© Semiconductor Components Industries, LLC, 2011
June, 2011 Rev. 7
1Publication Order Number:
MC14020B/D
MC14020B
14-Bit Binary Counter
The MC14020B 14stage binary counter is constructed with MOS
PChannel and NChannel enhancement mode devices in a single
monolithic structure. This part is designed with an input wave shaping
circuit and 14 stages of ripplecarry binary counter. The device
advances the count on the negativegoing edge of the clock pulse.
Applications include time delay circuits, counter controls, and
frequencydividing circuits.
Features
Fully Static Operation
Diode Protection on All Inputs
Supply Voltage Range = 3.0 Vdc to 18 Vdc
Capable of Driving Two Lowpower TTL Loads or One Lowpower
Schottky TTL Load Over the Rated Temperature Range
Buffered Outputs Available from stages 1 and 4 thru 14
Common Reset Line
PinforPin Replacement for CD4020B
These Devices are PbFree and are RoHS Compliant
MAXIMUM RATINGS (Voltages Referenced to VSS)
Symbol Parameter Value Unit
VDD DC Supply Voltage Range 0.5 to +18.0 V
Vin, Vout Input or Output Voltage Range
(DC or Transient)
0.5 to VDD + 0.5 V
Iin, Iout Input or Output Current
(DC or Transient) per Pin
±10 mA
PDPower Dissipation, per Package
(Note 1)
500 mW
TAAmbient Temperature Range 55 to +125 °C
Tstg Storage Temperature Range 65 to +150 °C
TLLead Temperature
(8Second Soldering)
260 °C
Stresses exceeding Maximum Ratings may damage the device. Maximum
Ratings are stress ratings only. Functional operation above the Recommended
Operating Conditions is not implied. Extended exposure to stresses above the
Recommended Operating Conditions may affect device reliability.
1. Temperature Derating:
Plastic “P and D/DW” Packages: – 7.0 mW/_C From 65_C To 125_C
This device contains protection circuitry to guard against damage due to high
static voltages or electric fields. However, precautions must be taken to avoid
applications of any voltage higher than maximum rated voltages to this
highimpedance circuit. For proper operation, Vin and Vout should be constrained
to the range VSS v (Vin or Vout) v VDD.
Unused inputs must always be tied to an appropriate logic voltage level (e.g.,
either VSS or VDD). Unused outputs must be left open.
http://onsemi.com
MARKING
DIAGRAMS
PDIP16
P SUFFIX
CASE 648
MC14020BCP
AWLYYWWG
SOIC16
D SUFFIX
CASE 751B
TSSOP16
DT SUFFIX
CASE 948F
14020BG
AWLYWW
A = Assembly Location
WL, L = Wafer Lot
YY, Y = Year
WW, W = Work Week
G or G= PbFree Indicator
SOEIAJ16
F SUFFIX
CASE 966
MC14020B
ALYWG
See detailed ordering and shipping information in the package
dimensions section on page 2 of this data sheet.
ORDERING INFORMATION
16
1
1
16
1
16
14
020B
ALYWG
G
1
16
(Note: Microdot may be in either location)
MC14020B
http://onsemi.com
2
TRUTH TABLE
Clock Reset Output State
0 No Change
0 Advance to Next State
X 1 All Outputs are Low
X = Don’t Care
LOGIC DIAGRAM
CLOCK
RESET
11
10
Q1 Q4 Q5 Q12 Q13 Q14
975 123
C
CR
Q
Q
C
CR
Q
Q
C
CR
Q
Q
C
CR
Q
Q
C
CR
Q
Q
C
C
Q
R
Q6 = PIN 4
Q7 = PIN 6
Q8 = PIN 13
Q9 = PIN 12
Q10 = PIN 14
Q11 = PIN 15
VDD = PIN 16
VSS = PIN 8
PIN ASSIGNMENT
13
14
15
16
9
10
11
125
4
3
2
1
8
7
6
Q9
Q8
Q10
Q11
VDD
Q1
C
R
Q6
Q14
Q13
Q12
VSS
Q4
Q7
Q5
ORDERING INFORMATION
Device Package Shipping
MC14020BCPG PDIP16
(PbFree)
500 Units / Rail
MC14020BDG SOIC16
(PbFree)
48 Units / Rail
MC14020BDR2G SOIC16
(PbFree)
2500 Units / Tape & Reel
MC14020BDTG TSSOP16* 96 Units / Rail
MC14020BFELG SOEIAJ16
(PbFree)
2000 Units / Tape & Reel
For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
*This package is inherently PbFree.
