 \mathrm{~V} \mathrm{rms}, \mathrm{f}=100 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{EN}}=0.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EN}}=0.8 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} ; \text { Test Circuit } 9 \end{aligned}$
POWER SUPPLY I_{DD} Power Dissipation	$\begin{aligned} & 0.6 \\ & 10 \end{aligned}$	1.5 25	$\begin{aligned} & 0.6 \\ & 10 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 25 \end{aligned}$	0.6 10	1.5 25	mA typ mA max mW typ $m W$ max	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$

NOTES

${ }^{1}$ Sample tested at $+25^{\circ} \mathrm{C}$ to ensure compliance.
Specifications subject to change without notice.

Truth Table (ADG506A)

A3	A2	A1	A0	EN	On Switch
X	X	X	X	0	NONE
0	0	0	0	1	1
0	0	0	1	1	2
0	0	1	0	1	3
0	0	1	1	1	4
0	1	0	0	1	5
0	1	0	1	1	6
0	1	1	0	1	7
0	1	1	1	1	8
1	0	0	0	1	9
1	0	0	1	1	10
1	0	1	0	1	11
1	0	1	1	1	12
1	1	0	0	1	13
1	1	0	1	1	14
1	1	1	0	1	15
1	1	1	1	1	16

Truth Table (ADG507A)

A2	A1	A0	EN	On Switch Pair
X	X	X	0	NONE
0	0	0	1	1
0	0	1	1	2
0	1	0	1	3
0	1	1	1	4
1	0	0	1	5
1	0	1	1	6
1	1	0	1	7
1	1	1	1	8

ADG506A/ADG507A

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$ ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)	
V_{DD} to $\mathrm{V}_{\text {SS }}$	44 V
V_{DD} to GND	25 V
$\mathrm{V}_{\text {SS }}$ to GND	-25 V
Analog Inputs ${ }^{2}$	
Voltage at S, D	$\begin{aligned} & \mathrm{V}_{\mathrm{ss}}-2 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & \ldots . . .+2 \mathrm{~V} \text { or } \end{aligned}$
20	hever Occurs First
Continuous Current, S or D	20 mA
Pulsed Current S or D	
1 ms Duration, 10\% Duty Cycle	40 mA
Digital Inputs ${ }^{2}$	
Voltage at A, EN	$\mathrm{V}_{\text {SS }}-4 \mathrm{~V}$
	to $\mathrm{V}_{\mathrm{DD}}+4 \mathrm{~V}$ or ever Occurs First

Power Dissipation (Any Package)
Up to $+75^{\circ} \mathrm{C} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$
Derates above $+75^{\circ} \mathrm{C}$ by $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$

Up to $+75^{\circ} \mathrm{C}$. 470 mW Derates above $+75^{\circ} \mathrm{C}$ by $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Temperature
Commercial (K Version) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Industrial (B Version) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Extended (T Version) $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Notes
${ }^{1}$ Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational conditions for extended periods may affect device reliability.
to the Maximum Rating above

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG506A/ADG507A feature proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS

DIP, SOIC

$\mathrm{V}_{\mathrm{DD}} 1$	ADG506A TOP VIEW (Not to Scale)	28 D
NC 2		27 vS
NC 3		26 s
S16 4		25 S7
S15 5		$24 \mathrm{S6}$
S14 6		23 S5
S13 7		22 S 4
S12 8		21 S3
S11 9		20 S 2
S10 10		19 S1
S9 11		
GND 12		17 A0
NC 13		
A3 14		
	= NO CONNEC	

DIP, SOIC, TSSOP

PLCC

Typical Performance Characteristics-ADG506A/ADG507A

The multiplexers are guaranteed functional with reduced single or dual supplies down to 4.5 V .

Figure 1. $R_{O N}$ as a Function of $V_{D}\left(V_{S}\right)$: Dual Supply Voltage, $T_{A}=+25^{\circ} \mathrm{C}$

Figure 2. Leakage Current as a Function of Temperature (Note: Leakage Currents Reduce as the Supply Voltages Reduce)

Figure 3. $t_{\text {TRANSITION }}$ vs. Supply Voltage: Dual and Single Supplies, $T_{A}=+25^{\circ} \mathrm{C}$ (Note: For $V_{D D}$ and $/ V_{S S} /<10 \mathrm{~V} ; V 1=$ $V_{D D} / V_{S S}, V 2=V_{S S} / V_{D D}$. See Test Circuit 6)

Figure 4. $R_{O N}$ as a Function of $V_{D}\left(V_{S}\right)$ Single Supply Voltage, $T_{A}=+25^{\circ} \mathrm{C}$

Figure 5. Trigger Levels vs. Power Supply Voltage, Dual or Single Supply, $T_{A}=+25^{\circ} \mathrm{C}$

Figure 6. I $I_{D D}$ vs. Supply Voltage: Dual or Single Supply, $T_{A}=+25^{\circ} \mathrm{C}$

ADG506A/ADG507A-Test Circuits

Note: All Digital Input Signal Rise and Fall Times Measured from 10% to 90% of $3 \mathrm{~V} . \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=20 \mathrm{~ns}$.

Test Circuit 1. RoN

Test Circuit 2. I_{S} (OFF)

Test Circuit 3. I_{D} (OFF)

Test Circuit 4. $I_{D}(O N)$

Test Circuit 5. I IIFF

Test Circuit 6. Switching Time of Multiplexer, $t_{\text {TRANSItIon }}$

Test Circuit 7. Break-Before-Make Delay, topen

*SIMILAR CONNECTION FOR AD507A
Test Circuit 8. Enable Delay, $t_{O N}$ (EN), $t_{\text {OFF }}$ (EN)

Test Circuit 9. Charge Injection

SINGLE SUPPLY AUTOMOTIVE APPLICATION

The excellent performance of the multiplexers under single supply conditions makes the ADG506A/ADG507A suitable in applications such as automotive and disc drives where only positive power supply voltages are normally available. The following application circuit shows the ADG507A connected as an 8-channel differential multiplexer in an automotive, data acquisition application circuit.

The AD7580 is a 10 -bit successive approximation ADC, which has an on-chip sample-hold amplifier and provides a conversion result in $20 \mu \mathrm{~s}$. The ADC has differential analog inputs and is configured in the application circuit for a span of 2.5 V over a common-mode range 0 V to +5 V . Wider common-mode ranges can be accommodated. See the AD7579/AD7580 data sheet for more details. The complete system operates from $+12 \mathrm{~V}(+10 \%)$ and +5 V supplies. The analog input signals to the ADG507A contain information such as temperature, pressure, speed etc.

Figure 7. ADG507A in a Single Supply Automotive Data Acquisition Application

ADG506A／ADG507A

TERMINOLOGY
$\mathrm{R}_{\mathrm{ON}} \quad$ Ohmic resistance between terminals D and S
R_{ON} Match Difference between the R_{ON} of any two channels
R_{ON} Drift Change in R_{ON} versus temperature
I_{S}（OFF）Source terminal leakage current when the switch is off
$\mathrm{I}_{\mathrm{D}}(\mathrm{OFF}) \quad$ Drain terminal leakage current when the switch is off
$\mathrm{I}_{\mathrm{D}}(\mathrm{ON}) \quad$ Leakage current that flows from the closed switch into the body
$\mathrm{V}_{\mathrm{S}}\left(\mathrm{V}_{\mathrm{D}}\right)$
C_{S}（OFF）
$\mathrm{C}_{\mathrm{D}}(\mathrm{OFF})$
C_{IN}
$\mathrm{t}_{\mathrm{ON}}(\mathrm{EN})$

$\mathrm{t}_{\mathrm{OFF}}$（EN）	Delay time between the 50% and 10% points of the digital input and switch＂OFF＂condition
$\mathrm{t}_{\text {TRANSITION }}$	Delay time between the 50% and 90% points of the digital inputs and switch＂ON＂condition when switching from one address state to
another	
＂OFF＂time measured between 50% points of	
both switches when switching from one address	
state to another	

OUTLINE DIMENSIONS

Dimensions shown in inches and（mm）．

28－Lead Cerdip（Suffix Q）

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

