TDA2003 (R) 10W CAR RADIO AUDIO AMPLIFIER DESCRIPTION The TDA 2003 has improved performance with the same pin configuration as the TDA 2002. The additional features of TDA 2002, very low number of external components, ease of assembly, space and cost saving, are maintained. The device provides a high output current capability (up to 3.5A) very low harmonic and cross-over distortion. Completely safe operation is guaranteed due to protection against DC and AC short circuit between all pins and ground, thermal over-range, load dump voltage surge up to 40V and fortuitous open ground. PENTAWATT ORDERING NUMBERS : TDA 2003H TDA 2003V ABSOLUTE MAXIMUM RATINGS Symbol Parameter Value Unit VS VS Peak supply voltage (50ms) DC supply voltage 40 28 V V VS IO IO Operating supply voltage Output peak current (repetitive) 18 3.5 V A Output peak current (non repetitive) Power dissipation at Tcase = 90C 4.5 20 A W -40 to 150 C Ptot Tstg, Tj Storage and junction temeperature TEST CIRCUIT October 1998 1/10 TDA2003 PIN CONNECTION (top view) SCHEMATIC DIAGRAM THERMAL DATA Symbol Rth-j-case 2/10 Parameter Thermal resistance junction-case max Value Unit 3 C/W TDA2003 AC TEST CIRCUIT DC TEST CIRCUIT ELECTRICAL CHARACTERISTICS ( Vs = 14.4V, Tamb = 25 C unless otherwise specified) Symbol Parameter Test conditions Min. Typ. Max. Unit 18 V 6.9 7.7 V 44 50 mA DC CHARACTERISTICS (Refer to DC test circuit) Vs Supply voltage Vo Quiescent output voltage (pin 4) Id Quiescent drain current (pin 5) 8 6.1 AC CHARACTERISTICS (Refer to AC test circuit, Gv = 40 dB) Po Vi(rms) Vi Output power d = 10% f = 1 kHz RL = 4 RL = 2 RL = 3.2 RL = 1.6 Input saturation voltage Input sensitivity 5.5 9 6 10 7.5 12 300 f = 1 kHz Po = 0.5W Po = 6W Po = 0.5W Po 10W RL = 4 RL = 4 RL = 2 RL = 2 W W W W mV 14 55 10 50 mV mV mV mV 3/10 TDA2003 ELECTRICAL CHARACTERISTICS (continued) Symbol Parameter B Frequency response (-3 dB) d Distortion Test conditions Po = 1W RL = 4 f = 1 kHz Po = 0.05 to4.5W RL = 4 Po = 0.05 to 7.5W RL = 2 Ri Input resistance (pin 1) f = 1 kHz Gv Voltage gain (open loop) f = 1 kHz f = 10 kHz Gv Voltage gain (closed loop) f = 1 kHz RL = 4 eN Input noise voltage iN Input noise current Efficiency SVR Supply voltage rejection Min. 70 39.3 Typ. Max. Unit 40 to 15,000 Hz 0.15 0.15 % % 150 k 80 60 dB dB 40 40.3 dB (0) 1 5 V (0) 60 200 pA f = 1 Hz Po = 6W Po = 10W RL = 4 RL = 2 f = 100 Hz Vripple = 0.5V Rg = 10 k RL = 4 30 69 65 % % 36 dB (0) Filter with noise bandwidth: 22 Hz to 22 kHz Figure 1. Quiescent output voltage vs. supply voltage 4/10 Figure 2. Quiescent drain current vs. supply voltage Figure 3. Output power vs. supply voltage TDA2003 Figure 4. Output power vs. load resistance RL Figure 5. Gain vs. input sensivity Figure 6. Gain vs. input sensivity F ig ure 7. Di stortion vs. output power Fi gure 8. Distor tion vs. frequency Figure 9. Supply voltage rejection vs. voltage gain Figure 10. Supply voltage rejection vs. frequency Figure 11. Power dissipation and efficiency vs. output power (RL = 4) Figure 12. Power dissipation and efficiency vs. output power (RL = 2) 5/10 TDA2003 Figure 13. Maximum power dissipation vs. supply voltage (sine wave operation) Figure 14. Maximum allowable power dissipation vs. ambient temperature Figure 15. Typical values of capacitor (CX) for different values of frequency reponse (B) APPLICATION INFORMATION Figure 16. Typical application circuit Figure 17. P.C. board and component layout for the circuit of fig. 16 (1 : 1 scale) BUILT-IN PROTECTION SYSTEMS Load dump voltage surge The TDA 2003 has a circuit which enables it to withstand a voltage pulse train, on pin 5, of the type shown in fig. 19. If the supply voltage peaks to more than 40V, then an LC filter must be inserted between the supply and pin 5, in order to assure that the pulses at pin 5 will be held within the limits shown in fig. 18. 6/10 A suggested LC network is shown in fig. 19. With this network, a train of pulses with amplitude up to 120V and width of 2 ms can be applied at point A. This type of protection is ON when the supply voltage (pulsed or DC) exceeds 18V. For this reason the maximum operating supply voltage is 18V. TDA2003 Figure 18. Figure 19. Short-circuit (AC and DC conditions) In particular, the TDA 2003 can drive a coupling transformer for audio modulation. The TDA 2003 can withstand a permanent shortcircuit on the output for a supply voltage up to 16V. Polarity inversion High current (up to 5A) can be handled by the device with no damage for a longer period than the blow-out time of a quick 1A fuse (normally connected in series with the supply). This feature is added to avoid destruction if, during fitting to the car, a mistake on the connection of the supply is made. Open ground When the radio is in the ON condition and the ground is accidentally opened, a standard audio amplifier will be damaged. On the TDA 2003 protection diodes are included to avoid any damage. Inductive load A protection diode is provided between pin 4 and 5 (see the internal schematic diagram) to allow use of the TDA 2003 with inductive loads. Figure 20. Output power and dra i n cu rre nt vs . case temperature (RL = 4) DC voltage The maximum operating DC voltage on the TDA 2003 is 18V. However the device can withstand a DC voltage up to 28V with no damage. This could occur during winter if two batteries were series connected to crank the engine. Thermal shut-down The presence of a thermal limiting circuit offers the following advantages: 1) an overload on the output (even if it is permanent), oran excessive ambient temperature can be easily withstood. 2) the heat-sink can have a smaller factor compared with that of a conventional circuit. There is no device damage in the case of excessive junction temperature: all that happens is that Po (and therefore Ptot) and Id are reduced. Figure 21. Output power and d rai n cur ren t vs. c ase temperature (RL = 2) 7/10 TDA2003 PRATICAL CONSIDERATION Printed circuit board The layout shown in fig. 17 is recommended. If different layouts are used, the ground points of input 1 and input 2 must be well decoupled from the ground of the output through which a rather high current flows. Assembly suggestion No electrical insulation is required between the package and the heat-sink. Pin length should be as short as possible. The soldering temperature must not exceed 260C for 12 seconds. Application suggestions The recommended component values are those shown in the application circuits of fig. 16. Different values can be used. The following table is intended to aid the car-radio designer. Component Recommmended value C1 2.2 F Input DC decoupling Noise at switch-on, switch-off C2 470 F Ripple rejection Degradation of SVR C3 0.1 F Supply bypassing Danger of oscillation C4 1000 F Output coupling to load Higher low frequency cutoff C5 0.1 F Frequency stability Danger of oscillation at high frequencies with inductive loads 1 2 B R1 Upper frequency cutoff CX 8/10 Purpose Larger than recommended value Lower bandwidth R1 (Gv-1) * R2 Setting of gain R2 2.2 Setting of gain and SVR Degradation of SVR R3 1 Frequency stability Danger of oscillation at high frequencies with inductive loads RX 20 R2 Upper frequency cutoff Poor high frequency attenuation Smaller than recommended value C1 Larger bandwidth Increase of drain current Danger of oscillation TDA2003 DIM. A C D D1 E E1 F F1 G G1 H2 H3 L L1 L2 L3 L4 L5 L6 L7 L9 M M1 V4 MIN. mm TYP. 2.4 1.2 0.35 0.76 0.8 1 3.2 6.6 3.4 6.8 10.05 17.55 15.55 21.2 22.3 17.85 15.75 21.4 22.5 2.6 15.1 6 4.23 3.75 0.2 4.5 4 MAX. 4.8 1.37 2.8 1.35 0.55 1.19 1.05 1.4 3.6 7 10.4 10.4 18.15 15.95 21.6 22.7 1.29 3 15.8 6.6 MIN. inch TYP. 0.094 0.047 0.014 0.030 0.031 0.039 0.126 0.260 0.134 0.268 0.396 0.691 0.612 0.831 0.878 0.703 0.620 0.843 0.886 0.102 0.594 0.236 4.75 0.167 4.25 0.148 40 (typ.) 0.008 0.177 0.157 OUTLINE AND MECHANICAL DATA MAX. 0.189 0.054 0.110 0.053 0.022 0.047 0.041 0.055 0.142 0.276 0.409 0.409 0.715 0.628 0.850 0.894 0.051 0.118 0.622 0.260 0.187 0.167 Pentawatt V L L1 V3 V V E L8 V V1 V M1 R R A B D C D1 L5 L2 R M V4 H2 L3 F E E1 V4 H3 H1 G G1 Dia. F F1 L7 H2 V4 L6 L9 RESIN BETWEEN LEADS 9/10 TDA2003 Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics (c) 1998 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A. http://www.st.com 10/10