MC14020B
http://onsemi.com
3
ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)
Characteristic Symbol VDD
Vdc
55_C 25_C 125_C
Unit
Min Max Min Typ
(Note 2)
Max Min Max
Output Voltage “0” Level
Vin = VDD or 0
“1” Level
Vin = 0 or VDD
VOL 5.0
10
15
0.05
0.05
0.05
0
0
0
0.05
0.05
0.05
0.05
0.05
0.05
Vdc
VOH 5.0
10
15
4.95
9.95
14.95
4.95
9.95
14.95
5.0
10
15
4.95
9.95
14.95
Vdc
Input Voltage “0” Level
(VO = 4.5 or 0.5 Vdc)
(VO = 9.0 or 1.0 Vdc)
(VO = 13.5 or 1.5 Vdc)
“1” Level
(VO = 0.5 or 4.5 Vdc)
(VO = 1.0 or 9.0 Vdc)
(VO = 1.5 or 13.5 Vdc)
VIL
5.0
10
15
1.5
3.0
4.0
2.25
4.50
6.75
1.5
3.0
4.0
1.5
3.0
4.0
Vdc
VIH
5.0
10
15
3.5
7.0
11
3.5
7.0
11
2.75
5.50
8.25
3.5
7.0
11
Vdc
Output Drive Current
(VOH = 2.5 Vdc) Source
(VOH = 4.6 Vdc)
(VOH = 9.5 Vdc)
(VOH = 13.5 Vdc)
(VOL = 0.4 Vdc) Sink
(VOL = 0.5 Vdc)
(VOL = 1.5 Vdc)
IOH
5.0
5.0
10
15
– 3.0
– 0.64
– 1.6
– 4.2
– 2.4
– 0.51
– 1.3
– 3.4
– 4.2
– 0.88
– 2.25
– 8.8
– 1.7
– 0.36
– 0.9
– 2.4
mAdc
IOL 5.0
10
15
0.64
1.6
4.2
0.51
1.3
3.4
0.88
2.25
8.8
0.36
0.9
2.4
mAdc
Input Current Iin 15 ± 0.1 ±0.00001 ± 0.1 ± 1.0 mAdc
Input Capacitance
(Vin = 0)
Cin 5.0 7.5 pF
Quiescent Current
(Per Package)
IDD 5.0
10
15
5.0
10
20
0.005
0.010
0.015
5.0
10
20
150
300
600
mAdc
Total Supply Current (Notes 3 & 4)
(Dynamic plus Quiescent,
Per Package)
(CL = 50 pF on all outputs, all
buffers switching)
IT5.0
10
15
IT = (0.42 mA/kHz)f + IDD
IT = (0.85 mA/kHz)f + IDD
IT = (1.43 mA/kHz)f + IDD
mAdc
2. Data labelled “Typ” is not to be used for design purposes but is intended as an indication of the IC’s potential performance.
3. The formulas given are for the typical characteristics only at 25_C.
4. To calculate total supply current at loads other than 50 pF:
IT(CL) = IT(50 pF) + (CL – 50) Vfk
where: IT is in mA (per package), CL in pF, V = (VDD – VSS) in volts, f in kHz is input frequency, and k = 0.001.
MC14020B
http://onsemi.com
4
SWITCHING CHARACTERISTICS (Note 5) (CL = 50 pF, TA = 25_C)
Characteristic Symbol VDD
Vdc
Min Typ
(Note 6)
Max Unit
Output Rise and Fall Time
tTLH, tTHL = (1.5 ns/pF) CL + 25 ns
tTLH, tTHL = (0.75 ns/pF) CL + 12.5 ns
tTLH, tTHL = (0.55 ns/pF) CL + 9.5 ns
tTLH,
tTHL 5.0
10
15
100
50
40
200
100
80
ns
Propagation Delay Time
Clock to Q1
tPHL, tPLH = (1.7 ns/pF) CL + 175 ns
tPHL, tPLH = (0.66 ns/pF) CL + 82 ns
tPHL, tPLH = (0.5 ns/pF) CL + 55 ns
tPLH,
tPHL
5.0
10
15
260
115
80
520
230
160
ns
Clock to Q14
tPHL, tPLH (1.7 ns/pF) CL + 1735 ns
tPHL, tPLH = (0.66 ns/pF) CL + 772 ns
tPHL, tPLH = (0.5 ns/pF) CL + 535 ns
5.0
10
15
1820
805
560
3900
1725
1200
ns
Propagation Delay Time
Reset to Qn
tPHL = (1.7 ns/pF) CL + 285 ns
tPHL = (0.66 ns/pF) CL + 122 ns
tPHL = (0.5 ns/pF) CL + 90 ns
tPHL
5.0
10
15
370
155
115
740
310
230
ns
Clock Pulse Width tWH 5.0
10
15
500
165
125
140
55
38
ns
Clock Pulse Frequency fmax 5.0
10
15
1.0
3.0
4.0
2.0
6.0
8.0
MHz
Clock Rise and Fall Time tTLH, tTHL 5.0
10
15
No Limit
Reset Pulse Width tWL 5.0
10
15
3000
550
420
320
120
80
ns
Reset Recovery Time trec 5.0
10
15
65
25
15
130
50
30
ns
5. The formulas given are for the typical characteristics only at 25_C.
6. Data labelled “Typ” is not to be used for design purposes but is intended as an indication of the IC’s potential performance.
MC14020B
http://onsemi.com
5
Figure 1. Power Dissipation Test Circuit
and Waveform
Figure 2. Switching Time Test Circuit
and Waveforms
500 mF
0.01 mF
CERAMIC
PULSE
GENERATOR
VDD
CL
CL
CL
VSS
C
R
Q1
Q4
Qn
ID
VDD
VSS
20 ns 20 ns
CLOCK 90%
50%
10%
50% DUTY CYCLE
PULSE
GENERATOR
VDD
VSS
C
R
Q1
Q4
Qn
CL
CL
CL
20 ns 20 ns
CLOCK 90%
50%
10%
tWH
tPLH tPHL
90%
50%
10%
tTLH tTHL
Q
Figure 3. Timing Diagram
CLOCK
RESET
Q1
Q4
Q5
Q6
Q7
Q8
Q9
Q10
Q11
Q12
Q13
Q14
16,384819240961 2 4 8 16 32 64 128 256 512 1024 2048
MC14020B
http://onsemi.com
6
PACKAGE DIMENSIONS
PDIP16
P SUFFIX
PLASTIC DIP PACKAGE
CASE 64808
ISSUE T
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEADS
WHEN FORMED PARALLEL.
4. DIMENSION B DOES NOT INCLUDE
MOLD FLASH.
5. ROUNDED CORNERS OPTIONAL.
A
B
FC
S
H
GD
J
L
M
16 PL
SEATING
18
916
K
PLANE
T
M
A
M
0.25 (0.010) T
DIM MIN MAX MIN MAX
MILLIMETERSINCHES
A0.740 0.770 18.80 19.55
B0.250 0.270 6.35 6.85
C0.145 0.175 3.69 4.44
D0.015 0.021 0.39 0.53
F0.040 0.70 1.02 1.77
G0.100 BSC 2.54 BSC
H0.050 BSC 1.27 BSC
J0.008 0.015 0.21 0.38
K0.110 0.130 2.80 3.30
L0.295 0.305 7.50 7.74
M0 10 0 10
S0.020 0.040 0.51 1.01
____
SOEIAJ16
F SUFFIX
PLASTIC EIAJ SOIC PACKAGE
CASE 96601
ISSUE A
HE
A1
DIM MIN MAX MIN MAX
INCHES
--- 2.05 --- 0.081
MILLIMETERS
0.05 0.20 0.002 0.008
0.35 0.50 0.014 0.020
0.10 0.20 0.007 0.011
9.90 10.50 0.390 0.413
5.10 5.45 0.201 0.215
1.27 BSC 0.050 BSC
7.40 8.20 0.291 0.323
0.50 0.85 0.020 0.033
1.10 1.50 0.043 0.059
0
0.70 0.90 0.028 0.035
--- 0.78 --- 0.031
A1
HE
Q1
LE
_10 _0
_10 _
LE
Q1
_
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS D AND E DO NOT INCLUDE
MOLD FLASH OR PROTRUSIONS AND ARE
MEASURED AT THE PARTING LINE. MOLD FLASH
OR PROTRUSIONS SHALL NOT EXCEED 0.15
(0.006) PER SIDE.
4. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
5. THE LEAD WIDTH DIMENSION (b) DOES NOT
INCLUDE DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.08 (0.003)
TOTAL IN EXCESS OF THE LEAD WIDTH
DIMENSION AT MAXIMUM MATERIAL CONDITION.
DAMBAR CANNOT BE LOCATED ON THE LOWER
RADIUS OR THE FOOT. MINIMUM SPACE
BETWEEN PROTRUSIONS AND ADJACENT LEAD
TO BE 0.46 ( 0.018).
M
L
DETAIL P
VIEW P
c
A
b
e
M
0.13 (0.005) 0.10 (0.004)
1
16 9
8
D
Z
E
A
b
c
D
E
e
L
M
Z
MC14020B
http://onsemi.com
7
PACKAGE DIMENSIONS
TSSOP16
DT SUFFIX
PLASTIC TSSOP PACKAGE
CASE 948F01
ISSUE B
ÇÇÇ
ÇÇÇ
DIM MIN MAX MIN MAX
INCHESMILLIMETERS
A4.90 5.10 0.193 0.200
B4.30 4.50 0.169 0.177
C−−− 1.20 −−− 0.047
D0.05 0.15 0.002 0.006
F0.50 0.75 0.020 0.030
G0.65 BSC 0.026 BSC
H0.18 0.28 0.007 0.011
J0.09 0.20 0.004 0.008
J1 0.09 0.16 0.004 0.006
K0.19 0.30 0.007 0.012
K1 0.19 0.25 0.007 0.010
L6.40 BSC 0.252 BSC
M0 8 0 8
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH.
PROTRUSIONS OR GATE BURRS. MOLD FLASH OR
GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER
SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD
FLASH OR PROTRUSION. INTERLEAD FLASH OR
PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER
SIDE.
5. DIMENSION K DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR PROTRUSION
SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K
DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE DETERMINED AT
DATUM PLANE -W-.
____
SECTION NN
SEATING
PLANE
IDENT.
PIN 1
18
16 9
DETAIL E
J
J1
B
C
D
A
K
K1
H
G
ÉÉÉ
ÉÉÉ
DETAIL E
F
M
L
2X L/2
U
S
U0.15 (0.006) T
S
U0.15 (0.006) T
S
U
M
0.10 (0.004) V S
T
0.10 (0.004)
T
V
W
0.25 (0.010)
16X REFK
N
N
7.06
16X
0.36 16X
1.26
0.65
DIMENSIONS: MILLIMETERS
1
PITCH
SOLDERING FOOTPRINT
MC14020B
http://onsemi.com
8
PACKAGE DIMENSIONS
SOIC16
D SUFFIX
PLASTIC SOIC PACKAGE
CASE 751B05
ISSUE K NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD
PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR PROTRUSION
SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D
DIMENSION AT MAXIMUM MATERIAL CONDITION.
18
16 9
SEATING
PLANE
F
J
M
RX 45_
G
8 PLP
B
A
M
0.25 (0.010) B S
T
D
K
C
16 PL
S
B
M
0.25 (0.010) A S
T
DIM MIN MAX MIN MAX
INCHESMILLIMETERS
A9.80 10.00 0.386 0.393
B3.80 4.00 0.150 0.157
C1.35 1.75 0.054 0.068
D0.35 0.49 0.014 0.019
F0.40 1.25 0.016 0.049
G1.27 BSC 0.050 BSC
J0.19 0.25 0.008 0.009
K0.10 0.25 0.004 0.009
M0 7 0 7
P5.80 6.20 0.229 0.244
R0.25 0.50 0.010 0.019
____
6.40
16X
0.58
16X 1.12
1.27
DIMENSIONS: MILLIMETERS
1
PITCH
SOLDERING FOOTPRINT
16
89
8X
ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
MC14020B/D
PUBLICATION ORDERING INFORMATION
N. American Technical Support: 8002829855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81357733850
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 3036752175 or 8003443860 Toll Free USA/Canada
Fax: 3036752176 or 8003443867 Toll Free USA/Canada
Email: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative