INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
IRG7PH35UDPbF
IRG7PH35UD-EP
1www.irf.com
02/08/10
E
G
n-channel
C
Features
Low VCE (ON) trench IGBT technology
Low switching losses
Square RBSOA
100% of the parts tested for ILM
Positive VCE (ON) temperature co-efficient
Ultra fast soft recovery co-pak diode
Tight parameter distribution
Lead-Free
Benefits
High efficiency in a wide range of applications
Suitable for a wide range of switching frequencies due to
low VCE (ON) and low switching losses
Rugged transient performance for increased reliability
Excellent current sharing in parallel operation
Applications
U.P.S.
Welding
Solar Inverter
Induction Heating GC E
Gate Collector Emitter
TO-247AC
IRG7PH35UDPbF
TO-247AD
IRG7PH35UD-EP
GCE
C
GCE
C
VCES = 1200V
I NOMINAL = 20A
TJ(max) = 150°C
VCE(on) typ. = 1.9V
Absolute Maximum Ratings
Parameter Max. Units
V
CES
Collector-to-Emitter Voltage 1200 V
I
C
@ T
C
= 25°C Continuous Collector Current 50
I
C
@ T
C
= 100°C Continuous Collector Current 25
I
NOMINAL
Nominal Current 20
I
CM
Pulse Collector Current, V
GE
=15V 60
I
LM
Clamped Inductive Load Current, V
GE
=20V
c
80
I
F
@ T
C
= 25°C Diode Continous Forward Current 50
I
F
@ T
C
= 100°C Diode Continous Forward Current 25
I
FM
Diode Maximum Forward Current
d
80
V
GE
Continuous Gate-to-Emitter Voltage ±30 V
P
D
@ T
C
= 25°C Maximum Power Dissipation 180
P
D
@ T
C
= 100°C Maximum Power Dissipation 70
T
J
Operating Junction and -55 to +150
T
STG
Storage Temperature Range
Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or M3 Screw 10 lbf·in (1.1 N·m)
Thermal Resistance
Parameter Min. Typ. Max. Units
R
θJC
(IGBT) Thermal Resistance Junction-to-Case-(each IGBT)
f
––– ––– 0.70
R
θJC
(Diode) Thermal Resistance Junction-to-Case-(each Diode) ––– ––– 0.65
R
θCS
Thermal Resistance, Case-to-Sink (flat, greased surface) ––– 0.24 ––
R
θJA
Thermal Resistance, Junction-to-Ambient (typical socket mount) ––– 40 –––
°C/W
A
W
°C
PD-96288
IRG7PH35UDPbF/IRG7PH35UD-EP
2www.irf.com
Notes:
VCC = 80% (VCES), VGE = 20V, RG = 50.
Pulse width limited by max. junction temperature.
Refer to AN-1086 for guidelines for measuring V(BR)CES safely.
Rθ is measured at TJ of approximately 90°C.
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions
V
(BR)CES
Collector-to-Emitter Breakdown Voltage 1200 V V
GE
= 0V, I
C
= 250µA
e
V
(BR)CES
/T
J
Temperature Coeff. of Breakdown Voltage
—1.2—V/°C
V
GE
= 0V, I
C
= 1mA (2C-15C)
V
CE(on)
Collector-to-Emitter Saturation Voltage 1.9 2.2 V I
C
= 20A, V
GE
= 15V, T
J
= 25°C
—2.3— I
C
= 20A, V
GE
= 15V, T
J
= 150°C
V
GE(th)
Gate Threshold Voltage 3.0 6.0 V V
CE
= V
GE
, I
C
= 600µA
VGE(th)/TJ
Threshold Voltage temp. coefficient -16 mV/°C V
CE
= V
GE
, I
C
= 600µA (25°C - 150°C)
gfe Forward Transconductance 22 S V
CE
= 50V, I
C
= 20A, PW = 30µs
I
CES
Collector-to-Emitter Leakage Current 2.0 100 µA V
GE
= 0V, V
CE
= 1200V
2000 V
GE
= 0V, V
CE
= 1200V, T
J
= 150°C
V
FM
Diode Forward Voltage Drop 2.8 3.6 V I
F
= 20A
—2.5— I
F
= 20A, T
J
= 150°C
I
GES
Gate-to-Emitter Leakage Current ±100 nA V
GE
= ±30V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units
Q
g
Total Gate Charge (turn-on) 85 130 I
C
= 20A
Q
ge
Gate-to-Emitter Charge (turn-on) 15 20 nC V
GE
= 15V
Q
gc
Gate-to-Collector Charge (turn-on) 35 50 V
CC
= 600V
E
on
Turn-On Switching Loss 1060 1300 I
C
= 20A, V
CC
= 600V, V
GE
= 15V
E
off
Turn-Off Switching Loss 620 850 µJ R
G
= 10, L = 200uH, L
S
= 150nH, T
J
= 25°C
E
total
Total Switching Loss 1680 2150
Energy losses include tail & diode reverse recovery
t
d(on)
Turn-On delay time 30 50 I
C
= 20A, V
CC
= 600V, V
GE
= 15V
t
r
Rise time 15 30 ns R
G
= 10, L = 200uH, L
S
= 150nH, T
J
= 25°C
t
d(off)
Turn-Off delay time 160 180
t
f
Fall time 80 105
E
on
Turn-On Switching Loss 1750 I
C
= 20A, V
CC
= 600V, V
GE
=15V
E
off
Turn-Off Switching Loss 1120 µJ R
G
=10, L=200uH, L
S
=150nH, T
J
= 150°C
e
E
total
Total Switching Loss 2870
Energy losses include tail & diode reverse recovery
t
d(on)
Turn-On delay time 30 I
C
= 20A, V
CC
= 600V, V
GE
= 15V
t
r
Rise time 15 ns R
G
= 10, L = 200uH, L
S
= 150nH
t
d(off)
Turn-Off delay time 190 T
J
= 150°C
t
f
Fall time 210
C
ies
Input Capacitance 1940 pF V
GE
= 0V
C
oes
Output Capacitance 120 V
CC
= 30V
C
res
Reverse Transfer Capacitance 40 f = 1.0Mhz
T
J
= 150°C, I
C
= 80A
RBSOA Reverse Bias Safe Operating Area FULL SQUARE V
CC
= 960V, Vp =1200V
Rg = 10, V
GE
= +20V to 0V
Erec Reverse Recovery Energy of the Diode 790 µJ T
J
= 150°C
t
rr
Diode Reverse Recovery Time 105 ns V
CC
= 600V, I
F
= 20A
I
rr
Peak Reverse Recovery Current 40 A V
GE
= 15V, Rg = 10, L =1.0mH, L
s
= 150nH
Conditions
IRG7PH35UDPbF/IRG7PH35UD-EP
www.irf.com 3
Fig. 2 - Maximum DC Collector Current vs.
Case Temperature
Fig. 3- Power Dissipation vs. Case
Temperature
Fig. 4 - Forward SOA
TC = 25°C, TJ 150°C; VGE =15V
Fig. 5 - Reverse Bias SOA
TJ = 150°C; VGE = 20V
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
10 100 1000 10000
VCE (V)
1
10
100
1000
IC (A)
1 10 100 1000 10000
VCE (V)
0.01
0.1
1
10
100
1000
IC (A)
10µsec
100µsec
Tc = 25°C
Tj = 150°C
Single Pulse
DC
1msec
0 20 40 60 80 100 120 140 160
TC (°C)
0
50
100
150
200
Ptot (W)
25 50 75 100 125 150
TC (°C)
0
10
20
30
40
50
60
IC (A)
0.1 110 100
f , Frequency ( kHz )
0
5
10
15
20
25
30
35
40
45
Load Current ( A )
For both:
Duty cycle : 50%
Tj = 150°C
Tc = 100°C
Gate drive as specified
Power Dissipation = 70W
I
Square Wave:
VCC
Diode as specified
IRG7PH35UDPbF/IRG7PH35UD-EP
4www.irf.com
Fig. 6- Typ. IGBT Output Characteristics
TJ = -40°C; tp = 30µs
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 30µs
Fig. 8 - Typ. IGBT Output Characteristics
TJ = 150°C; tp = 30µs
Fig. 9 - Typ. Diode Forward Characteristics
tp = 380µs
Fig. 11 - Typical VCE vs. VGE
TJ = 25°C
Fig. 10 - Typical VCE vs. VGE
TJ = -40°C
0246810
VCE (V)
0
10
20
30
40
50
60
70
80
ICE (A)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
0246810
VCE (V)
0
10
20
30
40
50
60
70
80
ICE (A)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
0246810
VCE (V)
0
10
20
30
40
50
60
70
80
ICE (A)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
4 8 12 16 20
VGE (V)
1
2
3
4
5
6
7
8
VCE (V)
ICE = 10A
ICE = 20A
ICE = 40A
5 101520
VGE (V)
1
2
3
4
5
6
7
8
VCE (V)
ICE = 10A
ICE = 20A
ICE = 40A
0123456
VF (V)
0
10
20
30
40
50
60
70
80
IF (A)
-40°C
25°C
150°C
IRG7PH35UDPbF/IRG7PH35UD-EP
www.irf.com 5
Fig. 12 - Typical VCE vs. VGE
TJ = 150°C
Fig. 13 - Typ. Transfer Characteristics
VCE = 50V, tp = 30µs
Fig. 14 - Typ. Energy Loss vs. IC
TJ = 150°C; L = 680µH; VCE = 600V, RG = 10; VGE = 15V
Fig. 16 - Typ. Energy Loss vs. RG
TJ = 150°C; L = 680µH; VCE = 600V, ICE = 20A; VGE = 15V
Fig. 17 - Typ. Switching Time vs. RG
TJ = 150°C; L = 680µH; VCE = 600V, ICE = 20A; VGE = 15V
Fig. 15 - Typ. Switching Time vs. IC
TJ = 150°C; L = 680µH; VCE = 600V, RG = 10; VGE = 15V
5 101520
VGE (V)
1
2
3
4
5
6
7
8
VCE (V)
ICE = 10A
ICE = 20A
ICE = 40A
45678910
VGE, Gate-to-Emitter Voltage (V)
0
10
20
30
40
50
60
70
80
IC, Collector-to-Emitter Current (A)
TJ = 150°C
TJ = 25°C
0 10203040
IC (A)
0
1000
2000
3000
4000
Energy (µJ)
EOFF
EON
020 40 60 80 100
RG ()
500
1000
1500
2000
2500
3000
3500
Energy (µJ)
EON
EOFF
010 20 30 40
IC (A)
1
10
100
1000
Swiching Time (ns)
tR
tdOFF
tF
tdON
020 40 60 80 100
RG ()
10
100
1000
10000
Swiching Time (ns)
tR
tdOFF
tF
tdON
IRG7PH35UDPbF/IRG7PH35UD-EP
6www.irf.com
Fig. 20 - Typ. Diode IRR vs. diF/dt
VCC = 600V; VGE = 15V; IF = 20A; TJ = 150°C
Fig. 21 - Typ. Diode QRR vs. diF/dt
VCC = 600V; VGE = 15V; TJ = 150°C
Fig. 18 - Typ. Diode IRR vs. IF
TJ = 150°C
Fig. 19 - Typ. Diode IRR vs. RG
TJ = 150°C
Fig. 22 - Typ. Diode ERR vs. IF
TJ = 150°C
10 15 20 25 30 35 40
IF (A)
10
20
30
40
50
60
IRR (A)
RG = 5.0Ω
RG = 10Ω
RG = 100Ω
RG = 47Ω
0 200 400 600 800 10001200140016001800
diF /dt (A/µs)
0
1000
2000
3000
4000
5000
6000
QRR (µC)
5.0Ω
10Ω
100Ω
47Ω 20A
40A
10A
10 15 20 25 30 35 40
IF (A)
0
500
1000
1500
2000
Energy (µJ)
RG = 5.0
RG = 10
RG = 47
RG = 100
Fig. 23 - Typical Gate Threshold Voltage
(Normalized) vs. Junction Temperature
200 400 600 800 1000 1200 1400 1600
diF /dt ( A/µs)
20
25
30
35
40
45
50
55
IRR (A)
020 40 60 80 100
RG (Ω)
20
25
30
35
40
45
50
IRR (A)
25 50 75 100 125 150 175
TJ , Temperature (°C)
1.0
2.0
3.0
4.0
5.0
VGE(th), Gate Threshold Voltage (Normalized)
IC = 600µA
IRG7PH35UDPbF/IRG7PH35UD-EP
www.irf.com 7
Fig. 23 - Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
Fig. 24 - Typical Gate Charge vs. VGE
ICE = 20A; L = 2.4mH
Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
Fig. 26. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
0100 200 300 400 500 600
VCE (V)
10
100
1000
10000
Capacitance (pF)
Cies
Coes
Cres
0 20406080100
Q G, Total Gate Charge (nC)
0
2
4
6
8
10
12
14
16
VGE, Gate-to-Emitter Voltage (V)
VCES = 600V
VCES = 400V
1E-006 1E-005 0.0001 0.001 0.01 0.1
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
Thermal Response ( Z thJC )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
τJ
τJ
τ1
τ1
τ2
τ2τ3
τ3
R1
R1R2
R2R3
R3
Ci i/Ri
Ci= τi/Ri
τ
τC
τ4
τ4
R4
R4Ri (°C/W) τi (sec)
0.017 0.000013
0.218 0.000141
0.299 0.002184
0.177 0.013107
1E-006 1E-005 0.0001 0.001 0.01 0.1 1
t1 , Rectangular Pulse Duration (sec)
0.0001
0.001
0.01
0.1
1
Thermal Response ( Z thJC )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE ) Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
τJ
τJ
τ1
τ1
τ2
τ2τ3
τ3
R1
R1R2
R2R3
R3
Ci i/Ri
Ci= τi/Ri
τ
τC
τ4
τ4
R4
R4Ri (°C/W) τi (sec)
0.015 0.000043
0.235 0.000408
0.281 0.003593
0.130 0.020382
IRG7PH35UDPbF/IRG7PH35UD-EP
8www.irf.com
Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit
Fig.C.T.4 - Resistive Load Circuit
Fig.C.T.3 - Switching Loss Circuit
0
1K
VCCDUT
L
L
Rg
80 V
DUT VCC
+
-
L
Rg
VCC
DUT /
DRIVER
diode clamp /
DUT
-5V
Rg
VCC
DUT
R =
VCC
ICM
G force
C sens
e
100K
DUT
0.0075µF
D1 22K
E force
C force
E sense
Fig.C.T.5 - BVCES Filter Circuit
IRG7PH35UDPbF/IRG7PH35UD-EP
www.irf.com 9
Fig. WF3 - Typ. Diode Recovery Waveform
@ TJ = 150°C using Fig. CT.4
Fig. WF1 - Typ. Turn-off Loss Waveform
@ TJ = 150°C using Fig. CT.4
Fig. WF2 - Typ. Turn-on Loss Waveform
@ TJ = 150°C using Fig. CT.4
-100
0
100
200
300
400
500
600
700
800
-0.5 0 0.5 1 1.5 2
time(µs)
V
CE
(V)
-5
0
5
10
15
20
25
30
35
40
I
CE
(A)
90% I
CE
5% V
CE
5% I
CE
Eoff Loss
tf
-100
0
100
200
300
400
500
600
700
800
-0.3 -0.1 0.1 0.3 0.5
time (µs)
V
CE
(V)
-10
0
10
20
30
40
50
60
70
80
I
CE
(A)
TEST CURRENT
90% test current
5% V
CE
10% test
current
tr
Eon Loss
-50
-40
-30
-20
-10
0
10
20
30
-0.25 -0.05 0.15 0.35 0.55
time (µS)
V
F
(V)
Peak
I
RR
t
RR
E
REC
10%
Peak
IRR
IRG7PH35UDPbF/IRG7PH35UD-EP
10 www.irf.com
TO-247AC Part Marking Information
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
TO-247AC package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
<($5 
'$7(&2'(
3$57180%(5
,17(51$7,21$/
/2*2
5(&7,),(5
$66(0%/<

,5)3(
+
/,1(+
LQGLFDWHV/HDG)UHH :((./27&2'(
,17+($66(0%/</,1(+
$66(0%/('21::
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
(;$03/( :,7+$66(0%/<
7+,6,6$1,5)3(
/27&2'(
IRG7PH35UDPbF/IRG7PH35UD-EP
www.irf.com 11
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 02/2010
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
TO-247AD Part Marking Information
TO-247AD Package Outline
Dimensions are shown in millimeters (inches)
TO-247AD package is not recommended for Surface Mount Application.
$66(0%/< <($5 
$66(0%/('21::
,17+($66(0%/</,1(+
(;$03/( 7+,6,6$1,5*3%.'(
/27&2'(
:,7+$66(0%/< 3$57180%(5
'$7(&2'(
,17(51$7,21$/
5(&7,),(5
/2*2
+

:((.
/,1(+
/27&2'(
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH