PD - 97106 IRFP4321PbF Applications l Motion Control Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l Hard Switched and High Frequency Circuits Benefits l Low RDSON Reduces Losses l Low Gate Charge Improves the Switching Performance l Improved Diode Recovery Improves Switching & EMI Performance l 30V Gate Voltage Rating Improves Robustness l Fully Characterized Avalanche SOA HEXFET(R) Power MOSFET VDSS RDS(on) typ. max. ID 150V 12m: 15.5m: 78A D D G G S D S TO-247AC G D S Gate Drain Source Absolute Maximum Ratings Symbol Parameter Max. Units A ID @ TC = 25C Continuous Drain Current, VGS @ 10V 78 c ID @ TC = 100C Continuous Drain Current, VGS @ 10V 55 IDM Pulsed Drain Current d 330 PD @TC = 25C Maximum Power Dissipation 310 W Linear Derating Factor 2.0 Gate-to-Source Voltage Single Pulse Avalanche Energy e 30 W/C V 210 mJ -55 to + 175 C VGS EAS (Thermally limited) TJ Operating Junction and TSTG Storage Temperature Range 300 Soldering Temperature, for 10 seconds (1.6mm from case) 10lbxin (1.1Nxm) Mounting torque, 6-32 or M3 screw Thermal Resistance Parameter Typ. Max. RJC Junction-to-Case g --- 0.49 RCS Case-to-Sink, Flat, Greased Surface Junction-to-Ambient g 0.24 --- --- 40 RJA www.irf.com Units C/W 1 6/23/06 IRFP4321PbF Static @ TJ = 25C (unless otherwise specified) Symbol V(BR)DSS Parameter Min. Typ. Max. Units --- --- V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance --- 150 --- mV/C Reference to 25C, ID = 1mAd --- 12 15.5 VGS(th) Gate Threshold Voltage 3.0 --- 5.0 IDSS Drain-to-Source Leakage Current RG(int) V Conditions 150 IGSS Drain-to-Source Breakdown Voltage VGS = 0V, ID = 250A m VGS = 10V, ID = 33A f V VDS = VGS, ID = 250A VDS = 150V, VGS = 0V --- --- 20 A --- --- 1.0 mA VDS = 150V, VGS = 0V, TJ = 125C nA Gate-to-Source Forward Leakage --- --- 100 Gate-to-Source Reverse Leakage --- --- -100 Internal Gate Resistance --- 0.8 --- VGS = 20V VGS = -20V Dynamic @ TJ = 25C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Units Conditions gfs Qg Forward Transconductance 130 --- --- S Total Gate Charge --- 71 110 nC Qgs Gate-to-Source Charge --- 24 --- VDS = 75V Qgd Gate-to-Drain ("Miller") Charge --- 21 --- VGS = 10V f td(on) Turn-On Delay Time --- 18 --- tr Rise Time --- 60 --- ID = 50A td(off) Turn-Off Delay Time --- 25 --- RG = 2.5 tf Fall Time --- 35 --- VGS = 10V f Ciss Input Capacitance --- 4460 --- Coss Output Capacitance --- 390 --- VDS = 25V Crss Reverse Transfer Capacitance --- 82 --- = 1.0MHz ns pF VDS = 25V, ID = 50A ID = 50A VDD = 75V VGS = 0V Diode Characteristics Symbol Parameter Min. Typ. Max. Units Conditions IS Continuous Source Current --- --- 78c A MOSFET symbol ISM (Body Diode) Pulsed Source Current --- --- 330 A showing the integral reverse VSD (Body Diode)d Diode Forward Voltage --- --- 1.3 V trr Reverse Recovery Time --- 89 130 ns Qrr Reverse Recovery Charge --- 300 450 nC IRRM Reverse Recovery Current --- 6.5 --- A ton Forward Turn-On Time G S p-n junction diode. TJ = 25C, IS = 50A, VGS = 0V f ID = 50A VR = 128V, di/dt = 100A/s f Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) Notes: Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 75A Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25C, L = 0.17mH RG = 25, IAS = 50A, VGS =10V. Part not recommended for use above this value. 2 D Pulse width 400s; duty cycle 2%. R is measured at TJ approximately 90C www.irf.com IRFP4321PbF 1000 1000 100 BOTTOM 10 1 5.0V 100 BOTTOM 5.0V 10 60s PULSE WIDTH Tj = 175C 60s PULSE WIDTH Tj = 25C 1 0.1 0.1 1 10 0.1 100 Fig 1. Typical Output Characteristics 10 100 Fig 2. Typical Output Characteristics 3.5 1000 TJ = 175C 10 TJ = 25C VDS = 25V 60s PULSE WIDTH 0.1 3.0 4.0 5.0 6.0 7.0 8.0 VGS = 10V 3.0 2.5 (Normalized) 100 1 ID = 50A RDS(on) , Drain-to-Source On Resistance ID, Drain-to-Source Current() 1 VDS , Drain-to-Source Voltage (V) VDS , Drain-to-Source Voltage (V) 2.0 1.5 1.0 0.5 9.0 -60 -40 -20 VGS, Gate-to-Source Voltage (V) 7000 VGS, Gate-to-Source Voltage (V) Coss = Cds + Cgd 5000 Ciss 4000 3000 Coss 2000 1000 Crss 10 100 VDS , Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage www.irf.com ID= 50A VDS = 120V 16 VDS= 75V VDS= 30V 12 8 4 0 0 1 20 40 60 80 100 120 140 160 180 Fig 4. Normalized On-Resistance vs. Temperature 20 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd 6000 0 TJ , Junction Temperature (C) Fig 3. Typical Transfer Characteristics C, Capacitance (pF) VGS 15V 10V 8.0V 7.0V 6.5V 6.0V 5.5V 5.0V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 8.0V 7.0V 6.5V 6.0V 5.5V 5.0V 0 20 40 60 80 100 120 QG Total Gate Charge (nC) Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage 3 IRFP4321PbF 1000 ID, Drain-to-Source Current (A) ISD , Reverse Drain Current (A) 1000 100 TJ = 175C 10 TJ = 25C 1 OPERATION IN THIS AREA LIMITED BY R DS (on) 100sec 100 1msec 10 10msec 1 Tc = 25C Tj = 175C Single Pulse VGS = 0V 0.1 0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1 VSD , Source-to-Drain Voltage (V) 60 40 20 0 75 100 125 150 175 V(BR)DSS , Drain-to-Source Breakdown Voltage ID , Drain Current (A) LIMITED BY PACKAGE 50 1000 190 180 170 160 150 140 -60 -40 -20 TC , Case Temperature (C) 0 20 40 60 80 100 120 140 160 180 TJ , Junction Temperature (C) Fig 9. Maximum Drain Current vs. Case Temperature Fig 10. Drain-to-Source Breakdown Voltage 700 EAS, Single Pulse Avalanche Energy (mJ) 5.0 4.0 Energy (J) 100 VDS , Drain-toSource Voltage (V) 80 25 10 Fig 8. Maximum Safe Operating Area Fig 7. Typical Source-Drain Diode Forward Voltage 3.0 2.0 1.0 0.0 ID 13A 20A BOTTOM 50A 600 TOP 500 400 300 200 100 0 0 20 40 60 80 100 120 140 VDS, Drain-to-Source Voltage (V) Fig 11. Typical COSS Stored Energy 4 DC 160 25 50 75 100 125 150 175 Starting TJ, Junction Temperature (C) Fig 12. Maximum Avalanche Energy Vs. DrainCurrent www.irf.com IRFP4321PbF Thermal Response ( Z thJC ) 1 D = 0.50 0.1 0.20 0.10 0.05 J 0.02 0.01 0.01 R1 R1 J 1 R2 R2 R3 R3 Ri (C/W) C 2 1 3 2 Ci= i/Ri Ci= i/Ri 3 (sec) 0.076792 0.000083 0.233645 0.001175 0.179727 0.008326 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case 100 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming Tj = 150C and Tstart =25C (Single Pulse) Duty Cycle = Single Pulse Avalanche Current (A) 0.01 10 0.05 0.10 1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming j = 25C and Tstart = 150C. 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 14. Typical Avalanche Current vs.Pulsewidth EAR , Avalanche Energy (mJ) 240 Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav *f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) TOP Single Pulse BOTTOM 1% Duty Cycle ID = 50A 200 160 120 80 40 0 25 50 75 100 125 150 175 Starting TJ , Junction Temperature (C) PD (ave) = 1/2 ( 1.3*BV*Iav) = DT/ ZthJC Iav = 2DT/ [1.3*BV*Zth] EAS (AR) = PD (ave)*tav Fig 15. Maximum Avalanche Energy vs. Temperature www.irf.com 5 IRFP4321PbF 40 ID = 1.0A ID = 1.0mA ID = 250A 5.0 30 4.0 IRRM - (A) VGS(th), Gate threshold Voltage (V) 6.0 3.0 20 IF = 33A VR = 128V 10 2.0 TJ = 125C TJ = 25C 0 1.0 -75 -50 -25 0 25 50 75 100 200 300 400 500 600 700 800 900 1000 100 125 150 175 dif / dt - (A / s) TJ , Temperature ( C ) Fig. 17 - Typical Recovery Current vs. dif/dt Fig 16. Threshold Voltage Vs. Temperature 40 3200 2800 2400 QRR - (nC) IRRM - (A) 30 20 10 0 2000 1600 1200 IF = 50A VR = 128V IF = 33A VR = 128V 800 TJ = 125C TJ = 25C TJ = 125C TJ = 25C 400 0 100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000 dif / dt - (A / s) dif / dt - (A / s) Fig. 18 - Typical Recovery Current vs. dif/dt Fig. 19 - Typical Stored Charge vs. dif/dt 3200 2800 QRR - (nC) 2400 2000 1600 1200 800 400 0 IF = 50A VR = 128V TJ = 125C TJ = 25C 100 200 300 400 500 600 700 800 900 1000 dif / dt - (A / s) 6 Fig. 20 - Typical Stored Charge vs. dif/dt www.irf.com IRFP4321PbF D.U.T Driver Gate Drive - - - * D.U.T. ISD Waveform Reverse Recovery Current + RG * * * * dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations * Low Stray Inductance * Ground Plane * Low Leakage Inductance Current Transformer + D= Period P.W. + + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent ISD Ripple 5% * VGS = 5V for Logic Level Devices Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET(R) Power MOSFETs V(BR)DSS 15V DRIVER L VDS tp D.U.T RG + V - DD IAS VGS 20V tp A 0.01 I AS Fig 22a. Unclamped Inductive Test Circuit LD Fig 22b. Unclamped Inductive Waveforms VDS VDS 90% + VDD - 10% D.U.T VGS VGS Pulse Width < 1s Duty Factor < 0.1% td(on) Fig 23a. Switching Time Test Circuit tr td(off) tf Fig 23b. Switching Time Waveforms Id Vds Vgs L DUT 0 1K VCC Vgs(th) Qgs1 Qgs2 Fig 24a. Gate Charge Test Circuit www.irf.com Qgd Qgodr Fig 24b. Gate Charge Waveform 7 IRFP4321PbF TO-247AC Package Outline Dimensions are shown in millimeters (inches) TO-247AC package is not recommended for Surface Mount Application. TO-247AC Part Marking Information EXAMPLE: THIS IS AN IRFPE30 WITH AS SEMBLY LOT CODE 5657 ASS EMBLED ON WW 35, 2001 IN T HE AS SEMBLY LINE "H" Note: "P" in ass embly line pos ition indicates "Lead-Free" INTERNAT IONAL RECTIFIER LOGO ASSEMBLY LOT CODE PART NUMBER IRFPE30 56 135H 57 DATE CODE YEAR 1 = 2001 WEEK 35 LINE H Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR's Web site. 8 IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 06/06 www.irf.com Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/