PHOTOTRANSISTOR OPTOCOUPLERS DPTOELECTRONICS 4N25 4N27 4N26 4N28 n The 4N25, 4N26, 4N27, and 4N28 series of optocouplers i] 4 t 15 MAX have an NPN silicon planar phototransistor optically bx $86 coupled to a gallium arsenide diode. . 03 O Vi oa See L_ 8.89 | wo .38 REF AC line/digital logic isolator Digital logic/digital logic isolator ws Telephone/telegraph line receiver @ Twisted pair line receiver m High frequency power supply feedback control m@ Relay contact monitor m@ Power supply monitor @ Small package size and low cost m= Excellent frequency response m UL recognizedFile E90700 040 DIMENSIONS IN mm PACKAGE CODE K STi6G03A AnoDE[I BASE cara 2 alco. i BI jemi. C2079 . Al iets LUT Se if Z Lid EE TOTAL PACKAGE *Storage temperature .. 2... ete tenn e tenes 55C to 150C *Operating temperature at junction ...........0. 0.0 eee eee 55C to 100C *Lead temperature (soldering, 10 S@C) 6... cette 260C *Total package power dissipation at 25C ambient (LED plus detector) ............. 0... eee eee 250 mW *Derate linearly from 25C 2... cn ete enn e een e teen n nee een n eee eens 3.3 mMW/C INPUT DIODE OUTPUT TRANSISTOR *Forward DC current continuous ............ 80mA = *Collector emitter voltage (BVceo) .-.-- eee 30 V *Reverse voltage ............-. 0 cee cee eee 3.0V *Collector base voltage (BVoso) .. 6... ee eee 70V *Peak forward current *Emitter collector voltage (BVico) ... 6... ee 7V (300 ps, 2% duty cycle) ................... 3.0A *Power dissipation at 25C ambient ........ 150 mW *Power dissipation at 25C ambient ........ 150mW = *Derate linearly from 25C .............. 2.0 mw/C *Derate linearly from 25C .............. 2.0 mW/C *Indicates JEDEC Registered Data. 1-23 OPTOELECTAOWICS PHOTOTRANSISTOR OPTOCOUPLERS GUAR. TEST CHARACTERISTICS SYMBOL MIN. TYP. MAX. UNITS CONDITIONS INPUT DIODE *Forward voltage Ve 1.20 1.50 Vv l=10 mA Capacitance Cc 150 pF V-=0 V, f=1 MHz *Reverse leakage current 05 100 BA Va=3.0 V, R.=1.0 MQ DETECTOR DC forward current gain ee 250 Voe=5 V, Ie=500 pA *Collector to emitter breakdown voltage BV cro 30 65 Vv |.=1.0 mA, I,=0 *Collector to base breakdown voltage BVezo 70 165 Vv Ik=100 BA, |e=O *Emitter to collector breakdown voltage BV.co 7 14 Vv le=100 pA, =O *Collector to emitter leakage current (4N25, 4N26, 4N27) leeo 3.5 50 nA Vce=10 V Base Open *Collector to emitter leakage current (4N28) 100 nA *Collector to base leakage current lose 0.1 20 - nA Ves=10 V Emitter Open GUAR. TEST DC CHARACTERISTICS SYMBOL MIN. TYP. MAX. UNITS CONDITIONS *Collector output current (a) (4N25, 4N26) I 2.0 5.0 _ mA Vce=10 V, =10 mA, |e=0 (4N27, 4N28) 1.0 3.0 *Collector-emitter saturation Vegan 0.2 0.5 Vv I-=2.0 mA, |l-=50 mA UNITS ie TEST CONDITIONS Non-saturated Collector Delay time t, 0.5 LS R,=100 0, lk=2 mA, Vec=10V Rise time t 2.5 us (Fig. 10 and 11) Fall time t 2.6 us Non-saturated Collector Delay time ty 2.0 BS Ri=1kO, le 2 MA, Voc=10 V Rise time t 15 ps (Fig. 10 and 11) Fall time t 15 us *Indicates JEDEC Registered Data. (a) Pulse Test: Pulse Width=300 us, Duty Cycle <2.0% (b) For this test LED pins 1 and 2 are common and Phototransistor pins 4, 5 and 6 are common. {c) If adjusted to yield |.=2 mA and i,=0.7 mA RMS: Bandwidth referenced to 10 kHz. 1.94 PHOTOTRANSISTOR OPTOCOUPLERS OPTOELECTRONICS GUAR. TEST AC CHARACTERISTICS SYMBOL MIN. TYP. MAX. UNITS CONDITIONS Saturated tor (fram 5 V to 0.8 V) tin (SAT) 5 us R.=2kQ, = 15 MA, Vec=5 V tor (fram SAT to 2.0 V) tor (SAT) 25 Bs Re=Open (Fig. 10) Saturated tn (from 5 V to 0.8 V) tor (SAT) 5 Ss R.=2kO, |=20 mA, Vog=5 V toe (from SAT to 2.0 V) tor (SAT) 18 LS R= 100k (Fig. 10) Non-saturated BaseCollector photo diode Rise time t, 175 ns R.=1kO, Ves=10 V Fall time t 175 ns Isolation voltage (b) Lost pA (4N25, 4N26, 4N27, 4N28) Viso 5300 _ _ Vv RMS, t=1 minute *(4N26, 4N27) 1500 v Peak *(4N28) 500 _ Vv Peak Isolation resistance (b) 10" a V=500 VDC Isolation capacitance (b) 1.3 pF V=0, f= 1.0 MHz Bandwidth (c) Bw 300 kHz I-=2.0 mA, R,=100 0 (also see note 2) (Fig. 12) *Indicates JEDEC Registered Data. (a) Pulse Test: Pulse Width=300 us, Duty Cycle <2.0% (b) For this test LED pins 1 and 2 are common and Phototransistor pins 4, 5 and 6 are common. (c) If adjusted to yield |,=2 mA and i.=0.7 mA RMS; Bandwidth referenced to 10 kHz. 14 n 5 aA 18 r Oo 13 - > al = Woe = o.3V > 46 CE = 5: ~- = -55C | ) | Rye 1.0 P = yal. | "1 Pa Ole a | | LT 2 ~ uy | O 11eT= +e a i 078 f, > 1.0 | a Qa T= +1006 i w 0.50 7 a | IF a = oo tw} | < & a Zz 0.25 2 3 0.8 1 Ly L Zz 0.102 05 1 2 5 10 20 50 100 0 FORWARD CURRENT Ir imA) 0 5 10 15 20 C1686 lp (mA) C1679 Fig. 1. Forward Voltage vs. Fig. 2. Normalized CTR vs. Current Forward Current 1-25 OPTOELECTRONICS PHOTOTRANSISTOR OPTOCOUPLERS T \ c 0.3V < IF = 5mA+ Ve 5.0V 2/5 IF = 20mAq | \ Ee iop+ | TS | peN 7 sq E os o CTA fr oy N 4 a 0.6 a4 I Z | xc 3 g | | 0.4 | -75 -50 -25 0 +25 +50 +75 +100+125 of 2 3 45 67 8 $1011 Ta (C) C1680 le (mA) C1243 Fig. 3. Normalized CTR vs. Fig. 4. Collector Current vs. Temperature Forward Current 1.0 1.00 oo a 0-90 _| & 9.90 aot & 2 ogo = 0.80 es | 2 3 Ofe 0.70 Off 0.70 IF = 20mA ~L 0.60 IF = 20mA 2 9.69 Ip = 10mA oc le = 10mA le = 5mA G 950 ie = 5mA 5 0.50 Q 0.40 QO 0.40 w uw z 0.30 N 0.30 z 0.20 S 0.20 c 5 > 0.10 9 0.10 9 0 10K 100K 1M 10K 100K 1M Ree BASE RESISTANCE (9) Ree BASE RESISTANCE (0) C1681 C1682 Fig. 5. CTR vs. RBE (Unsaturated) Fig. 6. CTR vs. RBE (Saturated) 1.2 T 1.2 TS 44 TS i a & : wr Ry 2 i f e|2 Y | aN 3|2 \ LIE 1.0 TE ay | /) | NN. = [ i 5 09 a N a Y w a j N N N08 t a 1.0 z y Veo = 10V = 2 / Ic = 2mA x Vcc = 10V G 7 R= 1009 7] g Ic = 2mA gS / | (See Fig. 10) 2 Ru = 1000 06 LUG) dL 09 (See Fig. 10) 10K 100K 1M bed 10K 100K 1M oo Rae BASE RESISTANCE (a) Ree BASE RESISTANCE iO) C1683 C1684 Fig. 7. Normalized Tor vs. RBE Fig. 8. Normalized To, vs. RBE 1-26 OPTOELECTRONICS PHOTOTRANSISTOR OPTOCOUPLERS Veco = 10V 12 1 . wi Vee = 10V = \ Ri = 1002 PULSE WIDTH = 100 ys F ' (See Fig. 10) Rt INPUT DUTY CYCLE = 10% 9 1.0 | Zz |& ov _r Pe OUTPUT ele | @ 3 NN i OUTPUT wos 4, Nog Se z 3 Ree <. = - 06 3 x i Oo | todd ot 0 5 10 15 20 = Sy ton PY tot to (mA) C1685 C1296A C1294 Fig. 9. Switching Time vs. IC Fig. 10. Switching Time Fig. 11. Switching Time Waveforms Test Circuit MODULATION v CONSTANT INPUT CURRENT INPUT F ln, | cetectTor _ ) te (DC) =2maAa ie = 0.7 MA RMS Fig. 12. Modulation Circuit Used to Obtain Output vs. Frequency Plot 1. The current transfer ratio (I,/1,} is the ratio of the detector collector current to the LED input current with Vor at 10 votts. 2. The frequency at which i, is 3dB down from the 10 kHz value. 3. Rise time (t) is the time required for the collector current to increase from 10% of its final value to 90%, Fail time (t) is the time required for the collector current to decrease from 90% of its initial value to 10%. 1-27