Features * High performance, low power Atmel(R) AVR(R) 8-bit microcontroller * Advanced RISC architecture * * * * * * * * * - 131 powerful instructions - most single clock cycle execution - 32 x 8 general purpose working registers - Fully static operation - Up to 20 MIPS throughput at 20MHz - On-chip 2-cycle multiplier High endurance non-volatile memory segments - 4/8/16 Kbytes of in-system self-programmable flash program memory - 256/512/512 bytes EEPROM - 512/1K/1Kbytes internal SRAM - Write/erase cyles: 10,000 flash/100,000 EEPROM - Data retention: 20 years at 85C/100 years at 25C(1) - Optional boot code section with independent lock bits In-system programming by on-chip boot program True read-while-write operation - Programming lock for software security QTouch(R) library support - Capacitive touch buttons, sliders and wheels - QTouch and QMatrix acquisition - Up to 64 sense channels Peripheral features - Two 8-bit timer/counters with separate prescaler and compare mode - One 16-bit timer/counter with separate prescaler, compare mode, and capture mode - Real time counter with separate oscillator - Six PWM channels - 8-channel 10-bit ADC in TQFP and QFN/MLF package - 6-channel 10-bit ADC in PDIP Package - Programmable serial USART - Master/slave SPI serial interface - Byte-oriented 2-wire serial interface (Philips I2C compatible) - Programmable watchdog timer with separate on-chip oscillator - On-chip analog comparator - Interrupt and wake-up on pin change Special microcontroller features - DebugWIRE on-chip debug system - Power-on reset and programmable brown-out detection - Internal calibrated oscillator - External and internal interrupt sources - Five sleep modes: Idle, ADC noise reduction, power-save, power-down, and standby I/O and packages - 23 programmable I/O lines - 28-pin PDIP, 32-lead TQFP, 28-pad QFN/MLF and 32-pad QFN/MLF Operating voltage: - 1.8V - 5.5V for Atmel ATmega48V/88V/168V - 2.7V - 5.5V for Atmel ATmega48/88/168 Temperature range: - -40C to 85C Speed grade: - ATmega48V/88V/168V: 0 - 4MHz @ 1.8V - 5.5V, 0 - 10MHz @ 2.7V - 5.5V - ATmega48/88/168: 0 - 10MHz @ 2.7V - 5.5V, 0 - 20MHz @ 4.5V - 5.5V Low power consumption - Active mode: 250A at 1MHz, 1.8V 15A at 32kHz, 1.8V (including oscillator) - Power-down mode: 0.1A at 1.8V Note: 1. See "Data retention" on page 8 for details. 8-bit Atmel Microcontroller with 4/8/16K Bytes In-System Programmable Flash ATmega48/V ATmega88/V ATmega168/V Rev. 2545U-AVR-11/2015 ATmega48/88/168 1. Pin configurations Figure 1-1. Pinout Atmel ATmega48/88/168. PDIP 32 31 30 29 28 27 26 25 PD2 (INT0/PCINT18) PD1 (TXD/PCINT17) PD0 (RXD/PCINT16) PC6 (RESET/PCINT14) PC5 (ADC5/SCL/PCINT13) PC4 (ADC4/SDA/PCINT12) PC3 (ADC3/PCINT11) PC2 (ADC2/PCINT10) TQFP Top View 24 23 22 21 20 19 18 17 1 2 3 4 5 6 7 8 PC1 (ADC1/PCINT9) PC0 (ADC0/PCINT8) ADC7 GND AREF ADC6 AVCC PB5 (SCK/PCINT5) (PCINT21/OC0B/T1) PD5 (PCINT22/OC0A/AIN0) PD6 (PCINT23/AIN1) PD7 (PCINT0/CLKO/ICP1) PB0 (PCINT1/OC1A) PB1 (PCINT2/SS/OC1B) PB2 (PCINT3/OC2A/MOSI) PB3 (PCINT4/MISO) PB4 9 10 11 12 13 14 15 16 PD2 (INT0/PCINT18) PD1 (TXD/PCINT17) PD0 (RXD/PCINT16) PC6 (RESET/PCINT14) PC5 (ADC5/SCL/PCINT13) PC4 (ADC4/SDA/PCINT12) PC3 (ADC3/PCINT11) PC2 (ADC2/PCINT10) PC2 (ADC2/PCINT10) PC1 (ADC1/PCINT9) PC0 (ADC0/PCINT8) GND AREF AVCC PB5 (SCK/PCINT5) (PCINT19/OC2B/INT1) PD3 (PCINT20/XCK/T0) PD4 GND VCC GND VCC (PCINT6/XTAL1/TOSC1) PB6 (PCINT7/XTAL2/TOSC2) PB7 24 23 22 21 20 19 18 17 1 2 3 4 5 6 7 8 PC1 (ADC1/PCINT9) PC0 (ADC0/PCINT8) ADC7 GND AREF ADC6 AVCC PB5 (SCK/PCINT5) 9 10 11 12 13 14 15 16 8 9 10 11 12 13 14 (PCINT22/OC0A/AIN0) PD6 (PCINT23/AIN1) PD7 (PCINT0/CLKO/ICP1) PB0 (PCINT1/OC1A) PB1 (PCINT2/SS/OC1B) PB2 (PCINT3/OC2A/MOSI) PB3 (PCINT4/MISO) PB4 NOTE: Bottom pad should be soldered to ground. PC5 (ADC5/SCL/PCINT13) PC4 (ADC4/SDA/PCINT12) PC3 (ADC3/PCINT11) PC2 (ADC2/PCINT10) PC1 (ADC1/PCINT9) PC0 (ADC0/PCINT8) GND AREF AVCC PB5 (SCK/PCINT5) PB4 (MISO/PCINT4) PB3 (MOSI/OC2A/PCINT3) PB2 (SS/OC1B/PCINT2) PB1 (OC1A/PCINT1) 32 31 30 29 28 27 26 25 PD2 (INT0/PCINT18) PD1 (TXD/PCINT17) PD0 (RXD/PCINT16) PC6 (RESET/PCINT14) PC5 (ADC5/SCL/PCINT13) PC4 (ADC4/SDA/PCINT12) PC3 (ADC3/PCINT11) 28 27 26 25 24 23 22 21 20 19 18 17 16 15 1 2 3 4 5 6 7 28 27 26 25 24 23 22 21 20 19 18 17 16 15 32 MLF Top View 28 MLF Top View (PCINT19/OC2B/INT1) PD3 (PCINT20/XCK/T0) PD4 VCC GND (PCINT6/XTAL1/TOSC1) PB6 (PCINT7/XTAL2/TOSC2) PB7 (PCINT21/OC0B/T1) PD5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 NOTE: Bottom pad should be soldered to ground. (PCINT21/OC0B/T1) PD5 (PCINT22/OC0A/AIN0) PD6 (PCINT23/AIN1) PD7 (PCINT0/CLKO/ICP1) PB0 (PCINT1/OC1A) PB1 (PCINT2/SS/OC1B) PB2 (PCINT3/OC2A/MOSI) PB3 (PCINT4/MISO) PB4 (PCINT19/OC2B/INT1) PD3 (PCINT20/XCK/T0) PD4 GND VCC GND VCC (PCINT6/XTAL1/TOSC1) PB6 (PCINT7/XTAL2/TOSC2) PB7 (PCINT14/RESET) PC6 (PCINT16/RXD) PD0 (PCINT17/TXD) PD1 (PCINT18/INT0) PD2 (PCINT19/OC2B/INT1) PD3 (PCINT20/XCK/T0) PD4 VCC GND (PCINT6/XTAL1/TOSC1) PB6 (PCINT7/XTAL2/TOSC2) PB7 (PCINT21/OC0B/T1) PD5 (PCINT22/OC0A/AIN0) PD6 (PCINT23/AIN1) PD7 (PCINT0/CLKO/ICP1) PB0 2 2545U-AVR-11/2015 ATmega48/88/168 1.1 Pin descriptions 1.1.1 VCC Digital supply voltage. 1.1.2 GND Ground. 1.1.3 Port B (PB7:0) XTAL1/XTAL2/TOSC1/TOSC2 Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running. Depending on the clock selection fuse settings, PB6 can be used as input to the inverting Oscillator amplifier and input to the internal clock operating circuit. Depending on the clock selection fuse settings, PB7 can be used as output from the inverting Oscillator amplifier. If the Internal Calibrated RC Oscillator is used as chip clock source, PB7..6 is used as TOSC2..1 input for the Asynchronous Timer/Counter2 if the AS2 bit in ASSR is set. The various special features of Port B are elaborated in "Alternate functions of port B" on page 83 and "System clock and clock options" on page 27. 1.1.4 Port C (PC5:0) Port C is a 7-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The PC5..0 output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not running. 1.1.5 PC6/RESET If the RSTDISBL Fuse is programmed, PC6 is used as an I/O pin. Note that the electrical characteristics of PC6 differ from those of the other pins of Port C. If the RSTDISBL Fuse is unprogrammed, PC6 is used as a Reset input. A low level on this pin for longer than the minimum pulse length will generate a Reset, even if the clock is not running. The minimum pulse length is given in Table 29-3 on page 314. Shorter pulses are not guaranteed to generate a Reset. The various special features of Port C are elaborated in "Alternate functions of port C" on page 86. 1.1.6 Port D (PD7:0) Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up 3 2545U-AVR-11/2015 ATmega48/88/168 resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not running. The various special features of Port D are elaborated in "Alternate functions of port D" on page 89. 1.1.7 AVCC AVCC is the supply voltage pin for the A/D Converter, PC3:0, and ADC7:6. It should be externally connected to VCC, even if the ADC is not used. If the ADC is used, it should be connected to VCC through a low-pass filter. Note that PC6..4 use digital supply voltage, VCC. 1.1.8 AREF AREF is the analog reference pin for the A/D Converter. 1.1.9 ADC7:6 (TQFP and QFN/MLF package only) In the TQFP and QFN/MLF package, ADC7:6 serve as analog inputs to the A/D converter. These pins are powered from the analog supply and serve as 10-bit ADC channels. 4 2545U-AVR-11/2015 ATmega48/88/168 2. Overview The Atmel ATmega48/88/168 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega48/88/168 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed. Block diagram Block diagram. GND Figure 2-1. VCC 2.1 Watchdog timer Watchdog oscillator Oscillator circuits / clock generation Power supervision POR / BOD & RESET debugWIRE Flash SRAM PROGRAM LOGIC CPU EEPROM AVCC AREF DATABUS GND 8bit T/C 0 16bit T/C 1 A/D conv. 8bit T/C 2 Analog comp. Internal bandgap USART 0 SPI TWI PORT D (8) PORT B (8) PORT C (7) 2 6 RESET XTAL[1..2] PD[0..7] PB[0..7] PC[0..6] ADC[6..7] The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting 5 2545U-AVR-11/2015 ATmega48/88/168 architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers. The Atmel ATmega48/88/168 provides the following features: 4K/8K/16K bytes of In-System Programmable Flash with Read-While-Write capabilities, 256/512/512 bytes EEPROM, 512/1K/1K bytes SRAM, 23 general purpose I/O lines, 32 general purpose working registers, three flexible Timer/Counters with compare modes, internal and external interrupts, a serial programmable USART, a byte-oriented 2-wire Serial Interface, an SPI serial port, a 6-channel 10-bit ADC (8 channels in TQFP and QFN/MLF packages), a programmable Watchdog Timer with internal Oscillator, and five software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, USART, 2-wire Serial Interface, SPI port, and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next interrupt or hardware reset. In Power-save mode, the asynchronous timer continues to run, allowing the user to maintain a timer base while the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except asynchronous timer and ADC, to minimize switching noise during ADC conversions. In Standby mode, the crystal/resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low power consumption. Atmel offers the QTouch Library for embedding capacitive touch buttons, sliders and wheels functionality into AVR microcontrollers. The patented charge-transfer signal acquisition offers robust sensing and includes fully debounced reporting of touch keys and includes Adjacent Key Suppression(R) (AKS(R)) technology for unambigiuous detection of key events. The easy-to-use QTouch Suite toolchain allows you to explore, develop and debug your own touch applications. The device is manufactured using the Atmel high density non-volatile memory technology. The On-chip ISP Flash allows the program memory to be reprogrammed In-System through an SPI serial interface, by a conventional non-volatile memory programmer, or by an On-chip Boot program running on the AVR core. The Boot program can use any interface to download the application program in the Application Flash memory. Software in the Boot Flash section will continue to run while the Application Flash section is updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel ATmega48/88/168 is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications. The ATmega48/88/168 AVR is supported with a full suite of program and system development tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators, In-Circuit Emulators, and Evaluation kits. 2.2 Comparison between Atmel ATmega48, Atmel ATmega88, and Atmel ATmega168 The ATmega48, ATmega88 and ATmega168 differ only in memory sizes, boot loader support, and interrupt vector sizes. Table 2-1 summarizes the different memory and interrupt vector sizes for the three devices. Table 2-1. Memory size summary. Device Flash EEPROM RAM Interrupt vector size ATmega48 4Kbytes 256Bytes 512Bytes 1 instruction word/vector ATmega88 8Kbytes 512Bytes 1Kbytes 1 instruction word/vector ATmega168 16Kbytes 512Bytes 1Kbytes 2 instruction words/vector 6 2545U-AVR-11/2015 ATmega48/88/168 ATmega88 and ATmega168 support a real Read-While-Write Self-Programming mechanism. There is a separate Boot Loader Section, and the SPM instruction can only execute from there. In ATmega48, there is no Read-While-Write support and no separate Boot Loader Section. The SPM instruction can execute from the entire Flash. 7 2545U-AVR-11/2015 ATmega48/88/168 3. Resources A comprehensive set of development tools, application notes and datasheets are available for download on http://www.atmel.com/avr. 4. Data retention Reliability Qualification results show that the projected data retention failure rate is much less than 1 PPM over 20 years at 85C or 100 years at 25C. 5. About code examples This documentation contains simple code examples that briefly show how to use various parts of the device. These code examples assume that the part specific header file is included before compilation. Be aware that not all C compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent. Please confirm with the C compiler documentation for more details. For I/O Registers located in extended I/O map, "IN", "OUT", "SBIS", "SBIC", "CBI", and "SBI" instructions must be replaced with instructions that allow access to extended I/O. Typically "LDS" and "STS" combined with "SBRS", "SBRC", "SBR", and "CBR". 6. Capacitive touch sensing The Atmel QTouch Library provides a simple to use solution to realize touch sensitive interfaces on most Atmel AVR microcontrollers. The QTouch Library includes support for the QTouch and QMatrix acquisition methods. Touch sensing can be added to any application by linking the appropriate Atmel QTouch Library for the AVR Microcontroller. This is done by using a simple set of APIs to define the touch channels and sensors, and then calling the touch sensing API's to retrieve the channel information and determine the touch sensor states. The QTouch Library is FREE and downloadable from the Atmel website at the following location: www.atmel.com/qtouchlibrary. For implementation details and other information, refer to the Atmel QTouch Library User Guide - also available for download from the Atmel website. 8 2545U-AVR-11/2015 ATmega48/88/168 7. AVR CPU core 7.1 Overview This section discusses the AVR core architecture in general. The main function of the CPU core is to ensure correct program execution. The CPU must therefore be able to access memories, perform calculations, control peripherals, and handle interrupts. 7.2 Architectural overview Figure 7-1. Block diagram of the AVR architecture. Data bus 8-bit Flash program memory Program counter Status and control 32 x 8 general purpose registrers Control lines Direct addressing Instruction decoder Indirect addressing Instruction register Interrupt unit SPI unit Watchdog timer ALU Analog comparator I/O module 1 Data SRAM I/O module 2 I/O module n EEPROM I/O lines In order to maximize performance and parallelism, the AVR uses a Harvard architecture - with separate memories and buses for program and data. Instructions in the program memory are executed with a single level pipelining. While one instruction is being executed, the next instruction is pre-fetched from the program memory. This concept enables instructions to be 9 2545U-AVR-11/2015 ATmega48/88/168 executed in every clock cycle. The program memory is In-System Reprogrammable Flash memory. The fast-access Register File contains 32 x 8-bit general purpose working registers with a single clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typical ALU operation, two operands are output from the Register File, the operation is executed, and the result is stored back in the Register File - in one clock cycle. Six of the 32 registers can be used as three 16-bit indirect address register pointers for Data Space addressing - enabling efficient address calculations. One of the these address pointers can also be used as an address pointer for look up tables in Flash program memory. These added function registers are the 16-bit X-register, Y-register, and Z-register, described later in this section. The ALU supports arithmetic and logic operations between registers or between a constant and a register. Single register operations can also be executed in the ALU. After an arithmetic operation, the Status Register is updated to reflect information about the result of the operation. Program flow is provided by conditional and unconditional jump and call instructions, able to directly address the whole address space. Most AVR instructions have a single 16-bit word format. Every program memory address contains a 16-bit or 32-bit instruction. Program Flash memory space is divided in two sections, the Boot Program section and the Application Program section. Both sections have dedicated Lock bits for write and read/write protection. The SPM instruction that writes into the Application Flash memory section must reside in the Boot Program section. During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the Stack. The Stack is effectively allocated in the general data SRAM, and consequently the Stack size is only limited by the total SRAM size and the usage of the SRAM. All user programs must initialize the SP in the Reset routine (before subroutines or interrupts are executed). The Stack Pointer (SP) is read/write accessible in the I/O space. The data SRAM can easily be accessed through the five different addressing modes supported in the AVR architecture. The memory spaces in the AVR architecture are all linear and regular memory maps. A flexible interrupt module has its control registers in the I/O space with an additional Global Interrupt Enable bit in the Status Register. All interrupts have a separate Interrupt Vector in the Interrupt Vector table. The interrupts have priority in accordance with their Interrupt Vector position. The lower the Interrupt Vector address, the higher the priority. The I/O memory space contains 64 addresses for CPU peripheral functions as Control Registers, SPI, and other I/O functions. The I/O Memory can be accessed directly, or as the Data Space locations following those of the Register File, 0x20 - 0x5F. In addition, the ATmega48/88/168 has Extended I/O space from 0x60 - 0xFF in SRAM where only the ST/STS/STD and LD/LDS/LDD instructions can be used. 7.3 ALU - Arithmetic Logic Unit The high-performance AVR ALU operates in direct connection with all the 32 general purpose working registers. Within a single clock cycle, arithmetic operations between general purpose registers or between a register and an immediate are executed. The ALU operations are divided into three main categories - arithmetic, logical, and bit-functions. Some implementations of the architecture also provide a powerful multiplier supporting both signed/unsigned multiplication and fractional format. See "Instruction set summary" on page 354 for a detailed description. 10 2545U-AVR-11/2015 ATmega48/88/168 7.4 Status register The Status Register contains information about the result of the most recently executed arithmetic instruction. This information can be used for altering program flow in order to perform conditional operations. Note that the Status Register is updated after all ALU operations, as specified in the Instruction Set Reference. This will in many cases remove the need for using the dedicated compare instructions, resulting in faster and more compact code. The Status Register is not automatically stored when entering an interrupt routine and restored when returning from an interrupt. This must be handled by software. 7.4.1 SREG - AVR Status Register The AVR Status Register - SREG - is defined as: Bit 7 6 5 4 3 2 1 0 0x3F (0x5F) I T H S V N Z C Read/write R/W R/W R/W R/W R/W R/W R/W R/W Initial value 0 0 0 0 0 0 0 0 SREG * Bit 7 - I: Global interrupt enable The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual interrupt enable control is then performed in separate control registers. If the Global Interrupt Enable Register is cleared, none of the interrupts are enabled independent of the individual interrupt enable settings. The I-bit is cleared by hardware after an interrupt has occurred, and is set by the RETI instruction to enable subsequent interrupts. The I-bit can also be set and cleared by the application with the SEI and CLI instructions, as described in the instruction set reference. * Bit 6 - T: Bit copy storage The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or destination for the operated bit. A bit from a register in the Register File can be copied into T by the BST instruction, and a bit in T can be copied into a bit in a register in the Register File by the BLD instruction. * Bit 5 - H: Half carry flag The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry Is useful in BCD arithmetic. See the "Instruction Set Description" for detailed information. * Bit 4 - S: Sign bit, S = N V The S-bit is always an exclusive or between the Negative Flag N and the Two's Complement Overflow Flag V. See the "Instruction Set Description" for detailed information. * Bit 3 - V: Two's complement overflow flag The Two's Complement Overflow Flag V supports two's complement arithmetics. See the "Instruction Set Description" for detailed information. * Bit 2 - N: Negative flag The Negative Flag N indicates a negative result in an arithmetic or logic operation. See the "Instruction Set Description" for detailed information. * Bit 1 - Z: Zero flag 11 2545U-AVR-11/2015 ATmega48/88/168 The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the "Instruction Set Description" for detailed information. * Bit 0 - C: Carry flag The Carry Flag C indicates a carry in an arithmetic or logic operation. See the "Instruction Set Description" for detailed information. 7.5 General purpose register file The register file is optimized for the AVR enhanced RISC instruction set. In order to achieve the required performance and flexibility, the following input/output schemes are supported by the register file: l One 8-bit output operand and one 8-bit result input l Two 8-bit output operands and one 8-bit result input l Two 8-bit output operands and one 16-bit result input l One 16-bit output operand and one 16-bit result input Figure 7-2 shows the structure of the 32 general purpose working registers in the CPU. Figure 7-2. AVR CPU general purpose working registers. 7 0 Addr. R0 0x00 R1 0x01 R2 0x02 ... R13 0x0D General R14 0x0E purpose R15 0x0F working R16 0x10 registers R17 0x11 ... R26 0x1A X-register low byte R27 0x1B X-register high byte R28 0x1C Y-register low byte R29 0x1D Y-register high byte R30 0x1E Z-register low byte R31 0x1F Z-register high byte Most of the instructions operating on the register file have direct access to all registers, and most of them are single cycle instructions. As shown in Figure 7-2, each register is also assigned a data memory address, mapping them directly into the first 32 locations of the user Data Space. Although not being physically implemented as SRAM locations, this memory organization provides great flexibility in access of the registers, as the X-, Y- and Z-pointer registers can be set to index any register in the file. 12 2545U-AVR-11/2015 ATmega48/88/168 7.5.1 The X-register, Y-register, and Z-register The registers R26..R31 have some added functions to their general purpose usage. These registers are 16-bit address pointers for indirect addressing of the data space. The three indirect address registers X, Y, and Z are defined as described in Figure 7-3. Figure 7-3. The X-, Y-, and Z-registers. 15 X-register XH 7 XL 0 R27 (0x1B) 15 Y-register YH 7 YL 0 0 7 0 R28 (0x1C) 15 ZH 7 0 R31 (0x1F) 0 R26 (0x1A) R29 (0x1D) Z-register 0 7 ZL 7 0 0 R30 (0x1E) In the different addressing modes these address registers have functions as fixed displacement, automatic increment, and automatic decrement (see the instruction set reference for details). 7.6 Stack pointer The Stack is mainly used for storing temporary data, for storing local variables and for storing return addresses after interrupts and subroutine calls. The Stack Pointer Register always points to the top of the Stack. Note that the Stack is implemented as growing from higher memory locations to lower memory locations. This implies that a Stack PUSH command decreases the Stack Pointer. The Stack Pointer points to the data SRAM Stack area where the Subroutine and Interrupt Stacks are located. This Stack space in the data SRAM must be defined by the program before any subroutine calls are executed or interrupts are enabled. The Stack Pointer must be set to point above 0x0100, preferably RAMEND. The Stack Pointer is decremented by one when data is pushed onto the Stack with the PUSH instruction, and it is decremented by two when the return address is pushed onto the Stack with subroutine call or interrupt. The Stack Pointer is incremented by one when data is popped from the Stack with the POP instruction, and it is incremented by two when data is popped from the Stack with return from subroutine RET or return from interrupt RETI. The AVR Stack Pointer is implemented as two 8-bit registers in the I/O space. The number of bits actually used is implementation dependent. Note that the data space in some implementations of the AVR architecture is so small that only SPL is needed. In this case, the SPH Register will not be present. 13 2545U-AVR-11/2015 ATmega48/88/168 7.6.1 SPH and SPL - Stack pointer high and stack pointer low register Bit 15 14 13 12 11 10 9 8 0x3E (0x5E) SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 SPH 0x3D (0x5D) SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 SPL 7 6 5 4 3 2 1 0 R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND Read/write Initial value 7.7 Instruction execution timing This section describes the general access timing concepts for instruction execution. The AVR CPU is driven by the CPU clock clkCPU, directly generated from the selected clock source for the chip. No internal clock division is used. Figure 7-4 shows the parallel instruction fetches and instruction executions enabled by the Harvard architecture and the fast-access Register File concept. This is the basic pipelining concept to obtain up to 1 MIPS per MHz with the corresponding unique results for functions per cost, functions per clocks, and functions per power-unit. Figure 7-4. The parallel instruction fetches and instruction executions. T1 T2 T3 T4 clkCPU 1st instruction fetch 1st instruction execute 2nd instruction fetch 2nd instruction execute 3rd instruction fetch 3rd instruction execute 4th instruction fetch Figure 7-5 shows the internal timing concept for the Register File. In a single clock cycle an ALU operation using two register operands is executed, and the result is stored back to the destination register. Figure 7-5. Single cycle ALU operation. T1 T2 T3 T4 clkCPU Total execution time Register operands fetch ALU operation execute Result write back 14 2545U-AVR-11/2015 ATmega48/88/168 7.8 Reset and interrupt handling The AVR provides several different interrupt sources. These interrupts and the separate Reset Vector each have a separate program vector in the program memory space. All interrupts are assigned individual enable bits which must be written logic one together with the Global Interrupt Enable bit in the Status Register in order to enable the interrupt. Depending on the Program Counter value, interrupts may be automatically disabled when Boot Lock bits BLB02 or BLB12 are programmed. This feature improves software security. See the section "Memory programming" on page 292 for details. The lowest addresses in the program memory space are by default defined as the Reset and Interrupt Vectors. The complete list of vectors is shown in "Interrupts" on page 56. The list also determines the priority levels of the different interrupts. The lower the address the higher is the priority level. RESET has the highest priority, and next is INT0 - the External Interrupt Request 0. The Interrupt Vectors can be moved to the start of the Boot Flash section by setting the IVSEL bit in the MCU Control Register (MCUCR). Refer to "Interrupts" on page 56 for more information. The Reset Vector can also be moved to the start of the Boot Flash section by programming the BOOTRST Fuse, see "Boot loader support - Read-while-write self-programming, Atmel ATmega88 and Atmel ATmega168" on page 275. When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts are disabled. The user software can write logic one to the I-bit to enable nested interrupts. All enabled interrupts can then interrupt the current interrupt routine. The I-bit is automatically set when a Return from Interrupt instruction - RETI - is executed. There are basically two types of interrupts. The first type is triggered by an event that sets the Interrupt Flag. For these interrupts, the Program Counter is vectored to the actual Interrupt Vector in order to execute the interrupt handling routine, and hardware clears the corresponding Interrupt Flag. Interrupt Flags can also be cleared by writing a logic one to the flag bit position(s) to be cleared. If an interrupt condition occurs while the corresponding interrupt enable bit is cleared, the Interrupt Flag will be set and remembered until the interrupt is enabled, or the flag is cleared by software. Similarly, if one or more interrupt conditions occur while the Global Interrupt Enable bit is cleared, the corresponding Interrupt Flag(s) will be set and remembered until the Global Interrupt Enable bit is set, and will then be executed by order of priority. The second type of interrupts will trigger as long as the interrupt condition is present. These interrupts do not necessarily have Interrupt Flags. If the interrupt condition disappears before the interrupt is enabled, the interrupt will not be triggered. When the AVR exits from an interrupt, it will always return to the main program and execute one more instruction before any pending interrupt is served. Note that the Status Register is not automatically stored when entering an interrupt routine, nor restored when returning from an interrupt routine. This must be handled by software. When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled. No interrupt will be executed after the CLI instruction, even if it occurs simultaneously with the CLI instruction. The following example shows how this can be used to avoid interrupts during the timed EEPROM write sequence. 15 2545U-AVR-11/2015 ATmega48/88/168 Assembly code example in r16, SREG ; store SREG value cli ; disable interrupts during timed sequence sbi EECR, EEMPE ; start EEPROM write sbi EECR, EEPE out SREG, r16 ; restore SREG value (I-bit) C code example char cSREG; cSREG = SREG; SREG value */ /* disable interrupts during timed sequence */ _CLI(); EECR |= (1< xxx ... ... Interrupt vectors in Atmel ATmega88 Table 12-2. Reset and interrupt vectors in ATmega88. Vector no. 1 Program address(2) 0x000 (1) Source Interrupt definition RESET External pin, power-on reset, brown-out reset and watchdog system reset 2 0x001 INT0 External interrupt request 0 3 0x002 INT1 External interrupt request 1 4 0x003 PCINT0 Pin change interrupt request 0 5 0x004 PCINT1 Pin change interrupt request 1 6 0x005 PCINT2 Pin change interrupt request 2 7 0x006 WDT Watchdog time-out interrupt 8 0x007 TIMER2 COMPA Timer/Counter2 compare match A 9 0x008 TIMER2 COMPB Timer/Counter2 compare match B 10 0x009 TIMER2 OVF Timer/Counter2 overflow 11 0x00A TIMER1 CAPT Timer/Counter1 capture event 12 0x00B TIMER1 COMPA Timer/Counter1 compare match A 13 0x00C TIMER1 COMPB Timer/Coutner1 compare match B 14 0x00D TIMER1 OVF Timer/Counter1 overflow 15 0x00E TIMER0 COMPA Timer/Counter0 compare match A 58 2545U-AVR-11/2015 ATmega48/88/168 Table 12-2. Reset and interrupt vectors in ATmega88. (Continued) Vector no. Program address(2) 16 Source Interrupt definition 0x00F TIMER0 COMPB Timer/Counter0 compare match B 17 0x010 TIMER0 OVF Timer/Counter0 overflow 18 0x011 SPI, STC SPI serial transfer complete 19 0x012 USART, RX USART Rx complete 20 0x013 USART, UDRE USART, data register empty 21 0x014 USART, TX USART, Tx complete 22 0x015 ADC ADC conversion complete 23 0x016 EE READY EEPROM ready 24 0x017 ANALOG COMP Analog comparator 25 0x018 TWI 2-wire serial interface 26 0x019 SPM READY Notes: 1. 2. Store program memory ready When the BOOTRST fuse is programmed, the device will jump to the boot loader address at reset, see "Boot loader support - Read-while-write self-programming, Atmel ATmega88 and Atmel ATmega168" on page 275. When the IVSEL bit in MCUCR is set, interrupt vectors will be moved to the start of the boot flash section. The address of each Interrupt Vector will then be the address in this table added to the start address of the boot flash section. Table 12-3 on page 59 shows reset and interrupt vectors placement for the various combinations of BOOTRST and IVSEL settings. If the program never enables an interrupt source, the Interrupt Vectors are not used, and regular program code can be placed at these locations. This is also the case if the reset vector is in the application section while the interrupt vectors are in the boot section or vice versa. Reset and interrupt vectors placement in Atmel ATmega88(1). Table 12-3. BOOTRST IVSEL 1 Note: Reset address Interrupt vectors start address 0 0x000 0x001 1 1 0x000 Boot reset address + 0x001 0 0 Boot reset address 0x001 0 1 Boot reset address Boot reset address + 0x001 1. The boot reset address is shown in Table 27-6 on page 287. For the BOOTRST Fuse "1" means unprogrammed while "0" means programmed. The most typical and general program setup for the reset and interrupt vector addresses in ATmega88 is: Address 0x000 Reset Handler 0x001 IRQ0 Handler 0x002 IRQ1 Handler 0x003 PCINT0 Handler Labels CodeComments rjmpRESET; rjmpEXT_INT0; rjmpEXT_INT1; rjmpPCINT0; 59 2545U-AVR-11/2015 ATmega48/88/168 0x004 PCINT1 Handler 0x005 PCINT2 Handler 0x006 Watchdog Timer Handler 0x007 ; Timer2 Compare A Handler 0X008 ; Timer2 Compare B Handler 0x009 Timer2 Overflow Handler 0x00A Timer1 Capture Handler 0x00B ; Timer1 Compare A Handler 0x00C ; Timer1 Compare B Handler 0x00D Timer1 Overflow Handler 0x00E ; Timer0 Compare A Handler 0x00F ; Timer0 Compare B Handler 0x010 Timer0 Overflow Handler 0x011 SPI Transfer Complete Handler 0x012 USART, RX Complete Handler 0x013 ; USART, UDR Empty Handler 0x014 USART, TX Complete Handler 0x015 Conversion Complete Handler 0x016 EEPROM Ready Handler 0x017 Analog Comparator Handler 0x018 wire Serial Interface Handler 0x019 Store Program Memory Ready Handler ; 0x01A RESET: high(RAMEND) start 0x01B Set Stack Pointer to top of RAM 0x01C low(RAMEND) rjmpPCINT1; rjmpPCINT2; rjmpWDT; rjmpTIM2_COMPA rjmpTIM2_COMPB rjmpTIM2_OVF; rjmpTIM1_CAPT; rjmpTIM1_COMPA rjmpTIM1_COMPB rjmpTIM1_OVF; rjmpTIM0_COMPA rjmpTIM0_COMPB rjmpTIM0_OVF; rjmpSPI_STC; rjmpUSART_RXC; rjmpUSART_UDRE rjmpUSART_TXC; rjmpADC; ADC rjmpEE_RDY; rjmpANA_COMP; rjmpTWI; 2rjmpSPM_RDY; ldir16, ; Main program out SPH,r16; ldi r16, 60 2545U-AVR-11/2015 ATmega48/88/168 0x01D 0x01E interrupts 0x01F out SPL,r16 sei; Enable xxx When the BOOTRST fuse is unprogrammed, the boot section size set to 2Kbytes and the IVSEL bit in the MCUCR register is set before any interrupts are enabled, the most typical and general program setup for the reset and interrupt vector addresses in Atmel ATmega88 is: Address Labels 0x000 RESET: r16,high(RAMEND) start 0x001 Set Stack Pointer to top of RAM 0x002 r16,low(RAMEND) 0x003 0x004 interrupts 0x005 ; .org 0xC01 0xC01 IRQ0 Handler 0xC02 IRQ1 Handler ... 0xC19 Store Program Memory Ready Handler CodeComments ldi ; Main program outSPH,r16; ldi outSPL,r16 sei; Enable xxx rjmpEXT_INT0; rjmpEXT_INT1; ......; rjmpSPM_RDY; When the BOOTRST fuse is programmed and the boot section size set to 2Kbytes, the most typical and general program setup for the reset and interrupt vector addresses in ATmega88 is: Address Labels .org 0x001 0x001 IRQ0 Handler 0x002 IRQ1 Handler ... 0x019 Store Program Memory Ready Handler ; .org 0xC00 0xC00 RESET: r16,high(RAMEND) start 0xC01 Set Stack Pointer to top of RAM 0xC02 r16,low(RAMEND) 0xC03 0xC04 interrupts 0xC05 CodeComments rjmpEXT_INT0; rjmpEXT_INT1; ......; rjmpSPM_RDY; ldi ; Main program outSPH,r16; ldi outSPL,r16 sei; Enable xxx 61 2545U-AVR-11/2015 ATmega48/88/168 When the BOOTRST fuse is programmed, the boot section size set to 2Kbytes and the IVSEL bit in the MCUCR register is set before any interrupts are enabled, the most typical and general program setup for the reset and interrupt vector addresses in ATmega88 is: Address Labels ; .org 0xC00 0xC00 Reset handler 0xC01 IRQ0 Handler 0xC02 IRQ1 Handler ... 0xC19 Store Program Memory Ready Handler ; 0xC1A RESET: r16,high(RAMEND) start 0xC1B Set Stack Pointer to top of RAM 0xC1C r16,low(RAMEND) 0xC1D 0xC1E interrupts 0xC1F 12.4 CodeComments rjmpRESET; rjmpEXT_INT0; rjmpEXT_INT1; ......; rjmpSPM_RDY; ldi ; Main program outSPH,r16; ldi outSPL,r16 sei; Enable xxx Interrupt vectors in Atmel ATmega168 Table 12-4. Reset and interrupt vectors in ATmega168. Vector no. Program address(2) Source Interrupt definition 1 0x0000(1) RESET External pin, power-on reset, brown-out reset and watchdog system reset 2 0x0002 INT0 External interrupt request 0 3 0x0004 INT1 External interrupt request 1 4 0x0006 PCINT0 Pin change interrupt request 0 5 0x0008 PCINT1 Pin change interrupt request 1 6 0x000A PCINT2 Pin change interrupt request 2 7 0x000C WDT Watchdog time-out interrupt 8 0x000E TIMER2 COMPA Timer/Counter2 compare match A 9 0x0010 TIMER2 COMPB Timer/Counter2 compare match B 10 0x0012 TIMER2 OVF Timer/Counter2 overflow 11 0x0014 TIMER1 CAPT Timer/Counter1 capture event 12 0x0016 TIMER1 COMPA Timer/Counter1 compare match A 13 0x0018 TIMER1 COMPB Timer/Coutner1 compare match B 62 2545U-AVR-11/2015 ATmega48/88/168 Table 12-4. Reset and interrupt vectors in ATmega168. (Continued) Vector no. Program address(2) 14 Source Interrupt definition 0x001A TIMER1 OVF Timer/Counter1 overflow 15 0x001C TIMER0 COMPA Timer/Counter0 compare match A 16 0x001E TIMER0 COMPB Timer/Counter0 compare match B 17 0x0020 TIMER0 OVF Timer/Counter0 overflow 18 0x0022 SPI, STC SPI serial transfer complete 19 0x0024 USART, RX USART Rx complete 20 0x0026 USART, UDRE USART, data register empty 21 0x0028 USART, TX USART, Tx complete 22 0x002A ADC ADC conversion complete 23 0x002C EE READY EEPROM ready 24 0x002E ANALOG COMP Analog comparator 25 0x0030 TWI 2-wire serial interface 26 0x0032 SPM READY Store program memory ready Notes: 1. 2. When the BOOTRST fuse is programmed, the device will jump to the boot loader address at reset, see "Boot loader support - Read-while-write self-programming, Atmel ATmega88 and Atmel ATmega168" on page 275. When the IVSEL bit in MCUCR is set, interrupt vectors will be moved to the start of the boot flash section. The address of each Interrupt Vector will then be the address in this table added to the start address of the boot flash section. Table 12-5 shows reset and interrupt vectors placement for the various combinations of BOOTRST and IVSEL settings. If the program never enables an interrupt source, the interrupt vectors are not used, and regular program code can be placed at these locations. This is also the case if the reset vector is in the application section while the interrupt vectors are in the boot section or vice versa. Reset and interrupt vectors placement in Atmel ATmega168(1). Table 12-5. BOOTRST IVSEL 1 Note: Reset address Interrupt vectors start address 0 0x000 0x001 1 1 0x000 Boot reset address + 0x0002 0 0 Boot reset address 0x001 0 1 Boot reset address Boot reset address + 0x0002 1. The boot reset address is shown in Table 27-6 on page 287. For the BOOTRST fuse "1" means unprogrammed while "0" means programmed. The most typical and general program setup for the reset and interrupt vector addresses in ATmega168 is: Address 0x0000 Reset Handler 0x0002 IRQ0 Handler Labels CodeComments jmpRESET; jmpEXT_INT0; 63 2545U-AVR-11/2015 ATmega48/88/168 0x0004 IRQ1 Handler 0x0006 PCINT0 Handler 0x0008 PCINT1 Handler 0x000A PCINT2 Handler 0x000C Watchdog Timer Handler 0x000E Timer2 Compare A Handler 0x0010 Timer2 Compare B Handler 0x0012 Timer2 Overflow Handler 0x0014 Timer1 Capture Handler 0x0016 Timer1 Compare A Handler 0x0018 Timer1 Compare B Handler 0x001A Timer1 Overflow Handler 0x001C Timer0 Compare A Handler 0x001E Timer0 Compare B Handler 0x0020 Timer0 Overflow Handler 0x0022 SPI Transfer Complete Handler 0x0024 USART, RX Complete Handler 0x0026 USART, UDR Empty Handler 0x0028 USART, TX Complete Handler 0x002A Conversion Complete Handler 0x002C EEPROM Ready Handler 0x002E Analog Comparator Handler 0x0030 Serial Interface Handler 0x0032 Store Program Memory Ready Handler ; 0x0033 RESET: high(RAMEND) start 0x0034 Set Stack Pointer to top of RAM jmpEXT_INT1; jmpPCINT0; jmpPCINT1; jmpPCINT2; jmpWDT; jmpTIM2_COMPA; jmpTIM2_COMPB; jmpTIM2_OVF; jmpTIM1_CAPT; jmpTIM1_COMPA; jmpTIM1_COMPB; jmpTIM1_OVF; jmpTIM0_COMPA; jmpTIM0_COMPB; jmpTIM0_OVF; jmpSPI_STC; jmpUSART_RXC; jmpUSART_UDRE; jmpUSART_TXC; jmpADC; ADC jmpEE_RDY; jmpANA_COMP; jmpTWI; 2-wire jmpSPM_RDY; ldir16, ; Main program out SPH,r16; 64 2545U-AVR-11/2015 ATmega48/88/168 0x0035 low(RAMEND) 0x0036 0x0037 interrupts 0x0038 ... ldi r16, out SPL,r16 sei; Enable ... xxx ... ... When the BOOTRST fuse is unprogrammed, the boot section size set to 2Kbytes and the IVSEL bit in the MCUCR Register is set before any interrupts are enabled, the most typical and general program setup for the reset and interrupt vector addresses in Atmel ATmega168 is: Address Labels 0x0000 RESET: r16,high(RAMEND) start 0x0001 Set Stack Pointer to top of RAM 0x0002 r16,low(RAMEND) 0x0003 0x0004 interrupts 0x0005 ; .org 0xC02 0x1C02 IRQ0 Handler 0x1C04 IRQ1 Handler ... 0x1C32 Store Program Memory Ready Handler CodeComments ldi ; Main program outSPH,r16; ldi outSPL,r16 sei; Enable xxx jmpEXT_INT0; jmpEXT_INT1; ......; jmpSPM_RDY; When the BOOTRST fuse is programmed and the boot section size set to 2Kbytes, the most typical and general program setup for the reset and interrupt vector addresses in ATmega168 is: Address Labels .org 0x0002 0x0002 IRQ0 Handler 0x0004 IRQ1 Handler ... 0x0032 Store Program Memory Ready Handler ; .org 0x1C00 0x1C00 RESET: r16,high(RAMEND) start 0x1C01 Set Stack Pointer to top of RAM 0x1C02 r16,low(RAMEND) CodeComments jmpEXT_INT0; jmpEXT_INT1; ......; jmpSPM_RDY; ldi ; Main program outSPH,r16; ldi 65 2545U-AVR-11/2015 ATmega48/88/168 0x1C03 0x1C04 interrupts 0x1C05 outSPL,r16 sei; Enable xxx When the BOOTRST fuse is programmed, the boot section size set to 2Kbytes and the IVSEL bit in the MCUCR register is set before any interrupts are enabled, the most typical and general program setup for the reset and interrupt vector addresses in ATmega168 is: 66 2545U-AVR-11/2015 ATmega48/88/168 Address Labels ; .org 0x1C00 0x1C00 Reset handler 0x1C02 IRQ0 Handler 0x1C04 IRQ1 Handler ... 0x1C32 Store Program Memory Ready Handler ; 0x1C33 RESET: r16,high(RAMEND) start 0x1C34 Set Stack Pointer to top of RAM 0x1C35 r16,low(RAMEND) 0x1C36 0x1C37 interrupts 0x1C38 CodeComments jmpRESET; jmpEXT_INT0; jmpEXT_INT1; ......; jmpSPM_RDY; ldi ; Main program outSPH,r16; ldi outSPL,r16 sei; Enable xxx 12.4.1 Moving interrupts between application and boot space, Atmel ATmega88 and Atmel ATmega168 The MCU control register controls the placement of the interrupt vector table. 12.5 Register description 12.5.1 MCUCR - MCU control register Bit 7 6 5 4 3 2 1 0 0x35 (0x55) - - - PUD - - IVSEL IVCE Read/write R R R R/W R R R/W R/W Initial value 0 0 0 0 0 0 0 0 MCUCR * Bit 1 - IVSEL: Interrupt vector select When the IVSEL bit is cleared (zero), the interrupt vectors are placed at the start of the flash memory. When this bit is set (one), the interrupt vectors are moved to the beginning of the boot loader section of the flash. The actual address of the start of the boot flash section is determined by the BOOTSZ fuses. Refer to the section "Boot loader support - Read-while-write selfprogramming, Atmel ATmega88 and Atmel ATmega168" on page 275 for details. To avoid unintentional changes of interrupt vector tables, a special write procedure must be followed to change the IVSEL bit: a. Write the interrupt vector change enable (IVCE) bit to one. 1. Within four cycles, write the desired value to IVSEL while writing a zero to IVCE. Interrupts will automatically be disabled while this sequence is executed. Interrupts are disabled in the cycle IVCE is set, and they remain disabled until after the instruction following the write to 67 2545U-AVR-11/2015 ATmega48/88/168 IVSEL. If IVSEL is not written, interrupts remain disabled for four cycles. The I-bit in the status register is unaffected by the automatic disabling. Note: If interrupt vectors are placed in the boot loader section and boot lock bit BLB02 is programmed, interrupts are disabled while executing from the Application section. If interrupt vectors are placed in the Application section and boot lock bit BLB12 is programmed, interrupts are disabled while executing from the Boot Loader section. Refer to the section "Boot loader support - Read-whilewrite self-programming, Atmel ATmega88 and Atmel ATmega168" on page 275 for details on Boot Lock bits. This bit is not available in Atmel ATmega48. 68 2545U-AVR-11/2015 ATmega48/88/168 * Bit 0 - IVCE: Interrupt vector change enable The IVCE bit must be written to logic one to enable change of the IVSEL bit. IVCE is cleared by hardware four cycles after it is written or when IVSEL is written. Setting the IVCE bit will disable interrupts, as explained in the IVSEL description above. See code example below. Assembly code example Move_interrupts: ; Get MCUCR in r16, MCUCR mov r17, r16 ; Enable change of Interrupt Vectors ori r16, (1< CSn2:0 > 1). The number of system clock cycles from when the timer is enabled to the first count occurs can be from 1 to N+1 system clock cycles, where N equals the prescaler divisor (8, 64, 256, or 1024). It is possible to use the prescaler reset for synchronizing the Timer/Counter to program execution. However, care must be taken if the other Timer/Counter that shares the same prescaler also uses prescaling. A prescaler reset will affect the prescaler period for all Timer/Counters it is connected to. 17.0.3 External clock source An external clock source applied to the T1/T0 pin can be used as Timer/Counter clock (clkT1/clkT0). The T1/T0 pin is sampled once every system clock cycle by the pin synchronization logic. The synchronized (sampled) signal is then passed through the edge detector. Figure 17-1 shows a functional equivalent block diagram of the T1/T0 synchronization and edge detector logic. The registers are clocked at the positive edge of the internal system clock (clkI/O). The latch is transparent in the high period of the internal system clock. The edge detector generates one clkT1/clkT0 pulse for each positive (CSn2:0 = 7) or negative (CSn2:0 = 6) edge it detects. Figure 17-1. Tn T1/T0 pin sampling. D Q D Q D Tn_sync (to clock select logic) Q LE clk I/O Synchronization Edge detector The synchronization and edge detector logic introduces a delay of 2.5 to 3.5 system clock cycles from an edge has been applied to the T1/T0 pin to the counter is updated. 141 2545U-AVR-11/2015 ATmega48/88/168 Enabling and disabling of the clock input must be done when T1/T0 has been stable for at least one system clock cycle, otherwise it is a risk that a false Timer/Counter clock pulse is generated. Each half period of the external clock applied must be longer than one system clock cycle to ensure correct sampling. The external clock must be guaranteed to have less than half the system clock frequency (fExtClk < fclk_I/O/2) given a 50/50% duty cycle. Since the edge detector uses sampling, the maximum frequency of an external clock it can detect is half the sampling frequency (Nyquist sampling theorem). However, due to variation of the system clock frequency and duty cycle caused by Oscillator source (crystal, resonator, and capacitors) tolerances, it is recommended that maximum frequency of an external clock source is less than fclk_I/O/2.5. An external clock source can not be prescaled. Figure 17-2. Prescaler for timer/counter0 and timer/counter1(1). clk I/O Clear PSRSYNC T0 Synchronization T1 Synchronization clkT1 Note: clkT0 1. The synchronization logic on the input pins (T1/T0) is shown in Figure 17-1 on page 141. 142 2545U-AVR-11/2015 ATmega48/88/168 17.1 Register description 17.1.1 GTCCR - General timer/counter control register Bit 7 6 5 4 3 2 1 0 0x23 (0x43) TSM - - - - - PSRASY PSRSYNC Read/write R/W R R R R R R/W R/W Initial value 0 0 0 0 0 0 0 0 GTCCR * Bit 7 - TSM: Timer/counter synchronization mode Writing the TSM bit to one activates the Timer/Counter Synchronization mode. In this mode, the value that is written to the PSRASY and PSRSYNC bits is kept, hence keeping the corresponding prescaler reset signals asserted. This ensures that the corresponding Timer/Counters are halted and can be configured to the same value without the risk of one of them advancing during configuration. When the TSM bit is written to zero, the PSRASY and PSRSYNC bits are cleared by hardware, and the Timer/Counters start counting simultaneously. * Bit 0 - PSRSYNC: Prescaler reset When this bit is one, Timer/Counter1 and Timer/Counter0 prescaler will be Reset. This bit is normally cleared immediately by hardware, except if the TSM bit is set. Note that Timer/Counter1 and Timer/Counter0 share the same prescaler and a reset of this prescaler will affect both timers. 143 2545U-AVR-11/2015 ATmega48/88/168 18. 8-bit Timer/Counter2 with PWM and asynchronous operation 18.1 Features * * * * * * * 18.2 Single channel counter Clear timer on compare match (auto reload) Glitch-free, phase correct pulse width modulator (PWM) Frequency generator 10-bit clock prescaler Overflow and compare match interrupt sources (TOV2, OCF2A and OCF2B) Allows clocking from external 32kHz watch crystal independent of the I/O clock Overview Timer/Counter2 is a general purpose, single channel, 8-bit Timer/Counter module. A simplified block diagram of the 8-bit Timer/Counter is shown in Figure 18-1. For the actual placement of I/O pins, refer to "Pinout Atmel ATmega48/88/168." on page 2. CPU accessible I/O Registers, including I/O bits and I/O pins, are shown in bold. The device-specific I/O Register and bit locations are listed in the "Register description" on page 157. The PRTIM2 bit in "Minimizing power consumption" on page 41 must be written to zero to enable Timer/Counter2 module. Figure 18-1. 8-bit timer/counter block diagram. Count Clear Direction TOVn (Int.req.) Control logic clkTn Clock select Edge detector TOP Tn BOTTOM (From prescaler) Timer/counter TCNTn = =0 OCnA (Int.req.) Waveform generation = OCnA DATA BUS OCRnA Fixed TOP value OCnB (Int.req.) Waveform generation = OCnB OCRnB TCCRnA TCCRnB 144 2545U-AVR-11/2015 ATmega48/88/168 18.2.1 Registers The Timer/Counter (TCNT2) and Output Compare Register (OCR2A and OCR2B) are 8-bit registers. Interrupt request (shorten as Int.Req.) signals are all visible in the Timer Interrupt Flag Register (TIFR2). All interrupts are individually masked with the Timer Interrupt Mask Register (TIMSK2). TIFR2 and TIMSK2 are not shown in the figure. The Timer/Counter can be clocked internally, via the prescaler, or asynchronously clocked from the TOSC1/2 pins, as detailed later in this section. The asynchronous operation is controlled by the Asynchronous Status Register (ASSR). The Clock Select logic block controls which clock source he Timer/Counter uses to increment (or decrement) its value. The Timer/Counter is inactive when no clock source is selected. The output from the Clock Select logic is referred to as the timer clock (clkT2). The double buffered Output Compare Register (OCR2A and OCR2B) are compared with the Timer/Counter value at all times. The result of the compare can be used by the Waveform Generator to generate a PWM or variable frequency output on the Output Compare pins (OC2A and OC2B). See "Output compare unit" on page 146. for details. The compare match event will also set the Compare Flag (OCF2A or OCF2B) which can be used to generate an Output Compare interrupt request. 18.2.2 Definitions Many register and bit references in this document are written in general form. A lower case "n" replaces the Timer/Counter number, in this case 2. However, when using the register or bit defines in a program, the precise form must be used, that is, TCNT2 for accessing Timer/Counter2 counter value and so on. The definitions in Table 18-1 are also used extensively throughout the section. Table 18-1. 18.3 Definitions. BOTTOM The counter reaches the BOTTOM when it becomes zero (0x00). MAX The counter reaches its MAXimum when it becomes 0xFF (decimal 255). TOP The counter reaches the TOP when it becomes equal to the highest value in the count sequence. The TOP value can be assigned to be the fixed value 0xFF (MAX) or the value stored in the OCR2A Register. The assignment is dependent on the mode of operation. Timer/counter clock sources The Timer/Counter can be clocked by an internal synchronous or an external asynchronous clock source. The clock source clkT2 is by default equal to the MCU clock, clkI/O. When the AS2 bit in the ASSR Register is written to logic one, the clock source is taken from the Timer/Counter Oscillator connected to TOSC1 and TOSC2. For details on asynchronous operation, see "ASSR - Asynchronous status register" on page 163. For details on clock sources and prescaler, see "Timer/counter prescaler" on page 156. 18.4 Counter unit The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Figure 18-2 on page 146 shows a block diagram of the counter and its surrounding environment. 145 2545U-AVR-11/2015 ATmega48/88/168 Figure 18-2. Counter unit block diagram. TOVn (Int.req.) DATA BUS TOSC1 count TCNTn clear clk Tn Control logic Prescaler T/C oscillator direction bottom TOSC2 top clkI/O Signal description (internal signals): count : Increment or decrement TCNT2 by 1. direction : Selects between increment and decrement. clear : Clear TCNT2 (set all bits to zero). clkTn : Timer/Counter clock, referred to as clkT2 in the following. top : Signalizes that TCNT2 has reached maximum value. bottom : Signalizes that TCNT2 has reached minimum value (zero). Depending on the mode of operation used, the counter is cleared, incremented, or decremented at each timer clock (clkT2). clkT2 can be generated from an external or internal clock source, selected by the Clock Select bits (CS22:0). When no clock source is selected (CS22:0 = 0) the timer is stopped. However, the TCNT2 value can be accessed by the CPU, regardless of whether clkT2 is present or not. A CPU write overrides (has priority over) all counter clear or count operations. The counting sequence is determined by the setting of the WGM21 and WGM20 bits located in the Timer/Counter Control Register (TCCR2A) and the WGM22 located in the Timer/Counter Control Register B (TCCR2B). There are close connections between how the counter behaves (counts) and how waveforms are generated on the Output Compare outputs OC2A and OC2B. For more details about advanced counting sequences and waveform generation, see "Modes of operation" on page 149. The Timer/Counter Overflow Flag (TOV2) is set according to the mode of operation selected by the WGM22:0 bits. TOV2 can be used for generating a CPU interrupt. 18.5 Output compare unit The 8-bit comparator continuously compares TCNT2 with the Output Compare Register (OCR2A and OCR2B). Whenever TCNT2 equals OCR2A or OCR2B, the comparator signals a match. A match will set the Output Compare Flag (OCF2A or OCF2B) at the next timer clock cycle. If the corresponding interrupt is enabled, the Output Compare Flag generates an Output Compare interrupt. The Output Compare Flag is automatically cleared when the interrupt is executed. Alternatively, the Output Compare Flag can be cleared by software by writing a logical one to its I/O bit location. The Waveform Generator uses the match signal to generate an output according to operating mode set by the WGM22:0 bits and Compare Output mode (COM2x1:0) bits. The max and bottom signals are used by the Waveform Generator for handling the special cases of the extreme values in some modes of operation ("Modes of operation" on page 149). Figure 18-3 on page 147 shows a block diagram of the Output Compare unit. 146 2545U-AVR-11/2015 ATmega48/88/168 Figure 18-3. Output compare unit, block diagram. DATA BUS OCRnx TCNTn = (8-bit comparator) OCFnx (int.req.) top bottom Waveform generator OCnx FOCn WGMn1:0 COMnX1:0 The OCR2x Register is double buffered when using any of the Pulse Width Modulation (PWM) modes. For the Normal and Clear Timer on Compare (CTC) modes of operation, the double buffering is disabled. The double buffering synchronizes the update of the OCR2x Compare Register to either top or bottom of the counting sequence. The synchronization prevents the occurrence of odd-length, non-symmetrical PWM pulses, thereby making the output glitch-free. The OCR2x Register access may seem complex, but this is not case. When the double buffering is enabled, the CPU has access to the OCR2x Buffer Register, and if double buffering is disabled the CPU will access the OCR2x directly. 18.5.1 Force output compare In non-PWM waveform generation modes, the match output of the comparator can be forced by writing a one to the Force Output Compare (FOC2x) bit. Forcing compare match will not set the OCF2x Flag or reload/clear the timer, but the OC2x pin will be updated as if a real compare match had occurred (the COM2x1:0 bits settings define whether the OC2x pin is set, cleared or toggled). 18.5.2 Compare match blocking by TCNT2 write All CPU write operations to the TCNT2 Register will block any compare match that occurs in the next timer clock cycle, even when the timer is stopped. This feature allows OCR2x to be initialized to the same value as TCNT2 without triggering an interrupt when the Timer/Counter clock is enabled. 18.5.3 Using the output compare unit Since writing TCNT2 in any mode of operation will block all compare matches for one timer clock cycle, there are risks involved when changing TCNT2 when using the Output Compare channel, independently of whether the Timer/Counter is running or not. If the value written to TCNT2 equals the OCR2x value, the compare match will be missed, resulting in incorrect waveform generation. Similarly, do not write the TCNT2 value equal to BOTTOM when the counter is downcounting. 147 2545U-AVR-11/2015 ATmega48/88/168 The setup of the OC2x should be performed before setting the Data Direction Register for the port pin to output. The easiest way of setting the OC2x value is to use the Force Output Compare (FOC2x) strobe bit in Normal mode. The OC2x Register keeps its value even when changing between Waveform Generation modes. Be aware that the COM2x1:0 bits are not double buffered together with the compare value. Changing the COM2x1:0 bits will take effect immediately. 18.6 Compare match output unit The Compare Output mode (COM2x1:0) bits have two functions. The Waveform Generator uses the COM2x1:0 bits for defining the Output Compare (OC2x) state at the next compare match. Also, the COM2x1:0 bits control the OC2x pin output source. Figure 18-4 shows a simplified schematic of the logic affected by the COM2x1:0 bit setting. The I/O Registers, I/O bits, and I/O pins in the figure are shown in bold. Only the parts of the general I/O Port Control Registers (DDR and PORT) that are affected by the COM2x1:0 bits are shown. When referring to the OC2x state, the reference is for the internal OC2x Register, not the OC2x pin. Figure 18-4. Compare match output unit, schematic. COMnx1 COMnx0 FOCnx Waveform generator D Q 1 OCnx DATA BUS D 0 OCnx pin Q PORT D Q DDR clk I/O The general I/O port function is overridden by the Output Compare (OC2x) from the Waveform Generator if either of the COM2x1:0 bits are set. However, the OC2x pin direction (input or output) is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direction Register bit for the OC2x pin (DDR_OC2x) must be set as output before the OC2x value is visible on the pin. The port override function is independent of the Waveform Generation mode. The design of the Output Compare pin logic allows initialization of the OC2x state before the output is enabled. Note that some COM2x1:0 bit settings are reserved for certain modes of operation. See "Register description" on page 157. 148 2545U-AVR-11/2015 ATmega48/88/168 18.6.1 Compare output mode and waveform generation The Waveform Generator uses the COM2x1:0 bits differently in normal, CTC, and PWM modes. For all modes, setting the COM2x1:0 = 0 tells the Waveform Generator that no action on the OC2x Register is to be performed on the next compare match. For compare output actions in the non-PWM modes refer to Table 18-5 on page 158. For fast PWM mode, refer to Table 18-6 on page 159, and for phase correct PWM refer to Table 18-7 on page 159. A change of the COM2x1:0 bits state will have effect at the first compare match after the bits are written. For non-PWM modes, the action can be forced to have immediate effect by using the FOC2x strobe bits. 18.7 Modes of operation The mode of operation, that is, the behavior of the Timer/Counter and the Output Compare pins, is defined by the combination of the Waveform Generation mode (WGM22:0) and Compare Output mode (COM2x1:0) bits. The Compare Output mode bits do not affect the counting sequence, while the Waveform Generation mode bits do. The COM2x1:0 bits control whether the PWM output generated should be inverted or not (inverted or non-inverted PWM). For nonPWM modes the COM2x1:0 bits control whether the output should be set, cleared, or toggled at a compare match (See "Compare match output unit" on page 148.). For detailed timing information refer to "Timer/counter timing diagrams" on page 153. 18.7.1 Normal mode The simplest mode of operation is the Normal mode (WGM22:0 = 0). In this mode the counting direction is always up (incrementing), and no counter clear is performed. The counter simply overruns when it passes its maximum 8-bit value (TOP = 0xFF) and then restarts from the bottom (0x00). In normal operation the Timer/Counter Overflow Flag (TOV2) will be set in the same timer clock cycle as the TCNT2 becomes zero. The TOV2 Flag in this case behaves like a ninth bit, except that it is only set, not cleared. However, combined with the timer overflow interrupt that automatically clears the TOV2 Flag, the timer resolution can be increased by software. There are no special cases to consider in the Normal mode, a new counter value can be written anytime. The Output Compare unit can be used to generate interrupts at some given time. Using the Output Compare to generate waveforms in Normal mode is not recommended, since this will occupy too much of the CPU time. 18.7.2 Clear timer on compare match (CTC) mode In Clear Timer on Compare or CTC mode (WGM22:0 = 2), the OCR2A Register is used to manipulate the counter resolution. In CTC mode the counter is cleared to zero when the counter value (TCNT2) matches the OCR2A. The OCR2A defines the top value for the counter, hence also its resolution. This mode allows greater control of the compare match output frequency. It also simplifies the operation of counting external events. The timing diagram for the CTC mode is shown in Figure 18-5 on page 150. The counter value (TCNT2) increases until a compare match occurs between TCNT2 and OCR2A, and then counter (TCNT2) is cleared. 149 2545U-AVR-11/2015 ATmega48/88/168 Figure 18-5. CTC mode, timing diagram. OCnx interrupt flag set TCNTn OCnx (toggle) Period (COMnx1:0 = 1) 1 2 3 4 An interrupt can be generated each time the counter value reaches the TOP value by using the OCF2A Flag. If the interrupt is enabled, the interrupt handler routine can be used for updating the TOP value. However, changing TOP to a value close to BOTTOM when the counter is running with none or a low prescaler value must be done with care since the CTC mode does not have the double buffering feature. If the new value written to OCR2A is lower than the current value of TCNT2, the counter will miss the compare match. The counter will then have to count to its maximum value (0xFF) and wrap around starting at 0x00 before the compare match can occur. For generating a waveform output in CTC mode, the OC2A output can be set to toggle its logical level on each compare match by setting the Compare Output mode bits to toggle mode (COM2A1:0 = 1). The OC2A value will not be visible on the port pin unless the data direction for the pin is set to output. The waveform generated will have a maximum frequency of fOC2A = fclk_I/O/2 when OCR2A is set to zero (0x00). The waveform frequency is defined by the following equation: f clk_I/O f OCnx = -------------------------------------------------2 N 1 + OCRnx The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024). As for the normal mode of operation, the TOV2 Flag is set in the same timer clock cycle that the counter counts from MAX to 0x00. 18.7.3 Fast PWM mode The fast Pulse Width Modulation or fast PWM mode (WGM22:0 = 3 or 7) provides a high frequency PWM waveform generation option. The fast PWM differs from the other PWM option by its single-slope operation. The counter counts from BOTTOM to TOP then restarts from BOTTOM. TOP is defined as 0xFF when WGM2:0 = 3, and OCR2A when MGM2:0 = 7. In noninverting Compare Output mode, the Output Compare (OC2x) is cleared on the compare match between TCNT2 and OCR2x, and set at BOTTOM. In inverting Compare Output mode, the output is set on compare match and cleared at BOTTOM. Due to the single-slope operation, the operating frequency of the fast PWM mode can be twice as high as the phase correct PWM mode that uses dual-slope operation. This high frequency makes the fast PWM mode well suited for power regulation, rectification, and DAC applications. High frequency allows physically small sized external components (coils, capacitors), and therefore reduces total system cost. In fast PWM mode, the counter is incremented until the counter value matches the TOP value. The counter is then cleared at the following timer clock cycle. The timing diagram for the fast 150 2545U-AVR-11/2015 ATmega48/88/168 PWM mode is shown in Figure 18-6. The TCNT2 value is in the timing diagram shown as a histogram for illustrating the single-slope operation. The diagram includes non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNT2 slopes represent compare matches between OCR2x and TCNT2. Figure 18-6. Fast PWM mode, timing diagram. OCRnx interrupt flag set OCRnx update and TOVn interrupt flag set TCNTn OCnx (COMnx1:0 = 2) OCnx (COMnx1:0 = 3) Period 1 2 3 4 5 6 7 The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches TOP. If the interrupt is enabled, the interrupt handler routine can be used for updating the compare value. In fast PWM mode, the compare unit allows generation of PWM waveforms on the OC2x pin. Setting the COM2x1:0 bits to two will produce a non-inverted PWM and an inverted PWM output can be generated by setting the COM2x1:0 to three. TOP is defined as 0xFF when WGM2:0 = 3, and OCR2A when MGM2:0 = 7. (See Table 18-3 on page 158). The actual OC2x value will only be visible on the port pin if the data direction for the port pin is set as output. The PWM waveform is generated by setting (or clearing) the OC2x Register at the compare match between OCR2x and TCNT2, and clearing (or setting) the OC2x Register at the timer clock cycle the counter is cleared (changes from TOP to BOTTOM). The PWM frequency for the output can be calculated by the following equation: f clk_I/O f OCnxPWM = -----------------N 256 The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024). The extreme values for the OCR2A Register represent special cases when generating a PWM waveform output in the fast PWM mode. If the OCR2A is set equal to BOTTOM, the output will be a narrow spike for each MAX+1 timer clock cycle. Setting the OCR2A equal to MAX will result in a constantly high or low output (depending on the polarity of the output set by the COM2A1:0 bits.) A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by setting OC2x to toggle its logical level on each compare match (COM2x1:0 = 1). The waveform generated will have a maximum frequency of foc2 = fclk_I/O/2 when OCR2A is set to zero. This feature is similar to the OC2A toggle in CTC mode, except the double buffer feature of the Output Compare unit is enabled in the fast PWM mode. 151 2545U-AVR-11/2015 ATmega48/88/168 18.7.4 Phase correct PWM mode The phase correct PWM mode (WGM22:0 = 1 or 5) provides a high resolution phase correct PWM waveform generation option. The phase correct PWM mode is based on a dual-slope operation. The counter counts repeatedly from BOTTOM to TOP and then from TOP to BOTTOM. TOP is defined as 0xFF when WGM2:0 = 3, and OCR2A when MGM2:0 = 7. In noninverting Compare Output mode, the Output Compare (OC2x) is cleared on the compare match between TCNT2 and OCR2x while upcounting, and set on the compare match while downcounting. In inverting Output Compare mode, the operation is inverted. The dual-slope operation has lower maximum operation frequency than single slope operation. However, due to the symmetric feature of the dual-slope PWM modes, these modes are preferred for motor control applications. In phase correct PWM mode the counter is incremented until the counter value matches TOP. When the counter reaches TOP, it changes the count direction. The TCNT2 value will be equal to TOP for one timer clock cycle. The timing diagram for the phase correct PWM mode is shown on Figure 18-7. The TCNT2 value is in the timing diagram shown as a histogram for illustrating the dual-slope operation. The diagram includes non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNT2 slopes represent compare matches between OCR2x and TCNT2. Figure 18-7. Phase correct PWM mode, timing diagram. OCnx interrupt flag set OCRnx update TOVn interrupt flag set TCNTn (COMnx1:0 = 2) OCnx (COMnx1:0 = 3) OCnx Period 1 2 3 The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches BOTTOM. The Interrupt Flag can be used to generate an interrupt each time the counter reaches the BOTTOM value. In phase correct PWM mode, the compare unit allows generation of PWM waveforms on the OC2x pin. Setting the COM2x1:0 bits to two will produce a non-inverted PWM. An inverted PWM output can be generated by setting the COM2x1:0 to three. TOP is defined as 0xFF when WGM2:0 = 3, and OCR2A when MGM2:0 = 7 (See Table 18-4 on page 158). The actual OC2x value will only be visible on the port pin if the data direction for the port pin is set as output. The PWM waveform is generated by clearing (or setting) the OC2x Register at the compare match 152 2545U-AVR-11/2015 ATmega48/88/168 between OCR2x and TCNT2 when the counter increments, and setting (or clearing) the OC2x Register at compare match between OCR2x and TCNT2 when the counter decrements. The PWM frequency for the output when using phase correct PWM can be calculated by the following equation: f clk_I/O f OCnxPCPWM = -----------------N 510 The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024). The extreme values for the OCR2A Register represent special cases when generating a PWM waveform output in the phase correct PWM mode. If the OCR2A is set equal to BOTTOM, the output will be continuously low and if set equal to MAX the output will be continuously high for non-inverted PWM mode. For inverted PWM the output will have the opposite logic values. At the very start of period 2 in Figure 18-7 on page 152 OCnx has a transition from high to low even though there is no Compare Match. The point of this transition is to guarantee symmetry around BOTTOM. There are two cases that give a transition without Compare Match. 18.8 l OCR2A changes its value from MAX, like in Figure 18-7 on page 152. When the OCR2A value is MAX the OCn pin value is the same as the result of a down-counting compare match. To ensure symmetry around BOTTOM the OCn value at MAX must correspond to the result of an up-counting Compare Match l The timer starts counting from a value higher than the one in OCR2A, and for that reason misses the Compare Match and hence the OCn change that would have happened on the way up Timer/counter timing diagrams The following figures show the Timer/Counter in synchronous mode, and the timer clock (clkT2) is therefore shown as a clock enable signal. In asynchronous mode, clkI/O should be replaced by the Timer/Counter Oscillator clock. The figures include information on when Interrupt Flags are set. Figure 18-8 contains timing data for basic Timer/Counter operation. The figure shows the count sequence close to the MAX value in all modes other than phase correct PWM mode. Figure 18-8. Timer/counter timing diagram, no prescaling. clkI/O clkTn (clkI/O /1) TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1 TOVn Figure 18-9 on page 154 shows the same timing data, but with the prescaler enabled. 153 2545U-AVR-11/2015 ATmega48/88/168 Figure 18-9. Timer/counter timing diagram, with prescaler (fclk_I/O/8). clkI/O clkTn (clkI/O /8) TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1 TOVn Figure 18-10 shows the setting of OCF2A in all modes except CTC mode. Figure 18-10. Timer/counter timing diagram, setting of OCF2A, with prescaler (fclk_I/O/8). clkI/O clkTn (clkI/O /8) TCNTn OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2 OCRnx value OCRnx OCFnx Figure 18-11 shows the setting of OCF2A and the clearing of TCNT2 in CTC mode. Figure 18-11. Timer/counter timing diagram, clear timer on compare match mode, with prescaler (fclk_I/O/8). clkI/O clkTn (clkI/O /8) TCNTn (CTC) OCRnx TOP - 1 TOP BOTTOM BOTTOM + 1 TOP OCFnx 154 2545U-AVR-11/2015 ATmega48/88/168 18.9 Asynchronous operation of Timer/Counter2 When Timer/Counter2 operates asynchronously, some considerations must be taken. l Warning: When switching between asynchronous and synchronous clocking of Timer/Counter2, the Timer Registers TCNT2, OCR2x, and TCCR2x might be corrupted. A safe procedure for switching clock source is: a. Disable the Timer/Counter2 interrupts by clearing OCIE2x and TOIE2. 2. Select clock source by setting AS2 as appropriate. 3. Write new values to TCNT2, OCR2x, and TCCR2x. 4. To switch to asynchronous operation: Wait for TCN2xUB, OCR2xUB, and TCR2xUB. 5. Clear the Timer/Counter2 Interrupt Flags. 6. Enable interrupts, if needed. l The CPU main clock frequency must be more than four times the Oscillator frequency l When writing to one of the registers TCNT2, OCR2x, or TCCR2x, the value is transferred to a temporary register, and latched after two positive edges on TOSC1. The user should not write a new value before the contents of the temporary register have been transferred to its destination. Each of the five mentioned registers have their individual temporary register, which means that, for example, writing to TCNT2 does not disturb an OCR2x write in progress. To detect that a transfer to the destination register has taken place, the Asynchronous Status Register - ASSR has been implemented l When entering Power-save or ADC Noise Reduction mode after having written to TCNT2, OCR2x, or TCCR2x, the user must wait until the written register has been updated if Timer/Counter2 is used to wake up the device. Otherwise, the MCU will enter sleep mode before the changes are effective. This is particularly important if any of the Output Compare2 interrupt is used to wake up the device, since the Output Compare function is disabled during writing to OCR2x or TCNT2. If the write cycle is not finished, and the MCU enters sleep mode before the corresponding OCR2xUB bit returns to zero, the device will never receive a compare match interrupt, and the MCU will not wake up l If Timer/Counter2 is used to wake the device up from Power-save or ADC Noise Reduction mode, precautions must be taken if the user wants to re-enter one of these modes: If re-entering sleep mode within the TOSC1 cycle, the interrupt will immidiately occur and the device wake up again. The result is multiple interrupts and wake-ups within one TOSC1 cycle from the first interrupt. If the user is in doubt whether the time before reentering Power-save or ADC Noise Reduction mode is sufficient, the following algorithm can be used to ensure that one TOSC1 cycle has elapsed: a. Write a value to TCCR2x, TCNT2, or OCR2x. 7. Wait until the corresponding Update Busy Flag in ASSR returns to zero. 8. Enter Power-save or ADC Noise Reduction mode. l When the asynchronous operation is selected, the 32.768kHz Oscillator for Timer/Counter2 is always running, except in Power-down and Standby modes. After a Power-up Reset or wake-up from Power-down or Standby mode, the user should be aware of the fact that this Oscillator might take as long as one second to stabilize. The user is advised to wait for at least one second before using Timer/Counter2 after power-up or wake-up from Power-down or Standby mode. The contents of all Timer/Counter2 Registers must be considered lost after a wake-up from Power-down or Standby mode 155 2545U-AVR-11/2015 ATmega48/88/168 due to unstable clock signal upon start-up, no matter whether the Oscillator is in use or a clock signal is applied to the TOSC1 pin l Description of wake up from Power-save or ADC Noise Reduction mode when the timer is clocked asynchronously: When the interrupt condition is met, the wake up process is started on the following cycle of the timer clock, that is, the timer is always advanced by at least one before the processor can read the counter value. After wake-up, the MCU is halted for four cycles, it executes the interrupt routine, and resumes execution from the instruction following SLEEP l Reading of the TCNT2 Register shortly after wake-up from Power-save may give an incorrect result. Since TCNT2 is clocked on the asynchronous TOSC clock, reading TCNT2 must be done through a register synchronized to the internal I/O clock domain. Synchronization takes place for every rising TOSC1 edge. When waking up from Powersave mode, and the I/O clock (clkI/O) again becomes active, TCNT2 will read as the previous value (before entering sleep) until the next rising TOSC1 edge. The phase of the TOSC clock after waking up from Power-save mode is essentially unpredictable, as it depends on the wake-up time. The recommended procedure for reading TCNT2 is thus as follows: a. Write any value to either of the registers OCR2x or TCCR2x. 9. Wait for the corresponding Update Busy Flag to be cleared. 10. Read TCNT2. During asynchronous operation, the synchronization of the Interrupt Flags for the asynchronous timer takes 3 processor cycles plus one timer cycle. The timer is therefore advanced by at least one before the processor can read the timer value causing the setting of the Interrupt Flag. The Output Compare pin is changed on the timer clock and is not synchronized to the processor clock. 18.10 Timer/counter prescaler Figure 18-12. Prescaler for Timer/Counter2. PSRASY clkT2S/1024 clkT2S/256 clkT2S/128 AS2 clkT2S/64 10-BIT T/C PRESCALER Clear clkT2S/32 TOSC1 clkT2S clkT2S/8 clkI/O 0 CS20 CS21 CS22 TIMER/COUNTER2 CLOCK SOURCE clkT2 156 2545U-AVR-11/2015 ATmega48/88/168 The clock source for Timer/Counter2 is named clkT2S. clkT2S is by default connected to the main system I/O clock clkIO. By setting the AS2 bit in ASSR, Timer/Counter2 is asynchronously clocked from the TOSC1 pin. This enables use of Timer/Counter2 as a Real Time Counter (RTC). When AS2 is set, pins TOSC1 and TOSC2 are disconnected from Port C. A crystal can then be connected between the TOSC1 and TOSC2 pins to serve as an independent clock source for Timer/Counter2. The Oscillator is optimized for use with a 32.768kHz crystal. For Timer/Counter2, the possible prescaled selections are: clkT2S/8, clkT2S/32, clkT2S/64, clkT2S/128, clkT2S/256, and clkT2S/1024. Additionally, clkT2S as well as 0 (stop) may be selected. Setting the PSRASY bit in GTCCR resets the prescaler. This allows the user to operate with a predictable prescaler. 18.11 Register description 18.11.1 TCCR2A - Timer/counter control register A Bit 7 6 5 4 3 2 1 0 COM2A1 COM2A0 COM2B1 COM2B0 - - WGM21 WGM20 Read/write R/W R/W R/W R/W R R R/W R/W Initial value 0 0 0 0 0 0 0 0 (0xB0) TCCR2A * Bits 7:6 - COM2A1:0: Compare match output A mode These bits control the Output Compare pin (OC2A) behavior. If one or both of the COM2A1:0 bits are set, the OC2A output overrides the normal port functionality of the I/O pin it is connected to. However, note that the Data Direction Register (DDR) bit corresponding to the OC2A pin must be set in order to enable the output driver. When OC2A is connected to the pin, the function of the COM2A1:0 bits depends on the WGM22:0 bit setting. Table 18-2 shows the COM2A1:0 bit functionality when the WGM22:0 bits are set to a normal or CTC mode (non-PWM). Table 18-2. Compare output mode, non-PWM mode. COM2A1 COM2A0 Description 0 0 Normal port operation, OC2A disconnected 0 1 Toggle OC2A on compare match 1 0 Clear OC2A on compare match 1 1 Set OC2A on compare match Table 18-3 on page 158 shows the COM2A1:0 bit functionality when the WGM21:0 bits are set to fast PWM mode. 157 2545U-AVR-11/2015 ATmega48/88/168 Table 18-3. Compare output mode, fast PWM mode(1). COM2A1 COM2A0 0 0 Normal port operation, OC2A disconnected 0 1 WGM22 = 0: Normal port operation, OC0A disconnected WGM22 = 1: Toggle OC2A on compare match 1 0 Clear OC2A on compare match, set OC2A at BOTTOM, (non-inverting mode) 1 1 Set OC2A on compare match, clear OC2A at BOTTOM, (inverting mode) Note: 1. Description A special case occurs when OCR2A equals TOP and COM2A1 is set. In this case, the Compare Match is ignored, but the set or clear is done at TOP. See "Fast PWM mode" on page 150 for more details. Table 18-4 shows the COM2A1:0 bit functionality when the WGM22:0 bits are set to phase correct PWM mode. Table 18-4. Compare output mode, phase correct PWM Mode(1). COM2A1 COM2A0 0 0 Normal port operation, OC2A disconnected 0 1 WGM22 = 0: Normal port operation, OC2A disconnected WGM22 = 1: Toggle OC2A on compare match 1 0 Clear OC2A on compare match when up-counting Set OC2A on compare match when down-counting 1 1 Set OC2A on compare match when up-counting Clear OC2A on compare match when down-counting Note: 1. Description A special case occurs when OCR2A equals TOP and COM2A1 is set. In this case, the Compare Match is ignored, but the set or clear is done at TOP. See "Phase correct PWM mode" on page 152 for more details. * Bits 5:4 - COM2B1:0: Compare match output B mode These bits control the Output Compare pin (OC2B) behavior. If one or both of the COM2B1:0 bits are set, the OC2B output overrides the normal port functionality of the I/O pin it is connected to. However, note that the Data Direction Register (DDR) bit corresponding to the OC2B pin must be set in order to enable the output driver. When OC2B is connected to the pin, the function of the COM2B1:0 bits depends on the WGM22:0 bit setting. Table 18-5 shows the COM2B1:0 bit functionality when the WGM22:0 bits are set to a normal or CTC mode (non-PWM). Table 18-5. Compare output mode, non-PWM mode. COM2B1 COM2B0 Description 0 0 Normal port operation, OC2B disconnected 0 1 Toggle OC2B on compare match 1 0 Clear OC2B on compare match 1 1 Set OC2B on compare match 158 2545U-AVR-11/2015 ATmega48/88/168 Table 18-6 shows the COM2B1:0 bit functionality when the WGM22:0 bits are set to fast PWM mode. Table 18-6. Compare output mode, fast PWM mode(1). COM2B1 COM2B0 0 0 Normal port operation, OC2B disconnected 0 1 Reserved 1 0 Clear OC2B on compare match, set OC2B at BOTTOM, (non-inverting mode) 1 1 Set OC2B on compare match, clear OC2B at BOTTOM, (invertiing mode) Note: 1. Description A special case occurs when OCR2B equals TOP and COM2B1 is set. In this case, the Compare Match is ignored, but the set or clear is done at TOP. See "Phase correct PWM mode" on page 152 for more details. Table 18-7 shows the COM2B1:0 bit functionality when the WGM22:0 bits are set to phase correct PWM mode. Table 18-7. Compare output mode, phase correct PWM mode(1). COM2B1 COM2B0 0 0 Normal port operation, OC2B disconnected 0 1 Reserved 1 0 Clear OC2B on compare match when up-counting Set OC2B on compare match when down-counting 1 1 Set OC2B on compare match when up-counting Clear OC2B on compare match when down-counting Note: 1. Description A special case occurs when OCR2B equals TOP and COM2B1 is set. In this case, the Compare Match is ignored, but the set or clear is done at TOP. See "Phase correct PWM mode" on page 152 for more details. * Bits 3, 2 - Res: Reserved bits These bits are reserved bits in the Atmel ATmega48/88/168 and will always read as zero. * Bits 1:0 - WGM21:0: Waveform generation mode Combined with the WGM22 bit found in the TCCR2B Register, these bits control the counting sequence of the counter, the source for maximum (TOP) counter value, and what type of waveform generation to be used, see Table 18-8 on page 160. Modes of operation supported by the Timer/Counter unit are: Normal mode (counter), Clear Timer on Compare Match (CTC) mode, and two types of Pulse Width Modulation (PWM) modes (see "Modes of operation" on page 149). 159 2545U-AVR-11/2015 ATmega48/88/168 Table 18-8. Waveform generation mode bit description. Mode WGM2 WGM1 WGM0 Timer/counter mode of operation 0 0 0 0 Normal 0xFF Immediate MAX 1 0 0 1 PWM, phase correct 0xFF TOP BOTTOM 2 0 1 0 CTC OCRA Immediate MAX 3 0 1 1 Fast PWM 0xFF BOTTOM MAX 4 1 0 0 Reserved - - - 5 1 0 1 PWM, phase correct OCRA TOP BOTTOM 6 1 1 0 Reserved - - - 7 1 1 1 Fast PWM OCRA BOTTOM TOP Notes: 1. 2. TOP Update of OCRx at TOV flag set on(1)(2) MAX= 0xFF BOTTOM= 0x00 18.11.2 TCCR2B - Timer/counter control register B Bit 7 6 5 4 3 2 1 0 FOC2A FOC2B - - WGM22 CS22 CS21 CS20 Read/write W W R R R R R/W R/W Initial value 0 0 0 0 0 0 0 0 (0xB1) TCCR2B * Bit 7 - FOC2A: Force output compare A The FOC2A bit is only active when the WGM bits specify a non-PWM mode. However, for ensuring compatibility with future devices, this bit must be set to zero when TCCR2B is written when operating in PWM mode. When writing a logical one to the FOC2A bit, an immediate Compare Match is forced on the Waveform Generation unit. The OC2A output is changed according to its COM2A1:0 bits setting. Note that the FOC2A bit is implemented as a strobe. Therefore it is the value present in the COM2A1:0 bits that determines the effect of the forced compare. A FOC2A strobe will not generate any interrupt, nor will it clear the timer in CTC mode using OCR2A as TOP. The FOC2A bit is always read as zero. * Bit 6 - FOC2B: Force output compare B The FOC2B bit is only active when the WGM bits specify a non-PWM mode. However, for ensuring compatibility with future devices, this bit must be set to zero when TCCR2B is written when operating in PWM mode. When writing a logical one to the FOC2B bit, an immediate Compare Match is forced on the Waveform Generation unit. The OC2B output is changed according to its COM2B1:0 bits setting. Note that the FOC2B bit is implemented as a strobe. Therefore it is the value present in the COM2B1:0 bits that determines the effect of the forced compare. 160 2545U-AVR-11/2015 ATmega48/88/168 A FOC2B strobe will not generate any interrupt, nor will it clear the timer in CTC mode using OCR2B as TOP. The FOC2B bit is always read as zero. * Bits 5:4 - Res: Reserved bits These bits are reserved bits in the Atmel ATmega48/88/168 and will always read as zero. * Bit 3 - WGM22: Waveform generation mode See the description in the "TCCR2A - Timer/counter control register A" on page 157. * Bit 2:0 - CS22:0: Clock select The three Clock Select bits select the clock source to be used by the Timer/Counter, see Table 18-9. Table 18-9. Clock select bit description. CS22 CS21 CS20 Description 0 0 0 No clock source (timer/counter stopped) 0 0 1 clkT2S/(no prescaling) 0 1 0 clkT2S/8 (from prescaler) 0 1 1 clkT2S/32 (from prescaler) 1 0 0 clkT2S/64 (from prescaler) 1 0 1 clkT2S/128 (from prescaler) 1 1 0 clkT2S/256 (from prescaler) 1 1 1 clkT2S/1024 (from prescaler) If external pin modes are used for the Timer/Counter0, transitions on the T0 pin will clock the counter even if the pin is configured as an output. This feature allows software control of the counting. 18.11.3 TCNT2 - Timer/counter register Bit 7 6 5 (0xB2) 4 3 2 1 0 TCNT2[7:0] TCNT2 Read/write R/W R/W R/W R/W R/W R/W R/W R/W Initial value 0 0 0 0 0 0 0 0 The Timer/Counter Register gives direct access, both for read and write operations, to the Timer/Counter unit 8-bit counter. Writing to the TCNT2 Register blocks (removes) the Compare Match on the following timer clock. Modifying the counter (TCNT2) while the counter is running, introduces a risk of missing a Compare Match between TCNT2 and the OCR2x Registers. 18.11.4 OCR2A - Output compare register A Bit 7 6 5 (0xB3) 4 3 2 1 0 OCR2A[7:0] OCR2A Read/write R/W R/W R/W R/W R/W R/W R/W R/W Initial value 0 0 0 0 0 0 0 0 161 2545U-AVR-11/2015 ATmega48/88/168 The Output Compare Register A contains an 8-bit value that is continuously compared with the counter value (TCNT2). A match can be used to generate an Output Compare interrupt, or to generate a waveform output on the OC2A pin. 18.11.5 OCR2B - Output compare register B Bit 7 6 5 4 (0xB4) 3 2 1 0 OCR2B[7:0] OCR2B Read/write R/W R/W R/W R/W R/W R/W R/W R/W Initial value 0 0 0 0 0 0 0 0 The Output Compare Register B contains an 8-bit value that is continuously compared with the counter value (TCNT2). A match can be used to generate an Output Compare interrupt, or to generate a waveform output on the OC2B pin. 18.11.6 TIMSK2 - Timer/Counter2 interrupt mask register Bit 7 6 5 4 3 2 1 0 (0x70) - - - - - OCIE2B OCIE2A TOIE2 Read/write R R R R R R/W R/W R/W Initial value 0 0 0 0 0 0 0 0 TIMSK2 * Bit 2 - OCIE2B: Timer/Counter2 output compare match B interrupt enable When the OCIE2B bit is written to one and the I-bit in the Status Register is set (one), the Timer/Counter2 Compare Match B interrupt is enabled. The corresponding interrupt is executed if a compare match in Timer/Counter2 occurs, that is, when the OCF2B bit is set in the Timer/Counter 2 Interrupt Flag Register - TIFR2. * Bit 1 - OCIE2A: Timer/Counter2 output compare match A interrupt enable When the OCIE2A bit is written to one and the I-bit in the Status Register is set (one), the Timer/Counter2 Compare Match A interrupt is enabled. The corresponding interrupt is executed if a compare match in Timer/Counter2 occurs, that is, when the OCF2A bit is set in the Timer/Counter 2 Interrupt Flag Register - TIFR2. * Bit 0 - TOIE2: Timer/Counter2 overflow interrupt enable When the TOIE2 bit is written to one and the I-bit in the Status Register is set (one), the Timer/Counter2 Overflow interrupt is enabled. The corresponding interrupt is executed if an overflow in Timer/Counter2 occurs, that is, when the TOV2 bit is set in the Timer/Counter2 Interrupt Flag Register - TIFR2. 18.11.7 TIFR2 - Timer/Counter2 interrupt flag register Bit 7 6 5 4 3 2 1 0 0x17 (0x37) - - - - - OCF2B OCF2A TOV2 Read/write R R R R R R/W R/W R/W Initial value 0 0 0 0 0 0 0 0 TIFR2 * Bit 2 - OCF2B: Output compare flag 2 B The OCF2B bit is set (one) when a compare match occurs between the Timer/Counter2 and the data in OCR2B - Output Compare Register2. OCF2B is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, OCF2B is cleared by writing a logic 162 2545U-AVR-11/2015 ATmega48/88/168 one to the flag. When the I-bit in SREG, OCIE2B (Timer/Counter2 Compare match Interrupt Enable), and OCF2B are set (one), the Timer/Counter2 Compare match Interrupt is executed. * Bit 1 - OCF2A: Output compare flag 2 A The OCF2A bit is set (one) when a compare match occurs between the Timer/Counter2 and the data in OCR2A - Output Compare Register2. OCF2A is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, OCF2A is cleared by writing a logic one to the flag. When the I-bit in SREG, OCIE2A (Timer/Counter2 Compare match Interrupt Enable), and OCF2A are set (one), the Timer/Counter2 Compare match Interrupt is executed. * Bit 0 - TOV2: Timer/Counter2 overflow flag The TOV2 bit is set (one) when an overflow occurs in Timer/Counter2. TOV2 is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, TOV2 is cleared by writing a logic one to the flag. When the SREG I-bit, TOIE2A (Timer/Counter2 Overflow Interrupt Enable), and TOV2 are set (one), the Timer/Counter2 Overflow interrupt is executed. In PWM mode, this bit is set when Timer/Counter2 changes counting direction at 0x00. 18.11.8 ASSR - Asynchronous status register Bit 7 6 5 4 3 2 1 0 (0xB6) - EXCLK AS2 TCN2UB OCR2AUB OCR2BUB TCR2AUB TCR2BUB Read/write R R/W R/W R R R R R Initial value 0 0 0 0 0 0 0 0 ASSR * Bit 7 - RES: Reserved bit This bit is reserved and will always read as zero. * Bit 6 - EXCLK: Enable external clock input When EXCLK is written to one, and asynchronous clock is selected, the external clock input buffer is enabled and an external clock can be input on Timer Oscillator 1 (TOSC1) pin instead of a 32kHz crystal. Writing to EXCLK should be done before asynchronous operation is selected. Note that the crystal Oscillator will only run when this bit is zero. * Bit 5 - AS2: Asynchronous Timer/Counter2 When AS2 is written to zero, Timer/Counter2 is clocked from the I/O clock, clkI/O. When AS2 is written to one, Timer/Counter2 is clocked from a crystal Oscillator connected to the Timer Oscillator 1 (TOSC1) pin. When the value of AS2 is changed, the contents of TCNT2, OCR2A, OCR2B, TCCR2A and TCCR2B might be corrupted. * Bit 4 - TCN2UB: Timer/Counter2 update busy When Timer/Counter2 operates asynchronously and TCNT2 is written, this bit becomes set. When TCNT2 has been updated from the temporary storage register, this bit is cleared by hardware. A logical zero in this bit indicates that TCNT2 is ready to be updated with a new value. * Bit 3 - OCR2AUB: Output compare Register2 update busy When Timer/Counter2 operates asynchronously and OCR2A is written, this bit becomes set. When OCR2A has been updated from the temporary storage register, this bit is cleared by hardware. A logical zero in this bit indicates that OCR2A is ready to be updated with a new value. 163 2545U-AVR-11/2015 ATmega48/88/168 * Bit 2 - OCR2BUB: Output compare Register2 update busy When Timer/Counter2 operates asynchronously and OCR2B is written, this bit becomes set. When OCR2B has been updated from the temporary storage register, this bit is cleared by hardware. A logical zero in this bit indicates that OCR2B is ready to be updated with a new value. * Bit 1 - TCR2AUB: Timer/counter control Register2 update busy When Timer/Counter2 operates asynchronously and TCCR2A is written, this bit becomes set. When TCCR2A has been updated from the temporary storage register, this bit is cleared by hardware. A logical zero in this bit indicates that TCCR2A is ready to be updated with a new value. * Bit 0 - TCR2BUB: Timer/counter control Register2 update busy When Timer/Counter2 operates asynchronously and TCCR2B is written, this bit becomes set. When TCCR2B has been updated from the temporary storage register, this bit is cleared by hardware. A logical zero in this bit indicates that TCCR2B is ready to be updated with a new value. If a write is performed to any of the five Timer/Counter2 Registers while its update busy flag is set, the updated value might get corrupted and cause an unintentional interrupt to occur. The mechanisms for reading TCNT2, OCR2A, OCR2B, TCCR2A and TCCR2B are different. When reading TCNT2, the actual timer value is read. When reading OCR2A, OCR2B, TCCR2A and TCCR2B the value in the temporary storage register is read. 18.11.9 GTCCR - General timer/counter control register Bit 7 6 5 4 3 2 1 0 0x23 (0x43) TSM - - - - - PSRASY PSRSYNC Read/write R/W R R R R R R/W R/W Initial value 0 0 0 0 0 0 0 0 GTCCR * Bit 1 - PSRASY: Prescaler reset Timer/Counter2 When this bit is one, the Timer/Counter2 prescaler will be reset. This bit is normally cleared immediately by hardware. If the bit is written when Timer/Counter2 is operating in asynchronous mode, the bit will remain one until the prescaler has been reset. The bit will not be cleared by hardware if the TSM bit is set. Refer to the description of the "Bit 7 - TSM: Timer/counter synchronization mode" on page 143 for a description of the Timer/Counter Synchronization mode. 164 2545U-AVR-11/2015 ATmega48/88/168 19. SPI - Serial peripheral interface 19.1 Features * * * * * * * * 19.2 Full-duplex, three-wire synchronous data transfer Master or slave operation LSB first or MSB first data transfer Seven programmable bit rates End of transmission interrupt flag Write collision flag protection Wake-up from idle mode Double speed (CK/2) master SPI mode Overview The Serial Peripheral Interface (SPI) allows high-speed synchronous data transfer between the Atmel ATmega48/88/168 and peripheral devices or between several AVR devices. The USART can also be used in Master SPI mode, see "USART in SPI mode" on page 203. The PRSPI bit in "Minimizing power consumption" on page 41 must be written to zero to enable SPI module. 165 2545U-AVR-11/2015 ATmega48/88/168 Figure 19-1. SPI block diagram(1). SPI2X SPI2X DIVIDER /2/4/8/16/32/64/128 Note: 1. Refer to Figure 1-1 on page 2, and Table 14-3 on page 83 for SPI pin placement. The interconnection between Master and Slave CPUs with SPI is shown in Figure 19-2 on page 167. The system consists of two shift Registers, and a Master clock generator. The SPI Master initiates the communication cycle when pulling low the Slave Select SS pin of the desired Slave. Master and Slave prepare the data to be sent in their respective shift Registers, and the Master generates the required clock pulses on the SCK line to interchange data. Data is always shifted from Master to Slave on the Master Out - Slave In, MOSI, line, and from Slave to Master on the Master In - Slave Out, MISO, line. After each data packet, the Master will synchronize the Slave by pulling high the Slave Select, SS, line. When configured as a Master, the SPI interface has no automatic control of the SS line. This must be handled by user software before communication can start. When this is done, writing a byte to the SPI Data Register starts the SPI clock generator, and the hardware shifts the eight bits into the Slave. After shifting one byte, the SPI clock generator stops, setting the end of Transmission Flag (SPIF). If the SPI Interrupt Enable bit (SPIE) in the SPCR Register is set, an interrupt is requested. The Master may continue to shift the next byte by writing it into SPDR, or signal the end of packet by pulling high the Slave Select, SS line. The last incoming byte will be kept in the Buffer Register for later use. When configured as a Slave, the SPI interface will remain sleeping with MISO tri-stated as long as the SS pin is driven high. In this state, software may update the contents of the SPI Data Register, SPDR, but the data will not be shifted out by incoming clock pulses on the SCK pin until the SS pin is driven low. As one byte has been completely shifted, the end of Transmission 166 2545U-AVR-11/2015 ATmega48/88/168 Flag, SPIF is set. If the SPI Interrupt Enable bit, SPIE, in the SPCR Register is set, an interrupt is requested. The Slave may continue to place new data to be sent into SPDR before reading the incoming data. The last incoming byte will be kept in the Buffer Register for later use. Figure 19-2. SPI master-slave interconnection. SHIFT ENABLE The system is single buffered in the transmit direction and double buffered in the receive direction. This means that bytes to be transmitted cannot be written to the SPI Data Register before the entire shift cycle is completed. When receiving data, however, a received character must be read from the SPI Data Register before the next character has been completely shifted in. Otherwise, the first byte is lost. In SPI Slave mode, the control logic will sample the incoming signal of the SCK pin. To ensure correct sampling of the clock signal, the minimum low and high periods should be: Low periods: Longer than 2 CPU clock cycles. High periods: Longer than 2 CPU clock cycles. When the SPI is enabled, the data direction of the MOSI, MISO, SCK, and SS pins is overridden according to Table 19-1. For more details on automatic port overrides, refer to "Alternate port functions" on page 81. Table 19-1. Pin SPI pin overrides(Note:). Direction, master SPI Direction, slave SPI MOSI User defined Input MISO Input User defined SCK User defined Input SS User defined Input Note: See "Alternate functions of port B" on page 83 for a detailed description of how to define the direction of the user defined SPI pins. The following code examples show how to initialize the SPI as a Master and how to perform a simple transmission. DDR_SPI in the examples must be replaced by the actual Data Direction Register controlling the SPI pins. DD_MOSI, DD_MISO and DD_SCK must be replaced by the actual data direction bits for these pins. For example if MOSI is placed on pin PB3, replace DD_MOSI with DDB3 and DDR_SPI with DDRB. 167 2545U-AVR-11/2015 ATmega48/88/168 Assembly code example(1) SPI_MasterInit: ; Set MOSI and SCK output, all others input ldi r17,(1<>8); UBRR0L = (unsigned char)ubrr; Enable receiver and transmitter */ UCSR0B = (1<> 1) & 0x01; return ((resh << 8) | resl); } Note: 1. See "About code examples" on page 8. The receive function example reads all the I/O registers into the register file before any computation is done. This gives an optimal receive buffer utilization since the buffer location read will be free to accept new data as early as possible. 20.7.3 Receive complete flag and interrupt The USART Receiver has one flag that indicates the Receiver state. The Receive Complete (RXCn) Flag indicates if there are unread data present in the receive buffer. This flag is one when unread data exist in the receive buffer, and zero when the receive buffer is empty (that is, does not contain any unread data). If the Receiver is disabled (RXENn = 0), the receive buffer will be flushed and consequently the RXCn bit will become zero. 187 2545U-AVR-11/2015 ATmega48/88/168 When the Receive Complete Interrupt Enable (RXCIEn) in UCSRnB is set, the USART Receive Complete interrupt will be executed as long as the RXCn Flag is set (provided that global interrupts are enabled). When interrupt-driven data reception is used, the receive complete routine must read the received data from UDRn in order to clear the RXCn Flag, otherwise a new interrupt will occur once the interrupt routine terminates. 20.7.4 Receiver error flags The USART Receiver has three Error Flags: Frame Error (FEn), Data OverRun (DORn) and Parity Error (UPEn). All can be accessed by reading UCSRnA. Common for the Error Flags is that they are located in the receive buffer together with the frame for which they indicate the error status. Due to the buffering of the Error Flags, the UCSRnA must be read before the receive buffer (UDRn), since reading the UDRn I/O location changes the buffer read location. Another equality for the Error Flags is that they can not be altered by software doing a write to the flag location. However, all flags must be set to zero when the UCSRnA is written for upward compatibility of future USART implementations. None of the Error Flags can generate interrupts. The Frame Error (FEn) Flag indicates the state of the first stop bit of the next readable frame stored in the receive buffer. The FEn Flag is zero when the stop bit was correctly read (as one), and the FEn Flag will be one when the stop bit was incorrect (zero). This flag can be used for detecting out-of-sync conditions, detecting break conditions and protocol handling. The FEn Flag is not affected by the setting of the USBSn bit in UCSRnC since the Receiver ignores all, except for the first, stop bits. For compatibility with future devices, always set this bit to zero when writing to UCSRnA. The Data OverRun (DORn) Flag indicates data loss due to a receiver buffer full condition. A Data OverRun occurs when the receive buffer is full (two characters), it is a new character waiting in the Receive Shift Register, and a new start bit is detected. If the DORn Flag is set there was one or more serial frame lost between the frame last read from UDRn, and the next frame read from UDRn. For compatibility with future devices, always write this bit to zero when writing to UCSRnA. The DORn Flag is cleared when the frame received was successfully moved from the Shift Register to the receive buffer. The Parity Error (UPEn) Flag indicates that the next frame in the receive buffer had a Parity Error when received. If Parity Check is not enabled the UPEn bit will always be read zero. For compatibility with future devices, always set this bit to zero when writing to UCSRnA. For more details see "Parity bit calculation" on page 180 and "Parity checker" on page 188. 20.7.5 Parity checker The Parity Checker is active when the high USART Parity mode (UPMn1) bit is set. Type of Parity Check to be performed (odd or even) is selected by the UPMn0 bit. When enabled, the Parity Checker calculates the parity of the data bits in incoming frames and compares the result with the parity bit from the serial frame. The result of the check is stored in the receive buffer together with the received data and stop bits. The Parity Error (UPEn) Flag can then be read by software to check if the frame had a Parity Error. The UPEn bit is set if the next character that can be read from the receive buffer had a Parity Error when received and the Parity Checking was enabled at that point (UPMn1 = 1). This bit is valid until the receive buffer (UDRn) is read. 188 2545U-AVR-11/2015 ATmega48/88/168 20.7.6 Disabling the receiver In contrast to the Transmitter, disabling of the Receiver will be immediate. Data from ongoing receptions will therefore be lost. When disabled (that is, the RXENn is set to zero) the Receiver will no longer override the normal function of the RxDn port pin. The Receiver buffer FIFO will be flushed when the Receiver is disabled. Remaining data in the buffer will be lost 20.7.7 Flushing the receive buffer The receiver buffer FIFO will be flushed when the Receiver is disabled, that is, the buffer will be emptied of its contents. Unread data will be lost. If the buffer has to be flushed during normal operation, due to for instance an error condition, read the UDRn I/O location until the RXCn Flag is cleared. The following code example shows how to flush the receive buffer. Assembly code example(1) USART_Flush: sbis ret in rjmp UCSRnA, RXCn r16, UDRn USART_Flush C code example(1) void USART_Flush( void ) { unsigned char dummy; while ( UCSRnA & (1< 2 CPU clock cycles for fck < 12MHz, 3 CPU clock cycles for fck >= 12MHz 305 2545U-AVR-11/2015 ATmega48/88/168 High:> 2 CPU clock cycles for fck < 12MHz, 3 CPU clock cycles for fck >= 12MHz 28.8.1 Serial programming pin mapping Table 28-15. Pin mapping serial programming. Symbol Pins I/O Description MOSI PB3 I Serial Data in MISO PB4 O Serial Data out SCK PB5 I Serial Clock 28.8.2 Serial programming algorithm When writing serial data to the Atmel ATmega48/88/168, data is clocked on the rising edge of SCK. When reading data from the ATmega48/88/168, data is clocked on the falling edge of SCK. See Figure 28-9 on page 309 for timing details. To program and verify the ATmega48/88/168 in the serial programming mode, the following sequence is recommended (See Serial Programming Instruction set in Table 28-17 on page 307): 1. Power-up sequence: Apply power between VCC and GND while RESET and SCK are set to "0". In some systems, the programmer can not guarantee that SCK is held low during power-up. In this case, RESET must be given a positive pulse of at least two CPU clock cycles duration after SCK has been set to "0". 2. Wait for at least 20ms and enable serial programming by sending the Programming Enable serial instruction to pin MOSI. 3. The serial programming instructions will not work if the communication is out of synchronization. When in sync. the second byte (0x53), will echo back when issuing the third byte of the Programming Enable instruction. Whether the echo is correct or not, all four bytes of the instruction must be transmitted. If the 0x53 did not echo back, give RESET a positive pulse and issue a new Programming Enable command. 4. The Flash is programmed one page at a time. The memory page is loaded one byte at a time by supplying the 6 LSB of the address and data together with the Load Program Memory Page instruction. To ensure correct loading of the page, the data low byte must be loaded before data high byte is applied for a given address. The Program Memory Page is stored by loading the Write Program Memory Page instruction with the 7 MSB of the address. If polling (RDY/BSY) is not used, the user must wait at least tWD_FLASH before issuing the next page (see Table 28-16 on page 307). Accessing the serial programming interface before the Flash write operation completes can result in incorrect programming. 5. A: The EEPROM array is programmed one byte at a time by supplying the address and data together with the appropriate Write instruction. An EEPROM memory location is first automatically erased before new data is written. If polling (RDY/BSY) is not used, the user must wait at least tWD_EEPROM before issuing the next byte (see Table 28-16 on page 307). In a chip erased device, no 0xFFs in the data file(s) need to be programmed. B: The EEPROM array is programmed one page at a time. The Memory page is loaded one byte at a time by supplying the 6 LSB of the address and data together with the Load EEPROM Memory Page instruction. The EEPROM Memory Page is stored by loading the 306 2545U-AVR-11/2015 ATmega48/88/168 Write EEPROM Memory Page Instruction with the 7 MSB of the address. When using EEPROM page access only byte locations loaded with the Load EEPROM Memory Page instruction is altered. The remaining locations remain unchanged. If polling (RDY/BSY) is not used, the used must wait at least tWD_EEPROM before issuing the next byte (See Table 28-16 on page 307). In a chip erased device, no 0xFF in the data file(s) need to be programmed. 6. Any memory location can be verified by using the Read instruction which returns the content at the selected address at serial output MISO. 7. At the end of the programming session, RESET can be set high to commence normal operation. 8. Power-off sequence (if needed): Set RESET to "1". Turn VCC power off. Table 28-16. Typical wait delay before writing the next flash or EEPROM location. Symbol Minimum wait delay tWD_FLASH 4.5ms tWD_EEPROM 3.6ms tWD_ERASE 9.0ms 28.8.3 Serial programming instruction set Table 28-17 and Figure 28-8 on page 309 describes the instruction set. Table 28-17. Serial programming instruction set (hexadecimal values). Instruction format Instruction/operation Byte 1 Byte 2 Byte 3 Byte 4 Programming enable $AC $53 $00 $00 Chip erase (program memory/EEPROM) $AC $80 $00 $00 Poll RDY/BSY $F0 $00 $00 data byte out Load extended address byte(1) $4D $00 Extended adr $00 Load program memory page, high byte $48 $00 adr LSB high data byte in Load program memory page, low byte $40 $00 adr LSB low data byte in Load EEPROM memory page (page access) $C1 $00 0000 000aa data byte in Read program memory, high byte $28 adr MSB adr LSB high data byte out Read program memory, low byte $20 adr MSB adr LSB low data byte out Read EEPROM memory $A0 0000 00aa aaaa aaaa data byte out Read lock bits $58 $00 $00 data byte out Read signature byte $30 $00 0000 000aa data byte out Load instructions Read instructions 307 2545U-AVR-11/2015 ATmega48/88/168 Table 28-17. Serial programming instruction set (hexadecimal values). (Continued) Instruction format Instruction/operation Byte 1 Byte 2 Byte 3 Byte 4 Read fuse bits $50 $00 $00 data byte out Read fuse high bits $58 $08 $00 data byte out Read extended fuse bits $50 $08 $00 data byte out Read calibration byte $38 $00 $00 data byte out Write program memory page $4C adr MSB adr LSB $00 Write EEPROM memory $C0 0000 00aa aaaa aaaa data byte in Write EEPROM memory page (page access) $C2 0000 00aa aaaa aa00 $00 Write lock bits $AC $E0 $00 data byte in Write fuse bits $AC $A0 $00 data byte in Write fuse high bits $AC $A8 $00 data byte in Write extended fuse bits $AC $A4 $00 data byte in Write instructions Notes: 1. 2. 3. 4. 5. 6. 7. (6) Not all instructions are applicable for all parts. a = address. Bits are programmed `0', unprogrammed `1'. To ensure future compatibility, unused fuses and lock bits should be unprogrammed (`1'). Refer to the correspondig section for fuse and lock bits, calibration and signature bytes and page size. Instructions accessing program memory use a word address. This word may be random within the page range. See htt://www.atmel.com/avr for application notes regarding programming and programmers. If the LSB in RDY/BSY data byte out is `1', a programming operation is still pending. Wait until this bit returns `0' before the next instruction is carried out. Within the same page, the low data byte must be loaded prior to the high data byte. After data is loaded to the page buffer, program the EEPROM page, see Figure 28-8. 308 2545U-AVR-11/2015 ATmega48/88/168 Figure 28-8. Serial programming instruction example. Serial programming instruction Load program memory page (high/low byte)/ Load EEPROM memory page (page access) Byte 1 Byte 2 Adr M A MSB SB Byte 3 Write program memory page/ Write EEPROM memory page Byte 1 Byte 4 Byte 2 Adr MSB Adr LSB Bit 15 B Bit 15 B 0 Byte 3 Byte 4 A Adr drr L LSB SB B 0 Page buffer Page offset Page 0 Page 1 Page 2 Page number Page N-1 Program memory/ EEPROM memory 28.8.4 SPI serial programming characteristics Figure 28-9. Serial programming waveforms. SERIAL DATA INPUT (MOSI) MSB LSB SERIAL DATA OUTPUT (MISO) MSB LSB SERIAL CLOCK INPUT (SCK) SAMPLE For characteristics of the SPI module see "SPI timing characteristics" on page 316. 309 2545U-AVR-11/2015 ATmega48/88/168 29. Electrical characteristics 29.1 Absolute maximum ratings* Operating temperature . . . . . . . . . . . -55C to +125C *NOTICE: Storage temperature . . . . . . . . . . . . . -65C to +150C Voltage on any pin except RESET with respect to ground . . . . . . . . . . -0.5V to VCC+0.5V Voltage on RESET with respect to ground-0.5V to +13.0V Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum operating voltage . . . . . . . . . . . . . . . . . 6.0V DC current per I/O pin. . . . . . . . . . . . . . . . . . . 40.0mA DC current VCC and GND pins . . . . . . . . . . . 200.0mA 29.2 DC characteristics TA = -40C to 85C, VCC = 1.8V to 5.5V (unless otherwise noted). Symbol Parameter Condition Minimum Typical Maximum Units (1) VIL Input low voltage, except XTAL1 and RESET pin VCC = 1.8V - 2.4V VCC = 2.4V - 5.5V -0.5 -0.5 0.2VCC 0.3VCC(1) VIH Input high voltage, except XTAL1 and RESET pins VCC = 1.8V - 2.4V VCC = 2.4V - 5.5V 0.7VCC(2) 0.6VCC(2) VCC + 0.5 VCC + 0.5 VIL1 Input low voltage, XTAL1 pin VCC = 1.8V - 5.5V -0.5 0.1VCC(1) VIH1 Input high voltage, XTAL1 pin VCC = 1.8V - 2.4V VCC = 2.4V - 5.5V 0.8VCC(2) 0.7VCC(2) VCC + 0.5 VCC + 0.5 VIL2 Input low voltage, RESET pin VCC = 1.8V - 5.5V -0.5 0.2VCC(1) VIH2 Input high voltage, RESET pin VCC = 1.8V - 5.5V 0.9VCC(2) VCC + 0.5 VIL3 Input low voltage, RESET pin as I/O VCC = 1.8V - 2.4V VCC = 2.4V - 5.5V -0.5 -0.5 0.2VCC(1) 0.3VCC(1) VIH3 Input high voltage, RESET pin as I/O VCC = 1.8V - 2.4V VCC = 2.4V - 5.5V 0.7VCC(2) 0.6VCC(2) VCC + 0.5 VCC + 0.5 VOL Output low voltage(3), RESET pin as I/O IOL = 20mA, VCC = 5V IOL = 6mA, VCC = 3V VOH Output high voltage(4), RESET pin as I/O IOH = -20mA, VCC = 5V IOH = -10mA, VCC = 3V IIL Input leakage current I/O pin VCC = 5.5V, pin low (absolute value) IIH Input leakage current I/O pin VCC = 5.5V, pin high (absolute value) V 0.7 0.5 4.2 2.3 1 A 1 310 2545U-AVR-11/2015 ATmega48/88/168 TA = -40C to 85C, VCC = 1.8V to 5.5V (unless otherwise noted). (Continued) Symbol Parameter Condition Minimum Typical Maximum RRST Reset pull-up resistor 30 60 RPU I/O pin pull-up resistor 20 50 k Active 1MHz, VCC = 2V 0.55 (Atmel ATmega48/88/168V) Active 4MHz, VCC = 3V 3.5 (Atmel ATmega48/88/168L) Active 8MHz, VCC = 5V (5) 12 (Atmel ATmega48/88/168) Power supply current mA Idle 1MHz, VCC = 2V ICC 0.25 (ATmega48/88/168V) Idle 4MHz, VCC = 3V Idle 8MHz, VCC = 5V 5.5 (ATmega48/88/168) Power-down mode 0.5 1.5 (ATmega48/88/168L) WDT enabled, VCC = 3V 8 15 WDT disabled, VCC = 3V 1 2 10 40 mV 50 nA A VCC = 5V VACIO Analog comparator input offset voltage Vin = VCC/2 IACLK Analog comparator input leakage current VCC = 5V Vin = VCC/2 tACID Analog comparator propagation delay VCC = 2.7V VCC = 4.0V Notes: Units -50 750 500 ns 1. "Max" means the highest value where the pin is guaranteed to be read as low 2. "Min" means the lowest value where the pin is guaranteed to be read as high 3. Although each I/O port can sink more than the test conditions (20mA at VCC = 5V, 10mA at VCC = 3V) under steady state conditions (non-transient), the following must be observed: ATmega48/88/168: 1] The sum of all IOL, for ports C0 - C5, ADC7, ADC6 should not exceed 100mA. 2] The sum of all IOL, for ports B0 - B5, D5 - D7, XTAL1, XTAL2 should not exceed 100mA. 3] The sum of all IOL, for ports D0 - D4, RESET should not exceed 100mA. If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test condition. 4. Although each I/O port can source more than the test conditions (20mA at VCC = 5V, 10mA at VCC = 3V) under steady state conditions (non-transient), the following must be observed: ATmega48/88/168: 1] The sum of all IOH, for ports C0 - C5, D0- D4, ADC7, RESET should not exceed 150mA. 2] The sum of all IOH, for ports B0 - B5, D5 - D7, ADC6, XTAL1, XTAL2 should not exceed 150mA. If IIOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current greater than the listed test condition. 5. Values with "Minimizing power consumption" on page 41 enabled (0xFF). 311 2545U-AVR-11/2015 ATmega48/88/168 29.3 Speed grades Maximum frequency is dependent on VCC. As shown in Figure 29-1 and Figure 29-2, the Maximum Frequency vs. VCC curve is linear between 1.8V < VCC < 2.7V and between 2.7V < VCC < 4.5V. Figure 29-1. Maximum frequency vs. VCC, Atmel ATmega48V/88V/168V. 10MHz Safe operating area 4MHz 1.8V Figure 29-2. 2.7V 5.5V Maximum frequency vs. VCC, ATmega48/88/168. 20MHz 10MHz Safe operating area 2.7V 4.5V 5.5V 312 2545U-AVR-11/2015 ATmega48/88/168 29.4 Clock characteristics 29.4.1 Calibrated internal RC oscillator accuracy Table 29-1. Calibration accuracy of internal RC oscillator. Frequency VCC 8.0MHz 3V Factory calibration Temperature Calibration accuracy 25C 10% -40C - 85C 1% (1) User calibration Notes: 1.8V - 5.5V 2.7V - 5.5V(2) 7.3MHz - 8.1MHz 1. Voltage range for Atmel ATmega48V/88V/168V. 2. Voltage range for Atmel ATmega48/88/168. 29.4.2 External clock drive waveforms Figure 29-3. External clock drive waveforms. V IH1 V IL1 29.4.3 External clock drive Table 29-2. External clock drive. VCC = 1.8V - 5.5V VCC = 2.7V - 5.5V VCC = 4.5V - 5.5V Symbol Parameter Min. Max. Min. Max. Min. Max. Units 1/tCLCL Oscillator frequency 0 4 0 10 0 20 MHz tCLCL Clock period 250 100 50 tCHCX High time 100 40 20 tCLCX Low time 100 40 20 tCLCH Rise time 2.0 1.6 0.5 tCHCL Fall time 2.0 1.6 0.5 tCLCL Change in period from one clock cycle to the next 2 2 2 ns s % 313 2545U-AVR-11/2015 ATmega48/88/168 29.5 System and reset characteristics Table 29-3. Symbol Reset, brown-out and internal voltage characteristics. Parameter Condition Power-on reset threshold voltage (rising) VPOT VPONSR Power-on reset threshold voltage (falling) RESET pin threshold voltage tRST Minimum pulse width on RESET pin VHYST Typ. Max. 0.7 1.0 1.4 0.05 0.9 1.3 Units V (1) Power-on slope rate VRST Min. 0.01 4.5 V/ms 0.2VCC 0.9VCC V 2.5 s Brown-out detector hysteresis 50 mV tBOD Min pulse width on brown-out reset 2 s VBG Bandgap reference voltage VCC = 2.7 TA = 25C tBG Bandgap reference start-up time IBG Bandgap reference current consumption Note: 1.0 1.1 1.2 V VCC = 2.7 TA = 25C 40 70 s VCC = 2.7 TA = 25C 10 A 1. The power-on reset will not work unless the supply voltage has been below VPOT (falling). Table 29-4. BODLEVEL fuse coding(1). BODLEVEL 2:0 Fuses Min. VBOT 111 Typ. VBOT Max. VBOT Units BOD disabled 110 1.7 1.8 2.0 101 2.5 2.7 2.9 100 4.1 4.3 4.5 V 011 010 Reserved 001 000 Notes: 1. VBOT may be below nominal minimum operating voltage for some devices. For devices where this is the case, the device is tested down to VCC = VBOT during the production test. This guarantees that a brown-out reset will occur before VCC drops to a voltage where correct operation of the microcontroller is no longer guaranteed. The test is performed using BODLEVEL = 110 and BODLEVEL = 101 for Atmel ATmega48V/88V/168V, and BODLEVEL = 101 and BODLEVEL = 100 for Atmel ATmega48/88/168. 314 2545U-AVR-11/2015 ATmega48/88/168 29.6 2-wire serial interface characteristics Table 29-5 describes the requirements for devices connected to the 2-wire Serial Bus. The Atmel ATmega48/88/168 2-wire Serial Interface meets or exceeds these requirements under the noted conditions. Timing symbols refer to Figure 29-4 on page 316. Table 29-5. 2-wire serial bus requirements. Symbol Parameter VIL VIH Vhys (1) VOL(1) tr (1) (1) tof Min. Max. Input low-voltage -0.5 0.3VCC Input high-voltage 0.7VCC Hysteresis of schmitt trigger inputs Output fall time from VIHmin to VILmax Ii Input current each I/O pin Ci(1) Capacitance for each I/O pin SCL clock frequency 10pF < Cb < 400pF (2) 0 (3) 300 (3)(2) 250 0 fCK(4) Hold time (repeated) START condition tLOW Low period of the SCL clock tHIGH High period of the SCL clock tSU;STA Setup time for a repeated START condition tHD;DAT Data hold time tSU;DAT Data setup time tSU;STO Setup time for STOP condition tBUF Bus free time between a STOP and START condition V - 20 + 0.1Cb(3)(2) 20 + 0.1Cb 0.1VCC < Vi < 0.9VCC VCC + 0.5 Units 0.4 50 ns (2) -10 10 A - 10 pF 0 400 kHz fSCL 100kHz V CC - 0.4V ---------------------------3mA 1000ns ----------------Cb fSCL > 100kHz V CC - 0.4V ---------------------------3mA 300ns -------------Cb fSCL 100kHz 4.0 - fSCL > 100kHz 0.6 - fSCL 100kHz 4.7 - fSCL > 100kHz 1.3 - fSCL 100kHz 4.0 - fSCL > 100kHz 0.6 - fSCL 100kHz 4.7 - fSCL > 100kHz 0.6 - fSCL 100kHz 0 3.45 fSCL > 100kHz 0 0.9 fSCL 100kHz 250 - fSCL > 100kHz 100 - fSCL 100kHz 4.0 - fSCL > 100kHz 0.6 - fSCL 100kHz 4.7 - fSCL > 100kHz 1.3 - (5) > max(16fSCL, 250kHz) Value of pull-up resistor tHD;STA Notes: 3mA sink current Rise time for both SDA and SCL Spikes suppressed by input filter Rp 0.05VCC Output low-voltage (1) tSP fSCL Condition s ns s 1. In ATmega48/88/168, this parameter is characterized and not 100% tested. 315 2545U-AVR-11/2015 ATmega48/88/168 2. 3. 4. 5. Required only for fSCL > 100kHz. Cb = capacitance of one bus line in pF. fCK = CPU clock frequency. This requirement applies to all Atmel ATmega48/88/168 2-wire Serial Interface operation. Other devices connected to the 2wire Serial Bus need only obey the general fSCL requirement. Figure 29-4. 2-wire serial bus timing. tHIGH tof tr tLOW tLOW SCL tSU;STA tHD;STA tHD;DAT tSU;DAT SDA tSU;STO tBUF 29.7 SPI timing characteristics See Figure 29-5 on page 317 and Figure 29-6 on page 317 for details. Table 29-6. SPI timing parameters. Description Mode 1 SCK period Master See Table 19-5 on page 173 2 SCK high/low Master 50% duty cycle 3 Rise/fall time Master 3.6 4 Setup Master 10 5 Hold Master 10 6 Out to SCK Master 0.5 * tsck 7 SCK to out Master 10 8 SCK to out high Master 10 9 SS low to out Slave 15 10 SCK period Slave 4 * tck 11 SCK high/low(1) Slave 2 * tck 12 Rise/fall time Slave 13 Setup Slave 10 14 Hold Slave tck 15 SCK to out Slave 16 SCK to SS high Slave 17 SS high to tri-state Slave 18 SS low to SCK Slave Note: 1. Minimum Typical Maximum ns 1600 15 20 10 20 In SPI programming mode the minimum SCK high/low period is: - 2 tCLCL for fCK < 12MHz - 3 tCLCL for fCK > 12MHz 316 2545U-AVR-11/2015 ATmega48/88/168 Figure 29-5. SPI interface timing requirements (master mode). SS 6 1 SCK (CPOL = 0) 2 2 SCK (CPOL = 1) 4 MISO (Data input) 5 3 MSB ... LSB 8 7 MOSI (Data output) Figure 29-6. MSB ... LSB SPI interface timing requirements (slave mode). SS 10 9 16 SCK (CPOL = 0) 11 11 SCK (CPOL = 1) 13 MOSI (Data input) 14 12 MSB ... LSB 17 15 MISO (Data output) MSB ... LSB X 317 2545U-AVR-11/2015 ATmega48/88/168 29.8 ADC characteristics Table 29-7. Symbol ADC characteristics. Parameter Condition Minimum Resolution Absolute accuracy (Including INL, DNL, quantization error, gain and offset error) Typical Maximum 10 VREF = 4V, VCC = 4V, ADC clock = 200kHz 2 VREF = 4V, VCC = 4V, ADC clock = 1MHz 4.5 VREF = 4V, VCC = 4V, ADC clock = 200kHz Units Bits 2 Noise reduction mode VREF = 4V, VCC = 4V, ADC clock = 1MHz Noise reduction mode 4.5 Integral non-linearity (INL) VREF = 4V, VCC = 4V, ADC clock = 200kHz 0.5 Differential non-linearity (DNL) VREF = 4V, VCC = 4V, ADC clock = 200kHz 0.25 Gain error VREF = 4V, VCC = 4V, ADC clock = 200kHz 2 Offset error VREF = 4V, VCC = 4V, ADC clock = 200kHz 2 Conversion time Free running conversion Clock frequency AVCC(1) VREF VIN Analog supply voltage Reference voltage Input voltage LSB 13 260 s 50 1000 kHz VCC - 0.3 VCC + 0.3 1.0 AVCC GND VREF Input bandwidth 38.5 V kHz VINT Internal voltage reference RREF Reference input resistance 32 k RAIN Analog input resistance 100 M Note: 1.0 1.1 1.2 V 1. AVCC absolute min./max.: 1.8V/5.5V 318 2545U-AVR-11/2015 ATmega48/88/168 29.9 Parallel programming characteristics Figure 29-7. Parallel programming timing, including some general timing requirements. tXLWL tXHXL XTAL1 tDVXH tXLDX tBVPH tPLBX t BVWL Data & contol (DATA, XA0/1, BS1, BS2) PAGEL tWLBX tPHPL tWLWH WR tPLWL WLRL RDY/BSY tWLRH Figure 29-8. Parallel programming timing, loading sequence with timing requirements(1). LOAD ADDRESS (LOW BYTE) LOAD DATA LOAD DATA (HIGH BYTE) LOAD DATA (LOW BYTE) t XLXH tXLPH LOAD ADDRESS (LOW BYTE) tPLXH XTAL1 BS1 PAGEL DATA ADDR0 (low byte) DATA (low byte) DATA (high byte) ADDR1 (low byte) XA0 XA1 Note: 1. The timing requirements shown in Figure 29-7 (that is, tDVXH, tXHXL, and tXLDX) also apply to loading operation. 319 2545U-AVR-11/2015 ATmega48/88/168 Figure 29-9. Parallel programming timing, reading sequence (within the same page) with timing requirements(1). LOAD ADDRESS (LOW BYTE) READ DATA (LOW BYTE) READ DATA (HIGH BYTE) LOAD ADDRESS (LOW BYTE) tXLOL XTAL1 tBVDV BS1 tOLDV OE DATA tOHDZ ADDR0 (low byte) DATA (high byte) DATA (low byte) ADDR1 (low byte) XA0 XA1 Note: 1. The timing requirements shown in Figure 29-7 on page 319 (that is, tDVXH, tXHXL, and tXLDX) also apply to reading operation. Table 29-8. Parallel programming characteristics, VCC = 5V 10%. Symbol Parameter Min. VPP Programming enable voltage 11.5 IPP Programming enable current tDVXH Data and control valid before XTAL1 high 67 tXLXH XTAL1 low to XTAL1 high 200 tXHXL XTAL1 pulse width high 150 tXLDX Data and control hold after XTAL1 low 67 tXLWL XTAL1 low to WR low 0 tXLPH XTAL1 low to PAGEL high 0 tPLXH PAGEL low to XTAL1 high 150 tBVPH BS1 valid before PAGEL high 67 tPHPL PAGEL pulse width high 150 tPLBX BS1 hold after PAGEL low 67 tWLBX BS2/1 hold after WR low 67 tPLWL PAGEL low to WR low 67 tBVWL BS1 valid to WR low 67 tWLWH WR pulse width low 150 tWLRL WR low to RDY/BSY low tWLRH WR low to RDY/BSY high(1) tWLRH_CE Typ. Max. Units 12.5 V 250 A ns (2) WR low to RDY/BSY high for chip erase 0 1 3.7 4.5 7.5 9 s ms 320 2545U-AVR-11/2015 ATmega48/88/168 Table 29-8. Parallel programming characteristics, VCC = 5V 10%. (Continued) Symbol Parameter tXLOL XTAL1 low to OE low 0 tBVDV BS1 valid to DATA valid 0 tOLDV OE low to DATA valid 250 tOHDZ OE high to DATA tri-stated 250 Notes: Min. Typ. Max. Units 250 ns 1. 2. tWLRH is valid for the write flash, write EEPROM, write fuse bits and write lock bits commands. tWLRH_CE is valid for the chip erase command. 321 2545U-AVR-11/2015 ATmega48/88/168 30. Typical characteristics The following charts show typical behavior. These figures are not tested during manufacturing. All current consumption measurements are performed with all I/O pins configured as inputs and with internal pull-ups enabled. A square wave generator with rail-to-rail output is used as clock source. All Active- and Idle current consumption measurements are done with all bits in the PRR register set and thus, the corresponding I/O modules are turned off. Also the Analog Comparator is disabled during these measurements. Table 30-1 on page 328 and Table 30-2 on page 328 show the additional current consumption compared to ICC Active and ICC Idle for every I/O module controlled by the Power Reduction Register. See "Power reduction register" on page 41 for details. The power consumption in Power-down mode is independent of clock selection. The current consumption is a function of several factors such as: operating voltage, operating frequency, loading of I/O pins, switching rate of I/O pins, code executed and ambient temperature. The dominating factors are operating voltage and frequency. The current drawn from capacitive loaded pins may be estimated (for one pin) as CL*VCC*f where CL = load capacitance, VCC = operating voltage and f = average switching frequency of I/O pin. The parts are characterized at frequencies higher than test limits. Parts are not guaranteed to function properly at frequencies higher than the ordering code indicates. The difference between current consumption in Power-down mode with Watchdog Timer enabled and Power-down mode with Watchdog Timer disabled represents the differential current drawn by the Watchdog Timer. 30.1 Active supply current Figure 30-1. Active supply current vs. frequency (0.1MHz - 1.0MHz). 1.2 5.5V 1 5.0V ICC (mA) 0.8 4.5V 4.0V 0.6 3.3V 0.4 2.7V 1.8V 0.2 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Frequency (MHz) 322 2545U-AVR-11/2015 ATmega48/88/168 Figure 30-2. Active supply current vs. frequency (1MHz - 24MHz). 18 16 5.5V 14 5.0V ICC (mA) 12 4.5V 10 8 4.0V 6 3.3V 4 2.7V 2 1.8V 0 0 4 8 12 16 20 24 Frequency (MHz) Figure 30-3. oscillator, 128kHz). Active supply current vs. VCC (internal RC , 0.14 -40C 25C 85C 0.12 ICC (mA) 0.1 0.08 0.06 0.04 0.02 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 323 2545U-AVR-11/2015 ATmega48/88/168 Figure 30-4. Active supply current vs. VCC (internal RC , oscillator, 1MHz). 1.4 25C -40C 85C 1.2 ICC (mA) 1 0.8 0.6 0.4 0.2 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) Figure 30-5. Active supply current vs. VCC (internal RC, oscillator, 8MHz). 7 25C -40C 85C 6 ICC (mA) 5 4 3 2 1 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 324 2545U-AVR-11/2015 ATmega48/88/168 Figure 30-6. Active supply current vs. VCC (32kHz external oscillator). 60 25C 50 ICC (A) 40 30 20 10 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 30.2 Idle supply current Figure 30-7. Idle supply current vs. frequency (0.1MHz - 1.0MHz). 0.18 5.5V 0.16 5.0V 0.14 4.5V ICC (mA) 0.12 4.0V 0.1 0.08 3.3V 0.06 2.7V 0.04 1.8V 0.02 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Frequency (MHz) 325 2545U-AVR-11/2015 ATmega48/88/168 Figure 30-8. Idle supply current vs. frequency (1MHz - 24MHz). ICC (mA) 4.5 4 5.5V 3.5 5.0V 3 4.5V 2.5 4.0V 2 1.5 3.3V 1 2.7V 0.5 1.8V 0 0 4 8 12 16 20 24 Frequency (MHz) Figure 30-9. Idle supply current vs. VCC (internal RC oscillator, 128kHz). 0.03 -40C 85C 25C 0.025 ICC (mA) 0.02 0.015 0.01 0.005 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 326 2545U-AVR-11/2015 ATmega48/88/168 Figure 30-10. Idle supply current vs. VCC (internal RC ,oscillator, 1MHz). 0.35 85C 25C -40C 0.3 ICC (mA) 0.25 0.2 0.15 0.1 0.05 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 8MHz). Figure 30-11. Idle supply current vs. VCC (internal RC oscillator, , 1.6 85C 25C -40C 1.4 1.2 ICC (mA) 1 0.8 0.6 0.4 0.2 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 327 2545U-AVR-11/2015 ATmega48/88/168 Figure 30-12. Idle supply current vs. VCC (32kHz external oscillator). 30 25 25C ICC (A) 20 15 10 5 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 30.3 Supply current of I/O modules The tables and formulas below can be used to calculate the additional current consumption for the different I/O modules in Active and Idle mode. The enabling or disabling of the I/O modules are controlled by the Power Reduction Register. See "Power reduction register" on page 41 for details. Table 30-1. Additional current consumption for the different I/O modules (absolute values). PRR bit Typical numbers VCC = 2V, F = 1MHz VCC = 3V, F = 4MHz VCC = 5V, F = 8MHz PRUSART0 8.0A 51A 220A PRTWI 12A 75A 315A PRTIM2 11A 72A 300A PRTIM1 5.0A 32A 130A PRTIM0 4.0A 24A 100A PRSPI 15A 95A 400A PRADC 12A 75A 315A Table 30-2. Additional current consumption (percentage) in active and idle mode. PRR bit Additional current consumption compared to active with external clock (see Figure 30-1 on page 322 and Figure 30-2 on page 323) Additional current consumption compared to Idle with external clock (see Figure 30-7 on page 325 and Figure 30-8 on page 326) PRUSART0 3.3% 18% PRTWI 4.8% 26% PRTIM2 4.7% 25% 328 2545U-AVR-11/2015 ATmega48/88/168 Table 30-2. Additional current consumption (percentage) in active and idle mode. (Continued) PRR bit Additional current consumption compared to active with external clock (see Figure 30-1 on page 322 and Figure 30-2 on page 323) Additional current consumption compared to Idle with external clock (see Figure 30-7 on page 325 and Figure 30-8 on page 326) PRTIM1 2.0% 11% PRTIM0 1.6% 8.5% PRSPI 6.1% 33% PRADC 4.9% 26% It is possible to calculate the typical current consumption based on the numbers from Table 30-2 on page 328 for other VCC and frequency settings than listed in Table 30-1 on page 328. 30.3.0.1 Example 1 Calculate the expected current consumption in idle mode with USART0, TIMER1, and TWI enabled at VCC = 3.0V and F = 1MHz. From Table 30-2 on page 328, third column, we see that we need to add 18% for the USART0, 26% for the TWI, and 11% for the TIMER1 module. Reading from Figure 30-7 on page 325, we find that the idle current consumption is ~0.075mA at VCC = 3.0V and F = 1MHz. The total current consumption in idle mode with USART0, TIMER1, and TWI enabled, gives: I CC total 0.075mA 1 + 0.18 + 0.26 + 0.11 0.116mA 30.3.0.2 Example 2 Same conditions as in example 1, but in active mode instead. From Table 30-2 on page 328, second column we see that we need to add 3.3% for the USART0, 4.8% for the TWI, and 2.0% for the TIMER1 module. Reading from Figure 30-1 on page 322, we find that the active current consumption is ~0.42mA at VCC = 3.0V and F = 1MHz. The total current consumption in idle mode with USART0, TIMER1, and TWI enabled, gives: I CC total 0.42mA 1 + 0.033 + 0.048 + 0.02 0.46mA 30.3.0.3 Example 3 All I/O modules should be enabled. Calculate the expected current consumption in active mode at VCC = 3.6V and F = 10MHz. We find the active current consumption without the I/O modules to be ~ 4.0mA (from Figure 30-2 on page 323). Then, by using the numbers from Table 30-2 on page 328 - second column, we find the total current consumption: I CC total 4.0mA 1 + 0.033 + 0.048 + 0.047 + 0.02 + 0.016 + 0.061 + 0.049 5.1mA 329 2545U-AVR-11/2015 ATmega48/88/168 30.4 Power-down supply current Figure 30-13. Power-down supply current vs. VCC (watchdog timer disabled). 2.5 85C ICC (A) 2 1.5 1 25C -40C 0.5 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) Figure 30-14. Power-down supply current vs. VCC (watchdog timer enabled). 12 10 85C -40C 25C ICC (A) 8 6 4 2 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 330 2545U-AVR-11/2015 ATmega48/88/168 30.5 Power-save supply current Figure 30-15. Power-save supply current vs. VCC (watchdog timer disabled). 12 10 25C ICC (A) 8 6 4 2 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 30.6 Standby supply current Figure 30-16. Standby supply current vs. VCC (low power crystal oscillator). 180 6MHz Xtal 6MHz Res. 160 140 4MHz Res. 4MHz Xtal ICC (A) 120 100 80 2MHz Xtal 2MHz Res. 60 455kHz Res. 1MHz Res. 40 20 32kHz Xtal 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 331 2545U-AVR-11/2015 ATmega48/88/168 Figure 30-17. Standby supply current vs. VCC (full swing crystal oscillator). 500 16MHz Xtal 450 400 12MHz Xtal ICC (A) 350 300 250 6MHz Xtal (ckopt) 200 4MHz Xtal (ckopt) 2MHz Xtal (ckopt) 150 100 50 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 30.7 Pin pull-up Figure 30-18. I/O pin pull-up resistor current vs. input voltage (VCC = 5V). 160 140 25C 85C 120 -40C IOP (A) 100 80 60 40 20 0 0 1 2 3 4 5 6 VOP (V) 332 2545U-AVR-11/2015 ATmega48/88/168 Figure 30-19. I/O pin pull-up resistor current vs. input voltage (VCC = 2.7V). 90 80 25C 85C 70 -40C IOP (A) 60 50 40 30 20 10 0 0 0.5 1 1.5 2 2.5 3 VOP (V) Figure 30-20. Reset pull-up resistor current vs. reset pin voltage (VCC = 5V). 120 -40C 25C 100 85C IRESET (A) 80 60 40 20 0 0 1 2 3 4 5 6 VRESET (V) 333 2545U-AVR-11/2015 ATmega48/88/168 Figure 30-21. Reset pull-up resistor current vs. reset pin voltage (VCC = 2.7V). 70 60 25C -40C 50 IRESET (A) 85C 40 30 20 10 0 0 0.5 1 1.5 2 2.5 3 5 6 VRESET (V) 30.8 Pin driver strength Figure 30-22. I/O pin source current vs. output voltage (VCC = 5V). 90 80 -40C 70 25C 60 IOH (mA) 85C 50 40 30 20 10 0 0 1 2 3 4 VOH (V) 334 2545U-AVR-11/2015 ATmega48/88/168 Figure 30-23. I/O pin source current vs. output voltage (VCC = 2.7V). 35 30 -40C 25C 85C IOH (mA) 25 20 15 10 5 0 0 0.5 1 1.5 2 2.5 3 VOH (V) Figure 30-24. I/O pin source current vs. output voltage (VCC = 1.8V). 9 -40C 25C 8 85C 7 IOH (mA) 6 5 4 3 2 1 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 VOH (V) 335 2545U-AVR-11/2015 ATmega48/88/168 Figure 30-25. I/O pin sink current vs. output voltage (VCC = 5V). 80 25C 70 85C 60 IOL (mA) 50 40 30 20 10 0 0 0.5 1 1.5 2 2.5 VOL (V) Figure 30-26. I/O pin sink current vs. output voltage (VCC = 2.7V). 40 35 -40C 30 25C IOL (mA) 25 85C 20 15 10 5 0 0 0.5 1 1.5 2 2.5 VOL (V) 336 2545U-AVR-11/2015 ATmega48/88/168 Figure 30-27. I/O pin sink current vs. output voltage (VCC = 1.8V). 14 12 -40C 25C 10 IOL (mA) 85C 8 6 4 2 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 VOL (V) 30.9 Pin thresholds and hysteresis Figure 30-28. I/O pin input threshold voltage vs. VCC (VIH, I/O pin read as '1'). 3 85C 25C -40C 2.5 Threshold (V) 2 1.5 1 0.5 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 V CC (V) 337 2545U-AVR-11/2015 ATmega48/88/168 Figure 30-29. I/O pin input threshold voltage vs. VCC (VIL, I/O pin read as '0'). 3 85C 2.5 Threshold (V) 25C -40C 2 1.5 1 0.5 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 V CC (V) Figure 30-30. I/O pin input hystreresis vs. Vcc. 0.6 -40C 25C 85C Input hysteresis (V) 0.5 0.4 0.3 0.2 0.1 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 V CC (V) 338 2545U-AVR-11/2015 ATmega48/88/168 Figure 30-31. Reset input threshold voltage vs. VCC (VIH, reset pin read as '1'). 3 25C 85C -40C 2.5 Threshold (V) 2 1.5 1 0.5 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) Figure 30-32. Reset input threshold voltage vs. VCC (VIL, reset pin read as '0'). 3 -40C 85C 25C 2.5 Threshold (V) 2 1.5 1 0.5 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 339 2545U-AVR-11/2015 ATmega48/88/168 Figure 30-33. Reset input pin hysteresis vs. VCC. 600 Input hysteresis (mV) 500 400 VIL 300 200 100 0 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 30.10 BOD thresholds and analog comparator offset Figure 30-34. BOD thresholds vs. temperature (BODLEVEL is 4.3V). 4.5 4.45 Rising Vcc Threshold (V) 4.4 4.35 4.3 Falling Vcc 4.25 4.2 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 Temperature (C) 340 2545U-AVR-11/2015 ATmega48/88/168 Figure 30-35. BOD thresholds vs. temperature (BODLEVEL is 2.7V). 2.9 2.85 Rising Vcc Threshold (V) 2.8 2.75 2.7 Falling Vcc 2.65 2.6 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 80 90 100 Temperature (C) Figure 30-36. BOD thresholds vs. temperature (BODLEVEL is 1.8V). 1.86 1.84 Threshold (V) Rising Vcc 1.82 1.8 Falling Vcc 1.78 1.76 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 Temperature (C) 341 2545U-AVR-11/2015 ATmega48/88/168 Figure 30-37. Bandgap voltage vs. VCC. Bandgap voltage (V ) 1.1 1.095 -40C 1.09 85C 1.085 1.08 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 VCC (V) Figure 30-38. Analog comparator offset voltage vs. common mode voltage (VCC = 5V). Analog comparator offset voltage (V) 0.009 0.008 85C 0.007 -40C 0.006 0.005 0.004 0.003 0.002 0.001 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Common Mode Voltage (V) 342 2545U-AVR-11/2015 ATmega48/88/168 Figure 30-39. Analog comparator offset voltage vs. common mode voltage (VCC = 2.7V). 4 85C -40C 3 2.5 (mV) Analog comparator offset voltage 3.5 2 1.5 1 0.5 0 0 0.5 1 1.5 2 2.5 Common Mode Voltage (V) 30.11 Internal oscillator speed Figure 30-40. Watchdog oscillator frequency vs. VCC. 120 115 FRC (kHz) -40C 110 25C 105 85C 100 95 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 343 2545U-AVR-11/2015 ATmega48/88/168 Figure 30-41. Calibrated 8MHz RC oscillator frequency vs. temperature. 8.4 8.3 5.0V 2.7V 1.8V 8.2 FRC (MHz) 8.1 8 7.9 7.8 7.7 7.6 7.5 7.4 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 Temperature (C) Figure 30-42. Calibrated 8MHz RC oscillator frequency vs. VCC. 8.6 8.4 85C FRC (MHz) 8.2 25C 8 -40C 7.8 7.6 7.4 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 344 2545U-AVR-11/2015 ATmega48/88/168 Figure 30-43. Calibrated 8MHz RC oscillator frequency vs. osccal value. 85C 25C -40C 13.5 FRC (MHz) 11.5 9.5 7.5 5.5 3.5 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 OSCCAL VALUE 30.12 Current consumption of peripheral units Figure 30-44. Brownout detector current vs. VCC. 32 -40C 30 ICC (A) 28 25C 26 85C 24 22 20 18 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 345 2545U-AVR-11/2015 ATmega48/88/168 Figure 30-45. ADC current vs. VCC (AREF = AVCC). 500 450 -40C 400 25C ICC (A) 85C 350 300 250 200 150 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) Figure 30-46. AREF external reference current vs. VCC. 180 85C 25C -40C 160 140 ICC (A) 120 100 80 60 40 20 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 346 2545U-AVR-11/2015 ATmega48/88/168 Figure 30-47. Analog comparator current vs. VCC. 140 -40C 120 25C ICC (A) 100 85C 80 60 40 20 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) Figure 30-48. Programming current vs. VCC. 14 -40C 12 IICC (mA) CC (mA) 10 25C 8 85C 6 4 2 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC CC (V) 347 2545U-AVR-11/2015 ATmega48/88/168 30.13 Current consumption in reset and reset pulse width Figure 30-49. Reset supply current vs. VCC (0.1MHz - 1.0MHz, excluding current through the reset pull-up). 0.18 5.5V 0.16 5.0V 0.14 4.5V ICC (mA) 0.12 4.0V 0.1 3.3V 0.08 2.7V 0.06 1.8V 0.04 0.02 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Frequency (MHz) Figure 30-50. Reset supply current vs. VCC (1MHz - 24MHz, excluding current through the reset pull-up). , ICC (mA) 4.5 4 5.5V 3.5 5.0V 3 4.5V 2.5 2 4.0V 1.5 3.3V 1 2.7V 0.5 1.8V 0 0 4 8 12 16 20 24 Frequency (MHz) 348 2545U-AVR-11/2015 ATmega48/88/168 Figure 30-51. Reset pulse width vs. VCC. 2500 Pulsewidth (ns) 2000 1500 1000 85C -40C 25C 500 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 349 2545U-AVR-11/2015 ATmega48/88/168 31. Register summary Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 (0xFF) Reserved - - - - - - - - (0xFE) Reserved - - - - - - - - (0xFD) Reserved - - - - - - - - (0xFC) Reserved - - - - - - - - (0xFB) Reserved - - - - - - - - (0xFA) Reserved - - - - - - - - (0xF9) Reserved - - - - - - - - (0xF8) Reserved - - - - - - - - (0xF7) Reserved - - - - - - - - (0xF6) Reserved - - - - - - - - (0xF5) Reserved - - - - - - - - (0xF4) Reserved - - - - - - - - (0xF3) Reserved - - - - - - - - (0xF2) Reserved - - - - - - - - (0xF1) Reserved - - - - - - - - (0xF0) Reserved - - - - - - - - (0xEF) Reserved - - - - - - - - (0xEE) Reserved - - - - - - - - (0xED) Reserved - - - - - - - - (0xEC) Reserved - - - - - - - - (0xEB) Reserved - - - - - - - - (0xEA) Reserved - - - - - - - - (0xE9) Reserved - - - - - - - - (0xE8) Reserved - - - - - - - - (0xE7) Reserved - - - - - - - - (0xE6) Reserved - - - - - - - - (0xE5) Reserved - - - - - - - - (0xE4) Reserved - - - - - - - - (0xE3) Reserved - - - - - - - - (0xE2) Reserved - - - - - - - - (0xE1) Reserved - - - - - - - - (0xE0) Reserved - - - - - - - - (0xDF) Reserved - - - - - - - - (0xDE) Reserved - - - - - - - - (0xDD) Reserved - - - - - - - - (0xDC) Reserved - - - - - - - - (0xDB) Reserved - - - - - - - - (0xDA) Reserved - - - - - - - - (0xD9) Reserved - - - - - - - - (0xD8) Reserved - - - - - - - - (0xD7) Reserved - - - - - - - - (0xD6) Reserved - - - - - - - - (0xD5) Reserved - - - - - - - - (0xD4) Reserved - - - - - - - - (0xD3) Reserved - - - - - - - - (0xD2) Reserved - - - - - - - - (0xD1) Reserved - - - - - - - - (0xD0) Reserved - - - - - - - - (0xCF) Reserved - - - - - - - - (0xCE) Reserved - - - - - - - - (0xCD) Reserved - - - - - - - - (0xCC) Reserved - - - - - - - - (0xCB) Reserved - - - - - - - - (0xCA) Reserved - - - - - - - - (0xC9) Reserved - - - - - - - - (0xC8) Reserved - - - - - - - - (0xC7) Reserved - - - - - - - - (0xC6) UDR0 (0xC5) UBRR0H (0xC4) UBRR0L (0xC3) Reserved - - USART I/O data register 194 USART baud rate register high 198 USART baud rate register low - Page 198 - - - - - (0xC2) UCSR0C UMSEL01 UMSEL00 UPM01 UPM00 USBS0 UCSZ01 /UDORD0 UCSZ00 / UCPHA0 UCPOL0 196/211 (0xC1) UCSR0B RXCIE0 TXCIE0 UDRIE0 RXEN0 TXEN0 UCSZ02 RXB80 TXB80 195 (0xC0) UCSR0A RXC0 TXC0 UDRE0 FE0 DOR0 UPE0 U2X0 MPCM0 194 350 2545U-AVR-11/2015 ATmega48/88/168 Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 (0xBF) Reserved - - - - - - - - - Page (0xBE) Reserved - - - - - - - (0xBD) TWAMR TWAM6 TWAM5 TWAM4 TWAM3 TWAM2 TWAM1 TWAM0 - 244 (0xBC) TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE 241 (0xBB) TWDR (0xBA) TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE 244 (0xB9) TWSR TWS7 TWS6 TWS5 TWS4 TWS3 - TWPS1 TWPS0 243 (0xB8) TWBR (0xB7) Reserved - (0xB6) ASSR - (0xB5) Reserved - (0xB4) OCR2B Timer/Counter2 output compare register B 162 (0xB3) OCR2A Timer/Counter2 output compare register A 161 (0xB2) TCNT2 Timer/Counter2 (8-bit) (0xB1) TCCR2B FOC2A FOC2B - - WGM22 CS22 CS21 CS20 161 160 (0xB0) TCCR2A COM2A1 COM2A0 COM2B1 COM2B0 - - WGM21 WGM20 157 (0xAF) Reserved - - - - - - - - 2-wire serial interface data register 243 2-wire serial interface bit rate register 241 - - - - - - EXCLK AS2 TCN2UB OCR2AUB OCR2BUB TCR2AUB TCR2BUB - - - - - - - 163 (0xAE) Reserved - - - - - - - - (0xAD) Reserved - - - - - - - - (0xAC) Reserved - - - - - - - - (0xAB) Reserved - - - - - - - - (0xAA) Reserved - - - - - - - - (0xA9) Reserved - - - - - - - - (0xA8) Reserved - - - - - - - - (0xA7) Reserved - - - - - - - - (0xA6) Reserved - - - - - - - - (0xA5) Reserved - - - - - - - - (0xA4) Reserved - - - - - - - - (0xA3) Reserved - - - - - - - - (0xA2) Reserved - - - - - - - - (0xA1) Reserved - - - - - - - - (0xA0) Reserved - - - - - - - - (0x9F) Reserved - - - - - - - - (0x9E) Reserved - - - - - - - - (0x9D) Reserved - - - - - - - - (0x9C) Reserved - - - - - - - - (0x9B) Reserved - - - - - - - - (0x9A) Reserved - - - - - - - - (0x99) Reserved - - - - - - - - (0x98) Reserved - - - - - - - - (0x97) Reserved - - - - - - - - (0x96) Reserved - - - - - - - - (0x95) Reserved - - - - - - - - (0x94) Reserved - - - - - - - - (0x93) Reserved - - - - - - - - (0x92) Reserved - - - - - - - - (0x91) Reserved - - - - - - - - (0x90) Reserved - - - - - - - - (0x8F) Reserved - - - - - - - - (0x8E) Reserved - - - - - - - - (0x8D) Reserved - - - - - - - - (0x8C) Reserved - - - - - - - - (0x8B) OCR1BH Timer/Counter1 - output compare register B high byte 138 (0x8A) OCR1BL Timer/Counter1 - output compare register B low byte 138 (0x89) OCR1AH Timer/Counter1 - output compare register A high byte 138 (0x88) OCR1AL Timer/Counter1 - output compare register A low byte 138 (0x87) ICR1H Timer/Counter1 - input capture register high byte 139 (0x86) ICR1L Timer/Counter1 - input capture register low byte 139 (0x85) TCNT1H Timer/Counter1 - counter register high byte 138 (0x84) TCNT1L Timer/Counter1 - counter register low byte (0x83) Reserved - - - (0x82) TCCR1C FOC1A FOC1B - - - - - - 137 (0x81) TCCR1B ICNC1 ICES1 - WGM13 WGM12 CS12 CS11 CS10 136 (0x80) TCCR1A COM1A1 COM1A0 COM1B1 COM1B0 - - WGM11 WGM10 134 (0x7F) DIDR1 - - - - - - AIN1D AIN0D 248 (0x7E) DIDR0 - - ADC5D ADC4D ADC3D ADC2D ADC1D ADC0D 265 - - 138 - - - 351 2545U-AVR-11/2015 ATmega48/88/168 Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 (0x7D) Reserved - - - - - - - - Page (0x7C) ADMUX REFS1 REFS0 ADLAR - MUX3 MUX2 MUX1 MUX0 261 (0x7B) ADCSRB - ACME - - - ADTS2 ADTS1 ADTS0 264 (0x7A) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 262 (0x79) ADCH ADC data register high byte (0x78) ADCL ADC data register low byte (0x77) Reserved - - - - - - - - (0x76) Reserved - - - - - - - - (0x75) Reserved - - - - - - - - (0x74) Reserved - - - - - - - - (0x73) Reserved - - - - - - - - (0x72) Reserved - - - - - - - - (0x71) Reserved - - - - - - - - (0x70) TIMSK2 - - - - - OCIE2B OCIE2A TOIE2 162 (0x6F) TIMSK1 - - ICIE1 - - OCIE1B OCIE1A TOIE1 139 (0x6E) TIMSK0 - - - - - OCIE0B OCIE0A TOIE0 111 (0x6D) PCMSK2 PCINT23 PCINT22 PCINT21 PCINT20 PCINT19 PCINT18 PCINT17 PCINT16 75 (0x6C) PCMSK1 - PCINT14 PCINT13 PCINT12 PCINT11 PCINT10 PCINT9 PCINT8 75 (0x6B) PCMSK0 PCINT7 PCINT6 PCINT5 PCINT4 PCINT3 PCINT2 PCINT1 PCINT0 75 (0x6A) Reserved - - - - - - - - (0x69) EICRA - - - - ISC11 ISC10 ISC01 ISC00 (0x68) PCICR - - - - - PCIE2 PCIE1 PCIE0 (0x67) Reserved - - - - - - - - (0x66) OSCCAL (0x65) Reserved - - - - - - - - (0x64) PRR PRTWI PRTIM2 PRTIM0 - PRTIM1 PRSPI PRUSART0 PRADC (0x63) Reserved - - - - - - - - (0x62) Reserved - - - - - - - - (0x61) CLKPR CLKPCE - - - CLKPS3 CLKPS2 CLKPS1 CLKPS0 37 (0x60) WDTCSR WDIF WDIE WDP3 WDCE WDE WDP2 WDP1 WDP0 53 0x3F (0x5F) SREG I T H S V N Z C 11 0x3E (0x5E) SPH - - - - - (SP10) 5. SP9 SP8 13 0x3D (0x5D) SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 13 0x3C (0x5C) Reserved - - - - - - - - 0x3B (0x5B) Reserved - - - - - - - - 0x3A (0x5A) Reserved - - - - - - - - 0x39 (0x59) Reserved - - - - - - - - 0x38 (0x58) Reserved - - - - - - - - 0x37 (0x57) SPMCSR SPMIE (RWWSB)5. - (RWWSRE)5. BLBSET PGWRT PGERS SELFPRGEN 0x36 (0x56) Reserved - - - - - - - - 0x35 (0x55) MCUCR - - - PUD - - IVSEL IVCE 0x34 (0x54) MCUSR - - - - WDRF BORF EXTRF PORF 264 264 Oscillator calibration register 71 37 0x33 (0x53) SMCR - - - - SM2 SM1 SM0 SE 0x32 (0x52) Reserved - - - - - - - - 0x31 (0x51) Reserved - - - - - - - - 0x30 (0x50) ACSR ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 0x2F (0x4F) Reserved - - - - - - - - SPI data register 41 290 39 247 0x2E (0x4E) SPDR 0x2D (0x4D) SPSR SPIF WCOL - - - - - SPI2X 173 0x2C (0x4C) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 172 0x2B (0x4B) GPIOR2 General purpose I/O register 2 0x2A (0x4A) GPIOR1 General purpose I/O register 1 0x29 (0x49) Reserved 0x28 (0x48) OCR0B Timer/Counter0 output compare register B 0x27 (0x47) OCR0A Timer/Counter0 output compare register A 0x26 (0x46) TCNT0 0x25 (0x45) TCCR0B FOC0A FOC0B - - WGM02 CS02 CS01 CS00 0x24 (0x44) TCCR0A COM0A1 COM0A0 COM0B1 COM0B0 - - WGM01 WGM00 0x23 (0x43) GTCCR TSM - - - - - PSRASY PSRSYNC 0x22 (0x42) EEARH (EEPROM address register high byte) 5. 22 0x21 (0x41) EEARL EEPROM address register low byte 22 0x20 (0x40) EEDR EEPROM data register 0x1F (0x3F) EECR 0x1E (0x3E) GPIOR0 0x1D (0x3D) EIMSK - - - - 0x1C (0x3C) EIFR - - - - - - - - - 174 26 26 - - - Timer/Counter0 (8-bit) - - EEPM1 EEPM0 EERIE 143/164 22 EEMPE EEPE EERE - - INT1 INT0 73 - - INTF1 INTF0 73 General purpose I/O register 0 22 26 352 2545U-AVR-11/2015 ATmega48/88/168 Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0x1B (0x3B) PCIFR - - - - - PCIF2 PCIF1 PCIF0 0x1A (0x3A) Reserved - - - - - - - - 0x19 (0x39) Reserved - - - - - - - - 0x18 (0x38) Reserved - - - - - - - - 0x17 (0x37) TIFR2 - - - - - OCF2B OCF2A TOV2 162 0x16 (0x36) TIFR1 - - ICF1 - - OCF1B OCF1A TOV1 140 0x15 (0x35) TIFR0 - - - - - OCF0B OCF0A TOV0 0x14 (0x34) Reserved - - - - - - - - 0x13 (0x33) Reserved - - - - - - - - 0x12 (0x32) Reserved - - - - - - - - 0x11 (0x31) Reserved - - - - - - - - 0x10 (0x30) Reserved - - - - - - - - 0x0F (0x2F) Reserved - - - - - - - - 0x0E (0x2E) Reserved - - - - - - - - 0x0D (0x2D) Reserved - - - - - - - - 0x0C (0x2C) Reserved - - - - - - - - 0x0B (0x2B) PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 93 0x0A (0x2A) DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 93 0x09 (0x29) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 93 0x08 (0x28) PORTC - PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 92 0x07 (0x27) DDRC - DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 92 0x06 (0x26) PINC - PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 92 0x05 (0x25) PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 92 0x04 (0x24) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 92 0x03 (0x23) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 92 0x02 (0x22) Reserved - - - - - - - - 0x01 (0x21) Reserved - - - - - - - - 0x0 (0x20) Reserved - - - - - - - - Note: Page 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written. 2. I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions. 3. Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI instructions will only operate on the specified bit, and can therefore be used on registers containing such Status Flags. The CBI and SBI instructions work with registers 0x00 to 0x1F only. 4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing I/O Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The Atmel ATmega48/88/168 is a complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 - 0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used. 5. Only valid for ATmega88/168 353 2545U-AVR-11/2015 ATmega48/88/168 32. Instruction set summary Mnemonics Operands Description Operation Flags #Clocks ARITHMETIC AND LOGIC INSTRUCTIONS ADD Rd, Rr Add two registers Rd Rd + Rr Z, C, N, V, H ADC Rd, Rr Add with carry two registers Rd Rd + Rr + C Z, C, N, V, H 1 ADIW Rdl,K Add immediate to word Rdh:Rdl Rdh:Rdl + K Z, C, N, V, S 2 SUB Rd, Rr Subtract two registers Rd Rd - Rr Z, C, N, V, H 1 SUBI Rd, K Subtract constant from register Rd Rd - K Z, C, N, V, H 1 SBC Rd, Rr Subtract with carry two registers Rd Rd - Rr - C Z, C, N, V, H 1 SBCI Rd, K Subtract with carry constant from reg. Rd Rd - K - C Z, C, N, V, H 1 SBIW Rdl,K Subtract immediate from Word Rdh:Rdl Rdh:Rdl - K Z, C, N, V, S 2 AND Rd, Rr Logical AND registers Rd Rd Rr Z, N, V 1 ANDI Rd, K Logical AND register and constant Rd Rd K Z, N, V 1 OR Rd, Rr Logical OR registers Rd Rd v Rr Z, N, V 1 ORI Rd, K Logical OR register and constant Rd Rd v K Z, N, V 1 1 EOR Rd, Rr Exclusive OR registers Rd Rd Rr Z, N, V 1 COM Rd One's complement Rd 0xFF Rd Z, C, N, V 1 NEG Rd Two's complement Rd 0x00 Rd Z, C, N, V, H 1 SBR Rd,K Set bit(s) in register Rd Rd v K Z, N, V 1 CBR Rd,K Clear bit(s) in register Rd Rd (0xFF - K) Z, N, V 1 INC Rd Increment Rd Rd + 1 Z, N, V 1 DEC Rd Decrement Rd Rd 1 Z, N, V 1 TST Rd Test for zero or minus Rd Rd Rd Z, N, V 1 CLR Rd Clear register Rd Rd Rd Z, N, V 1 SER Rd Set register Rd 0xFF None 1 MUL Rd, Rr Multiply unsigned R1:R0 Rd x Rr Z, C 2 MULS Rd, Rr Multiply signed R1:R0 Rd x Rr Z, C 2 MULSU Rd, Rr Multiply signed with unsigned R1:R0 Rd x Rr Z, C 2 FMUL Rd, Rr Fractional multiply unsigned R1:R0 (Rd x Rr) << Z, C 2 FMULS Rd, Rr Fractional multiply signed Z, C 2 FMULSU Rd, Rr Fractional multiply signed with unsigned 1 R1:R0 (Rd x Rr) << 1 R1:R0 (Rd x Rr) << 1 Z, C 2 Relative jump PC PC + k + 1 None 2 Indirect jump to (Z) PC Z None 2 3 BRANCH INSTRUCTIONS RJMP k IJMP JMP(1) k Direct jump PC k None RCALL k Relative subroutine call PC PC + k + 1 None 3 Indirect call to (Z) PC Z None 3 ICALL Direct subroutine call PC k None 4 RET Subroutine return PC STACK None 4 RETI Interrupt return PC STACK I if (Rd = Rr) PC PC + 2 or 3 None CALL(1) k 4 CPSE Rd,Rr Compare, skip if equal CP Rd,Rr Compare Rd Rr Z, N, V, C, H 1 CPC Rd,Rr Compare with carry Rd Rr C Z, N, V, C, H 1 CPI Rd,K Compare register with immediate Rd K Z, N, V, C, H SBRC Rr, b Skip if bit in register cleared if (Rr(b)=0) PC PC + 2 or 3 None 1/2/3 1 1/2/3 SBRS Rr, b Skip if bit in register is set if (Rr(b)=1) PC PC + 2 or 3 None 1/2/3 SBIC P, b Skip if bit in I/O register cleared if (P(b)=0) PC PC + 2 or 3 None 1/2/3 SBIS P, b Skip if bit in I/O register is set if (P(b)=1) PC PC + 2 or 3 None 1/2/3 BRBS s, k Branch if status flag set if (SREG(s) = 1) then PCPC+k + 1 None 1/2 BRBC s, k Branch if status flag cleared if (SREG(s) = 0) then PCPC+k + 1 None 1/2 BREQ k Branch if equal if (Z = 1) then PC PC + k + 1 None 1/2 BRNE k Branch if not equal if (Z = 0) then PC PC + k + 1 None 1/2 BRCS k Branch if carry set if (C = 1) then PC PC + k + 1 None 1/2 BRCC k Branch if carry cleared if (C = 0) then PC PC + k + 1 None 1/2 BRSH k Branch if same or higher if (C = 0) then PC PC + k + 1 None 1/2 BRLO k Branch if lower if (C = 1) then PC PC + k + 1 None 1/2 BRMI k Branch if minus if (N = 1) then PC PC + k + 1 None 1/2 BRPL k Branch if plus if (N = 0) then PC PC + k + 1 None 1/2 BRGE k Branch if greater or equal, signed if (N V= 0) then PC PC + k + 1 None 1/2 BRLT k Branch if less than zero, signed if (N V= 1) then PC PC + k + 1 None 1/2 BRHS k Branch if half carry flag set if (H = 1) then PC PC + k + 1 None 1/2 BRHC k Branch if half carry flag cleared if (H = 0) then PC PC + k + 1 None 1/2 BRTS k Branch if T flag set if (T = 1) then PC PC + k + 1 None 1/2 BRTC k Branch if T flag cleared if (T = 0) then PC PC + k + 1 None 1/2 BRVS k Branch if overflow flag is set if (V = 1) then PC PC + k + 1 None 1/2 BRVC k Branch if overflow flag is cleared if (V = 0) then PC PC + k + 1 None 1/2 354 2545U-AVR-11/2015 ATmega48/88/168 Mnemonics Operands Description Operation Flags #Clocks BRIE k Branch if interrupt enabled if ( I = 1) then PC PC + k + 1 None 1/2 BRID k Branch if interrupt disabled if ( I = 0) then PC PC + k + 1 None 1/2 BIT AND BIT-TEST INSTRUCTIONS SBI P,b Set bit in I/O register I/O(P,b) 1 None 2 CBI P,b Clear bit in I/O register I/O(P,b) 0 None 2 LSL Rd Logical shift left Rd(n+1) Rd(n), Rd(0) 0 Z, C, N, V 1 LSR Rd Logical shift right Rd(n) Rd(n+1), Rd(7) 0 Z, C, N, V 1 ROL Rd Rotate left through carry Rd(0)C,Rd(n+1) Rd(n),CRd(7) Z, C, N, V 1 1 ROR Rd Rotate right through carry Rd(7)C,Rd(n) Rd(n+1),CRd(0) Z, C, N, V ASR Rd Arithmetic shift right Rd(n) Rd(n+1), n=0..6 Z, C, N, V 1 SWAP Rd Swap nibbles Rd(3..0)Rd(7..4),Rd(7..4)Rd(3..0) None 1 BSET s Flag set SREG(s) 1 SREG(s) 1 BCLR s Flag clear SREG(s) 0 SREG(s) 1 BST Rr, b Bit store from register to T T Rr(b) T 1 BLD Rd, b Bit load from T to register Rd(b) T None 1 SEC Set carry C1 C 1 CLC Clear carry C0 C 1 SEN Set negative flag N1 N 1 CLN Clear negative flag N0 N 1 SEZ Set zero flag Z1 Z 1 CLZ Clear zero flag Z0 Z 1 SEI Global interrupt enable I1 I 1 CLI Global interrupt disable I 0 I 1 1 SES Set signed test flag S1 S CLS Clear signed test flag S0 S 1 SEV Set Twos complement overflow V1 V 1 CLV Clear Twos complement overflow V0 V 1 SET Set T in SREG T1 T 1 CLT Clear T in SREG T0 T 1 SEH CLH Set half carry flag in SREG Clear half carry flag in SREG H1 H0 H H 1 1 None 1 None 1 DATA TRANSFER INSTRUCTIONS MOV Rd, Rr Move between registers MOVW Rd, Rr Copy register Word Rd Rr Rd+1:Rd Rr+1:Rr LDI Rd, K Load immediate Rd K None 1 LD Rd, X Load indirect Rd (X) None 2 LD Rd, X+ Load indirect and post-inc. Rd (X), X X + 1 None 2 LD Rd, - X Load indirect and pre-dec. X X - 1, Rd (X) None 2 2 LD Rd, Y Load indirect Rd (Y) None LD Rd, Y+ Load indirect and post-inc. Rd (Y), Y Y + 1 None 2 LD Rd, - Y Load indirect and pre-dec. Y Y - 1, Rd (Y) None 2 LDD Rd,Y+q Load indirect with displacement Rd (Y + q) None 2 LD Rd, Z Load indirect Rd (Z) None 2 2 LD Rd, Z+ Load indirect and post-inc. Rd (Z), Z Z+1 None LD Rd, -Z Load indirect and pre-dec. Z Z - 1, Rd (Z) None 2 LDD Rd, Z+q Load indirect with displacement Rd (Z + q) None 2 LDS Rd, k Load direct from SRAM Rd (k) None 2 ST X, Rr Store indirect (X) Rr None 2 ST X+, Rr Store indirect and post-inc. (X) Rr, X X + 1 None 2 ST - X, Rr Store indirect and pre-dec. X X - 1, (X) Rr None 2 ST Y, Rr Store indirect (Y) Rr None 2 ST Y+, Rr Store indirect and post-inc. (Y) Rr, Y Y + 1 None 2 ST - Y, Rr Store indirect and pre-dec. Y Y - 1, (Y) Rr None 2 STD Y+q,Rr Store indirect with displacement (Y + q) Rr None 2 ST Z, Rr Store indirect (Z) Rr None 2 ST Z+, Rr Store indirect and post-inc. (Z) Rr, Z Z + 1 None 2 ST -Z, Rr Store indirect and pre-dec. Z Z - 1, (Z) Rr None 2 STD Z+q,Rr Store indirect with displacement (Z + q) Rr None 2 STS k, Rr Store direct to SRAM (k) Rr None 2 Load program memory R0 (Z) None 3 LPM LPM Rd, Z Load program memory Rd (Z) None 3 LPM Rd, Z+ Load program memory and post-inc Rd (Z), Z Z+1 None 3 Store program memory (Z) R1:R0 None - In port Rd P None 1 SPM IN Rd, P OUT P, Rr Out port P Rr None 1 PUSH Rr Push register on stack STACK Rr None 2 355 2545U-AVR-11/2015 ATmega48/88/168 Mnemonics POP Operands Rd Description Pop register from stack Operation Rd STACK Flags #Clocks None 2 None 1 MCU CONTROL INSTRUCTIONS NOP No operation SLEEP Sleep (See specific descr. for sleep function) None 1 WDR BREAK Watchdog reset Break (See specific descr. for WDR/timer) For on-chip debug only None None 1 N/A Note: 1. These instructions are only available in Atmel ATmega168. 356 2545U-AVR-11/2015 ATmega48/88/168 33. Ordering information 33.1 Atmel ATmega48 Speed (MHz) Power supply Ordering code(2) Package(1) (5) 10(3) 20(3) Note: 1.8V - 5.5V ATmega48V-10AUR ATmega48V-10MUR(5) ATmega48V-10AU ATmega48V-10MMU ATmega48V-10MMUR(5) ATmega48V-10MMH(4) ATmega48V-10MMHR(4)(5) ATmega48V-10MU ATmega48V-10PU 32A 32M1-A 32A 28M1 28M1 28M1 28M1 32M1-A 28P3 2.7V - 5.5V ATmega48-20AUR(5) ATmega48-20MUR(5) ATmega48-20AU ATmega48-20MMU ATmega48-20MMUR(5) ATmega48-20MMH(4) ATmega48-20MMHR(4)(5) ATmega48-20MU ATmega48-20PU 32A 32M1-A 32A 28M1 28M1 28M1 Operational range Industrial (-40C to 85C) Industrial (-40C to 85C) 28M1 32M1-A 28P3 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities. 2. Pb-free packaging alternative, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green. 3. See Figure 29-1 on page 312 and Figure 29-2 on page 312. 4. NiPdAu lead finish. 5. Tape & Reel. Package type 32A 32-lead, thin (1.0mm) plastic quad flat package (TQFP) 28M1 28-pad, 4 x 4 x 1.0 body, lead pitch 0.45mm quad flat no-lead/micro lead frame package (QFN/MLF) 32M1-A 32-pad, 5 x 5 x 1.0 body, lead pitch 0.50mm quad flat no-lead/micro lead frame package (QFN/MLF) 28P3 28-lead, 0.300" wide, plastic dual inline package (PDIP) 357 2545U-AVR-11/2015 ATmega48/88/168 33.2 Atmel ATmega88 Speed (MHz) Power supply Ordering code(2) Package(1) (4) 10(3) 20(3) Note: Operational range 1.8V - 5.5V ATmega88V-10AUR ATmega88V-10MUR(4) ATmega88V-10AU ATmega88V-10MU ATmega88V-10PU 32A 32M1-A 32A 32M1-A 28P3 Industrial (-40C to 85C) 2.7V - 5.5V ATmega88-20AUR(4) ATmega88-20MUR(4) ATmega88-20AU ATmega88-20MU ATmega88-20PU 32A 32M1-A 32A 32M1-A 28P3 Industrial (-40C to 85C) 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities. 2. Pb-free packaging alternative, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green. 3. See Figure 29-1 on page 312 and Figure 29-2 on page 312. 4. Tape & reel Package type 32A 32-lead, thin (1.0mm) plastic quad flat package (TQFP) 32M1-A 32-pad, 5 x 5 x 1.0 body, lead pitch 0.50mm quad flat no-lead/micro lead frame package (QFN/MLF) 28P3 28-lead, 0.300" wide, plastic dual inline package (PDIP) 358 2545U-AVR-11/2015 ATmega48/88/168 33.3 Atmel ATmega168 Speed (MHz)(3) Power supply Ordering code(2) Package(1) (4) 10 20 Note: Operational range 1.8V - 5.5V ATmega168V-10AUR ATmega168V-10MUR(4) ATmega168V-10AU ATmega168V-10MU ATmega168V-10PU 32A 32M1-A 32A 32M1-A 28P3 Industrial (-40C to 85C) 2.7V - 5.5V ATmega168-20AUR(4) ATmega168-20MUR(4) ATmega168-20AU ATmega168-20MU ATmega168-20PU 32A 32M1-A 32A 32M1-A 28P3 Industrial (-40C to 85C) 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities. 2. Pb-free packaging alternative, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green. 3. See Figure 29-1 on page 312 and Figure 29-2 on page 312. 4. Tape & reel Package type 32A 32-lead, thin (1.0mm) plastic quad flat package (TQFP) 32M1-A 32-pad, 5 x 5 x 1.0 body, lead pitch 0.50mm quad flat no-lead/micro lead frame package (QFN/MLF) 28P3 28-lead, 0.300" wide, plastic dual inline package (PDIP) 359 2545U-AVR-11/2015 ATmega48/88/168 34. Packaging information 34.1 32A PIN 1 IDENTIFIER PIN 1 e B E1 E D1 D C 0~7 A1 A2 A L COMMON DIMENSIONS (Unit of measure = mm) Notes: 1. This package conforms to JEDEC reference MS-026, Variation ABA. 2. Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25mm per side. Dimensions D1 and E1 are maximum plastic body size dimensions including mold mismatch. 3. Lead coplanarity is 0.10mm maximum. SYMBOL MIN NOM MAX A - - 1.20 A1 0.05 - 0.15 A2 0.95 1.00 1.05 D 8.75 9.00 9.25 D1 6.90 7.00 7.10 E 8.75 9.00 9.25 E1 6.90 7.00 7.10 B 0.30 - 0.45 C 0.09 - 0.20 L 0.45 - 0.75 e NOTE Note 2 Note 2 0.80 TYP 2010-10-20 TITLE 32A, 32-lead, 7 x 7mm body size, 1.0mm body thickness, 0.8mm lead pitch, thin profile plastic quad flat package (TQFP) DRAWING NO. 32A REV. C 360 2545U-AVR-11/2015 ATmega48/88/168 34.2 28M1 D C 1 2 Pin 1 ID 3 E SIDE VIEW A1 TOP VIEW A y D2 K 1 0.45 2 R 0.20 COMMON DIMENSIONS (Unit of Measure = mm) MIN NOM MAX A 0.80 0.90 1.00 A1 0.00 0.02 0.05 b 0.17 0.22 0.27 SYMBOL 3 E2 b C L e 0.4 Ref (4x) Note: 0.20 REF D 3.95 4.00 4.05 D2 2.35 2.40 2.45 E 3.95 4.00 4.05 E2 2.35 2.40 2.45 e BOTTOM VIEW L The terminal #1 ID is a Laser-marked Feature. NOT E 0.45 0.35 0.40 0.45 y 0.00 - 0.08 K 0.20 - - 10/24/08 Package Drawing Contact: packagedrawings@atmel.com TITLE 28M1, 28-pad, 4 x 4 x 1.0mm Body, Lead Pitch 0.45mm, 2.4 x 2.4mm Exposed Pad, Thermally Enhanced Plastic Very Thin Quad Flat No Lead Package (VQFN) GPC ZBV DRAWING NO. 28M1 REV. B 361 2545U-AVR-11/2015 ATmega48/88/168 34.3 32M1-A D D1 1 2 3 0 Pin 1 ID E1 SIDE VIEW E TOP VIEW A3 A2 A1 A K 0.08 C COMMON DIMENSIONS (Unit of Measure = mm) SYMBOL MIN NOM MAX A P D2 1 2 3 P Pin #1 Notch (0.20 R) K e 0.90 1.00 - 0.02 0.05 A2 - 0.65 1.00 A3 E2 b 0.80 A1 L BOTTOM VIEW 0.20 REF b 0.18 0.23 0.30 D 4.90 5.00 5.10 D1 4.70 4.75 4.80 D2 2.95 3.10 3.25 E 4.90 5.00 5.10 E1 4.70 4.75 4.80 E2 2.95 3.10 3.25 e Note: JEDEC Standard MO-220, Fig. 2 (Anvil Singulation), VHHD-2. NOTE 0.50 BSC L 0.30 0.40 0.50 P - - 0.60 12o 0 - - K 0.20 - - 03/14/2014 32M1-A , 32-pad, 5 x 5 x 1.0mm Body, Lead Pitch 0.50mm, 3.10mm Exposed Pad, Micro Lead Frame Package (MLF) 32M1-A F 362 2545U-AVR-11/2015 ATmega48/88/168 34.4 28P3 D PIN 1 E1 A SEATING PLANE L B2 B1 B A1 (4 PLACES) e E 0 ~ 15 C COMMON DIMENSIONS (Unit of Measure = mm) REF MIN NOM MAX A - - 4.5724 A1 0.508 - - D 34.544 - E 7.620 - 8.255 E1 7.112 - 7.493 B 0.381 - 0.533 B1 1.143 - 1.397 SYMBOL eB Note: 1. Dimensions D and E1 do not include mold Flash or Protrusion. Mold Flash or Protrusion shall not exceed 0.25mm (0.010"). 34.798 Note 1 B2 0.762 - 1.143 L 3.175 - 3.429 C 0.203 - 0.356 eB - - 10.160 e NOTE Note 1 2.540 TYP 09/28/01 2325 Orchard Parkway San Jose, CA 95131 TITLE 28P3, 28-lead (0.300"/7.62mm Wide) Plastic Dual Inline Package (PDIP) DRAWING NO. 28P3 REV. B 363 2545U-AVR-11/2015 ATmega48/88/168 35. Errata 35.1 Errata Atmel ATmega48 The revision letter in this section refers to the revision of the ATmega48 device. 35.1.1 Rev K * * * * Full swing crystal oscillator not supported Parallel programming timing modified Write wait delay for NVM is increased Changed device ID 1. Full swing crystal oscillator not supported The full swing crystal oscillator functionality is not available in revision K. Problem fix/workaround Use alternative clock sources available in the device. 2. Parallel programming timing modified Previous die revision 3 Symbol Parameter Min tWLRH_CE /WR Low to RDY/BSY High for Chip Erase tBVDV /BS1 Valid to DATA valid tOLDV /OE Low to DATA Valid Typ. Revision K Max Units Min 7.5 9 ms 0 250 ns 250 ns Typ. Max Units 9.8 10.5 ms 0 335 ns 335 ns Write wait delay for NVM is increased The write delay for non-volatile memory (NVM) is increased as follows: Other revisions Revision K Symbol Minimum Wait Delay Minimum Wait Delay tWD_ERASE 9ms 10.5ms 4. Changed device ID The device ID has been modified according to the to the following: Any die revision Signature byte address ID (Unchanged) Previous die revision Revision K 0x000 0x001 0x002 Device ID read via debugWIRE Device ID read via debugWIRE ATmega48 0x1E 0x92 0x05 0x9205 0x920A ATmega48V 0x1E 0x92 0x05 0x9205 0x920A Part 364 2545U-AVR-11/2015 ATmega48/88/168 35.1.2 Rev E to J Not sampled. 35.1.3 Rev. D * Interrupts may be lost when writing the timer registers in the asynchronous timer 1. Interrupts may be lost when writing the timer registers in the asynchronous timer The interrupt will be lost if a timer register that is synchronous timer clock is written when the asynchronous Timer/Counter register (TCNTx) is 0x00. Problem fix/workaround Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor 0x00 before writing to the asynchronous Timer Control Register (TCCRx), asynchronous Timer Counter Register (TCNTx), or asynchronous Output Compare Register (OCRx). 35.1.4 Rev. C * Reading EEPROM when system clock frequency is below 900kHz may not work * Interrupts may be lost when writing the timer registers in the asynchronous timer 1. Reading EEPROM when system clock frequency is below 900kHz may not work Reading Data from the EEPROM at system clock frequency below 900kHz may result in wrong data read. Problem fix/workaround Avoid using the EEPROM at clock frequency below 900kHz. 2. Interrupts may be lost when writing the timer registers in the asynchronous timer The interrupt will be lost if a timer register that is synchronous timer clock is written when the asynchronous Timer/Counter register (TCNTx) is 0x00. Problem fix/workaround Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor 0x00 before writing to the asynchronous Timer Control Register (TCCRx), asynchronous Timer Counter Register (TCNTx), or asynchronous Output Compare Register (OCRx). 35.1.5 Rev. B * Interrupts may be lost when writing the timer registers in the asynchronous timer 1. Interrupts may be lost when writing the timer registers in the asynchronous timer The interrupt will be lost if a timer register that is synchronous timer clock is written when the asynchronous Timer/Counter register (TCNTx) is 0x00. Problem fix/workaround Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor 0x00 before writing to the asynchronous Timer Control Register (TCCRx), asynchronous Timer Counter Register (TCNTx), or asynchronous Output Compare Register (OCRx). 365 2545U-AVR-11/2015 ATmega48/88/168 35.1.6 Rev A * * * * * * * Part may hang in reset Wrong values read after erase only operation Watchdog timer interrupt disabled Start-up time with crystal oscillator is higher than expected High power consumption in power-down with external clock Asynchronous oscillator does not stop in power-down Interrupts may be lost when writing the timer registers in the asynchronous timer 1. Part may hang in reset Some parts may get stuck in a reset state when a reset signal is applied when the internal reset state-machine is in a specific state. The internal reset state-machine is in this state for approximately 10ns immediately before the part wakes up after a reset, and in a 10ns window when altering the system clock prescaler. The problem is most often seen during In-System Programming of the device. There are theoretical possibilities of this happening also in run-mode. The following three cases can trigger the device to get stuck in a resetstate: - Two succeeding resets are applied where the second reset occurs in the 10ns window before the device is out of the reset-state caused by the first reset. - A reset is applied in a 10ns window while the system clock prescaler value is updated by software. - Leaving SPI-programming mode generates an internal reset signal that can trigger this case. The two first cases can occur during normal operating mode, while the last case occurs only during programming of the device. Problem fix/workaround The first case can be avoided during run-mode by ensuring that only one reset source is active. If an external reset push button is used, the reset start-up time should be selected such that the reset line is fully debounced during the start-up time. The second case can be avoided by not using the system clock prescaler. The third case occurs during In-System programming only. It is most frequently seen when using the internal RC at maximum frequency. If the device gets stuck in the reset-state, turn power off, then on again to get the device out of this state. 2. Wrong values read after erase only operation At supply voltages below 2.7V, an EEPROM location that is erased by the Erase Only operation may read as programmed (0x00). Problem fix/workaround If it is necessary to read an EEPROM location after Erase Only, use an Atomic Write operation with 0xFF as data in order to erase a location. In any case, the Write Only operation can be used as intended. Thus no special considerations are needed as long as the erased location is not read before it is programmed. 366 2545U-AVR-11/2015 ATmega48/88/168 3. Watchdog timer interrupt disabled If the watchdog timer interrupt flag is not cleared before a new timeout occurs, the watchdog will be disabled, and the interrupt flag will automatically be cleared. This is only applicable in interrupt only mode. If the Watchdog is configured to reset the device in the watchdog time-out following an interrupt, the device works correctly. Problem fix/workaround Make sure there is enough time to always service the first timeout event before a new watchdog timeout occurs. This is done by selecting a long enough time-out period. 4. Start-up time with crystal oscillator is higher than expected The clock counting part of the start-up time is about two times higher than expected for all start-up periods when running on an external Crystal. This applies only when waking up by reset. Wake-up from power down is not affected. For most settings, the clock counting parts is a small fraction of the overall start-up time, and thus, the problem can be ignored. The exception is when using a very low frequency crystal like for instance a 32kHz clock crystal. Problem fix/workaround No known workaround. 5. High power consumption in power-down with external clock The power consumption in power down with an active external clock is about 10 times higher than when using internal RC or external oscillators. Problem fix/workaround Stop the external clock when the device is in power down. 6. Asynchronous oscillator does not stop in power-down The Asynchronous oscillator does not stop when entering power down mode. This leads to higher power consumption than expected. Problem fix/workaround Manually disable the asynchronous timer before entering power down. 7. Interrupts may be lost when writing the timer registers in the asynchronous timer The interrupt will be lost if a timer register that is synchronous timer clock is written when the asynchronous Timer/Counter register (TCNTx) is 0x00. Problem fix/workaround Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor 0x00 before writing to the asynchronous Timer Control Register (TCCRx), asynchronous Timer Counter Register (TCNTx), or asynchronous Output Compare Register (OCRx). 367 2545U-AVR-11/2015 ATmega48/88/168 35.2 Errata Atmel ATmega88 The revision letter in this section refers to the revision of the ATmega88 device. 35.2.1 Rev K * * * * * Full swing crystal oscillator not supported Parallel programming timing modified Write wait delay for NVM is increased Changed device ID Interrupts may be lost when writing the timer registers in the asynchronous timer 1. Full swing crystal oscillator not supported The full swing crystal oscillator functionality is not available in revision K. Problem fix/workaround Use alternative clock sources available in the device. 2. Parallel programming timing modified Previous die revision 3 Symbol Parameter Min tWLRH_CE /WR Low to RDY/BSY High for Chip Erase tBVDV /BS1 Valid to DATA valid tOLDV /OE Low to DATA Valid Typ. Revision K Max Units Min 7.5 9 ms 0 250 ns 250 ns Typ. Max Units 9.8 10.5 ms 0 335 ns 335 ns Write wait delay for NVM is increased The write delay for non-volatile memory (NVM) is increased as follows: Other revisions Revision K Symbol Minimum Wait Delay Minimum Wait Delay tWD_ERASE 9ms 10.5ms 4. Changed device ID The device ID has been modified according to the to the following: Any die revision Signature byte address ID (Unchanged) Previous die revision Revision K Part 0x000 0x001 0x002 Device ID read via debugWIRE Device ID read via debugWIRE ATmega88 0x1E 0x93 0x0A 0x930A 0x930F ATmega88V 0x1E 0x93 0x0A 0x930A 0x930F 368 2545U-AVR-11/2015 ATmega48/88/168 5. Interrupts may be lost when writing the timer registers in the asynchronous timer The interrupt will be lost if a timer register that is synchronous timer clock is written when the asynchronous Timer/Counter register (TCNTx) is 0x00. Problem fix/workaround Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor 0x00 before writing to the asynchronous Timer Control Register (TCCRx), asynchronous Timer Counter Register (TCNTx), or asynchronous Output Compare Register (OCRx). 35.2.2 Rev E to J Not sampled. 35.2.3 Rev. D * Interrupts may be lost when writing the timer registers in the asynchronous timer 1. Interrupts may be lost when writing the timer registers in the asynchronous timer The interrupt will be lost if a timer register that is synchronous timer clock is written when the asynchronous Timer/Counter register (TCNTx) is 0x00. Problem fix/workaround Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor 0x00 before writing to the asynchronous Timer Control Register (TCCRx), asynchronous Timer Counter Register (TCNTx), or asynchronous Output Compare Register (OCRx). 35.2.4 Rev. B/C Not sampled. 35.2.5 Rev. A * Writing to EEPROM does not work at low operating voltages * Part may hang in reset * Interrupts may be lost when writing the timer registers in the asynchronous timer 1. Writing to EEPROM does not work at low operating voltages Writing to the EEPROM does not work at low voltages. Problem fix/workaround Do not write the EEPROM at voltages below 4.5 Volts. This will be corrected in rev. B. 2. Part may hang in reset Some parts may get stuck in a reset state when a reset signal is applied when the internal reset state-machine is in a specific state. The internal reset state-machine is in this state for approximately 10ns immediately before the part wakes up after a reset, and in a 10ns window when altering the system clock prescaler. The problem is most often seen during In-System Programming of the device. There are theoretical possibilities of this happening 369 2545U-AVR-11/2015 ATmega48/88/168 also in run-mode. The following three cases can trigger the device to get stuck in a resetstate: - Two succeeding resets are applied where the second reset occurs in the 10ns window before the device is out of the reset-state caused by the first reset. - A reset is applied in a 10ns window while the system clock prescaler value is updated by software. - Leaving SPI-programming mode generates an internal reset signal that can trigger this case. The two first cases can occur during normal operating mode, while the last case occurs only during programming of the device.b. Problem fix/workaround The first case can be avoided during run-mode by ensuring that only one reset source is active. If an external reset push button is used, the reset start-up time should be selected such that the reset line is fully debounced during the start-up time. The second case can be avoided by not using the system clock prescaler. The third case occurs during In-System programming only. It is most frequently seen when using the internal RC at maximum frequency. If the device gets stuck in the reset-state, turn power off, then on again to get the device out of this state. 3. Interrupts may be lost when writing the timer registers in the asynchronous timer The interrupt will be lost if a timer register that is synchronous timer clock is written when the asynchronous Timer/Counter register (TCNTx) is 0x00. Problem fix/workaround Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor 0x00 before writing to the asynchronous Timer Control Register (TCCRx), asynchronous Timer Counter Register (TCNTx), or asynchronous Output Compare Register (OCRx). 370 2545U-AVR-11/2015 ATmega48/88/168 35.3 Errata Atmel ATmega168 The revision letter in this section refers to the revision of the ATmega168 device. 35.3.1 Rev K * * * * * Full swing crystal oscillator not supported Parallel programming timing modified Write wait delay for NVM is increased Changed device ID Interrupts may be lost when writing the timer registers in the asynchronous timer 1. Full swing crystal oscillator not supported The full swing crystal oscillator functionality is not available in revision K. Problem fix/workaround Use alternative clock sources available in the device. 2. Parallel programming timing modified Previous die revision 3 Symbol Parameter Min tWLRH_CE /WR Low to RDY/BSY High for Chip Erase tBVDV /BS1 Valid to DATA valid tOLDV /OE Low to DATA Valid Typ. Revision K Max Units Min 7.5 9 ms 0 250 ns 250 ns Typ. Max Units 9.8 10.5 ms 0 335 ns 335 ns Write wait delay for NVM is increased The write delay for non-volatile memory (NVM) is increased as follows: Other revisions Revision K Symbol Minimum Wait Delay Minimum Wait Delay tWD_ERASE 9ms 10.5ms 4. Changed device ID The device ID has been modified according to the to the following: Any die revision Signature byte address ID (Unchanged) Previous die revision Revision K Part 0x000 0x001 0x002 Device ID read via debugWIRE Device ID read via debugWIRE ATmega168 0x1E 0x94 0x06 0x9406 0x940B ATmega168V 0x1E 0x94 0x06 0x9406 0x940B 371 2545U-AVR-11/2015 ATmega48/88/168 5. Interrupts may be lost when writing the timer registers in the asynchronous timer The interrupt will be lost if a timer register that is synchronous timer clock is written when the asynchronous Timer/Counter register (TCNTx) is 0x00. Problem fix/workaround Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor 0x00 before writing to the asynchronous Timer Control Register (TCCRx), asynchronous Timer Counter Register (TCNTx), or asynchronous Output Compare Register (OCRx). 35.3.2 Rev D to J Not sampled. 35.3.3 Rev C * Interrupts may be lost when writing the timer registers in the asynchronous timer 1. Interrupts may be lost when writing the timer registers in the asynchronous timer The interrupt will be lost if a timer register that is synchronous timer clock is written when the asynchronous Timer/Counter register (TCNTx) is 0x00. Problem fix/workaround Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor 0x00 before writing to the asynchronous Timer Control Register (TCCRx), asynchronous Timer Counter Register (TCNTx), or asynchronous Output Compare Register (OCRx). 35.3.4 Rev B * Part may hang in reset * Interrupts may be lost when writing the timer registers in the asynchronous timer 1. Part may hang in reset Some parts may get stuck in a reset state when a reset signal is applied when the internal reset state-machine is in a specific state. The internal reset state-machine is in this state for approximately 10ns immediately before the part wakes up after a reset, and in a 10ns window when altering the system clock prescaler. The problem is most often seen during In-System Programming of the device. There are theoretical possibilities of this happening also in run-mode. The following three cases can trigger the device to get stuck in a resetstate: - Two succeeding resets are applied where the second reset occurs in the 10ns window before the device is out of the reset-state caused by the first reset. - A reset is applied in a 10ns window while the system clock prescaler value is updated by software. - Leaving SPI-programming mode generates an internal reset signal that can trigger this case. The two first cases can occur during normal operating mode, while the last case occurs only during programming of the device. Problem fix/workaround 372 2545U-AVR-11/2015 ATmega48/88/168 The first case can be avoided during run-mode by ensuring that only one reset source is active. If an external reset push button is used, the reset start-up time should be selected such that the reset line is fully debounced during the start-up time. The second case can be avoided by not using the system clock prescaler. The third case occurs during In-System programming only. It is most frequently seen when using the internal RC at maximum frequency. If the device gets stuck in the reset-state, turn power off, then on again to get the device out of this state. 2. Interrupts may be lost when writing the timer registers in the asynchronous timer The interrupt will be lost if a timer register that is synchronous timer clock is written when the asynchronous Timer/Counter register (TCNTx) is 0x00. Problem fix/workaround Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor 0x00 before writing to the asynchronous Timer Control Register (TCCRx), asynchronous Timer Counter Register (TCNTx), or asynchronous Output Compare Register (OCRx). 35.3.5 Rev A * Wrong values read after erase only operation * Part may hang in reset * Interrupts may be lost when writing the timer registers in the asynchronous timer 1. Wrong values read after erase only operation At supply voltages below 2.7V, an EEPROM location that is erased by the Erase Only operation may read as programmed (0x00). Problem fix/workaround If it is necessary to read an EEPROM location after Erase Only, use an Atomic Write operation with 0xFF as data in order to erase a location. In any case, the Write Only operation can be used as intended. Thus no special considerations are needed as long as the erased location is not read before it is programmed. 2. Part may hang in reset Some parts may get stuck in a reset state when a reset signal is applied when the internal reset state-machine is in a specific state. The internal reset state-machine is in this state for approximately 10ns immediately before the part wakes up after a reset, and in a 10ns window when altering the system clock prescaler. The problem is most often seen during In-System Programming of the device. There are theoretical possibilities of this happening also in run-mode. The following three cases can trigger the device to get stuck in a resetstate: - Two succeeding resets are applied where the second reset occurs in the 10ns window before the device is out of the reset-state caused by the first reset. - A reset is applied in a 10ns window while the system clock prescaler value is updated by software. - Leaving SPI-programming mode generates an internal reset signal that can trigger this case. 373 2545U-AVR-11/2015 ATmega48/88/168 The two first cases can occur during normal operating mode, while the last case occurs only during programming of the device. Problem fix/workaround The first case can be avoided during run-mode by ensuring that only one reset source is active. If an external reset push button is used, the reset start-up time should be selected such that the reset line is fully debounced during the start-up time. The second case can be avoided by not using the system clock prescaler. The third case occurs during In-System programming only. It is most frequently seen when using the internal RC at maximum frequency. If the device gets stuck in the reset-state, turn power off, then on again to get the device out of this state. 2. Interrupts may be lost when writing the timer registers in the asynchronous timer The interrupt will be lost if a timer register that is synchronous timer clock is written when the asynchronous Timer/Counter register (TCNTx) is 0x00. Problem fix/workaround Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor 0x00 before writing to the asynchronous Timer Control Register (TCCRx), asynchronous Timer Counter Register (TCNTx), or asynchronous Output Compare Register (OCRx). 374 2545U-AVR-11/2015 ATmega48/88/168 36. Datasheet revision history Please note that the referring page numbers in this section are referred to this document. The referring revision in this section are referring to the document revision. 36.1 Rev. 2545U-11/15 Updated errata sections: 1. 36.2 2. 3. 4. 2. l "Errata Atmel ATmega168" on page 371: Added errata for rev D to K. Ordering information has been updated by removing AI and MI and added AUR and MUR (tape & reel). Added and corrected cross references and short-cuts. Document updated according to new Atmel standard. QTouch Library Support Features Note 6 and Note 7 in Table 29-5, "2-wire serial bus requirements.," on page 315 have been removed. Document updated according to Atmel standard. Rev. 2545R-07/09 1. 2. 36.5 "Errata Atmel ATmega88" on page 368: Added errata for rev E to K. Rev. 2545S-07/10 1. 36.4 "Errata Atmel ATmega48" on page 364: Added errata for rev E to K. l Rev. 2545T-04/11 1. 36.3 l Updated "Errata" on page 364. Updated the last page with the Atmel new addresses. Rev. 2545Q-06/09 1. 2. Removed the heading "About". The subsections of this sectionis now separate sections, "Resources", "Data Retention" and "About Code Examples" Updated "Ordering information" on page 357. 375 2545U-AVR-11/2015 ATmega48/88/168 36.6 Rev. 2545P-02/09 1. 36.7 Rev. 2545O-02/09 1. 2. 36.8 Changed minimum Power-on Reset Threshold Voltage (falling) to 0.05V in Table 293 on page 314. Removed section "Power-on slope rate" from "System and reset characteristics" on page 314. Rev. 2545N-01/09 1. 2. 3. 4. 5. 6. 7. 36.9 Removed Power-off slope rate from Table 29-3 on page 314. Updated "Features" on page 1 and added the note "Not recommended for new designs". Merged the sections Resources, Data Retention and About Code Examples under one common section, "Resources" on page 8. Updated Figure 9-4 on page 35. Updated "System clock prescaler" on page 36. Updated "Alternate functions of port B" on page 83. Added section "" on page 314. Updated "Pin thresholds and hysteresis" on page 337. Rev. 2545M-09/07 1. 2. 3. Added "Data retention" on page 8. Updated "ADC characteristics" on page 318. "Preliminary" removed through the datasheet. 36.10 Rev. 2545L-08/07 1. 2. 3. 4. Updated "Features" on page 1. Updated code example in "MCUCR - MCU control register" on page 67. Updated "System and reset characteristics" on page 314. Updated Note in Table 9-3 on page 30, Table 9-5 on page 31, Table 9-8 on page 33, Table 9-10 on page 34. 376 2545U-AVR-11/2015 ATmega48/88/168 36.11 Rev. 2545K-04/07 1. 2. 3. Updated "Interrupts" on page 56. Updated"Errata Atmel ATmega48" on page 364 . Changed description in "Analog-to-digital converter" on page 250. 36.12 Rev. 2545J-12/06 1. 2. 3. 4. Updated "Features" on page 1. Updated Table 1-1 on page 2. Updated "Ordering information" on page 357. Updated "Packaging information" on page 360. 36.13 Rev. 2545I-11/06 1. 2. 3. Updated "Features" on page 1. Updated Features in "2-wire serial interface" on page 213. Fixed typos in Table 29-3 on page 314. 36.14 Rev. 2545H-10/06 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. Updated typos. Updated "Features" on page 1. Updated "Calibrated internal RC oscillator" on page 33. Updated "System control and reset" on page 45. Updated "Brown-out detection" on page 47. Updated "Fast PWM mode" on page 126. Updated bit description in "TCCR1C - Timer/Counter1 control register C" on page 137. Updated code example in "SPI - Serial peripheral interface" on page 165. Updated Table 15-3 on page 106, Table 15-6 on page 107, Table 15-8 on page 108, Table 16-2 on page 134, Table 16-3 on page 135, Table 16-4 on page 136, Table 183 on page 158, Table 18-6 on page 159, Table 18-8 on page 160, and Table 28-5 on page 294. Added Note to Table 26-1 on page 271, Table 27-5 on page 285, and Table 28-17 on page 307. Updated "Setting the boot loader lock bits by SPM" on page 283. Updated "Signature bytes" on page 295 Updated "Electrical characteristics" on page 310. Updated "Errata" on page 364. 377 2545U-AVR-11/2015 ATmega48/88/168 36.15 Rev. 2545G-06/06 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17 18. 19. 20. Added Addresses in Registers. Updated "Calibrated internal RC oscillator" on page 33. Updated Table 9-12 on page 35, Table 10-1 on page 39, Table 11-1 on page 54, Table 14-3 on page 83. Updated "ADC noise reduction mode" on page 40. Updated note for Table 10-2 on page 43. Updatad "Bit 2 - PRSPI: Power reduction serial peripheral interface" on page 44. Updated "TCCR0B - Timer/counter control register B" on page 109. Updated "Fast PWM mode" on page 126. Updated "Asynchronous operation of Timer/Counter2" on page 155. Updated "SPI - Serial peripheral interface" on page 165. Updated "UCSRnA - USART MSPIM control and status register n A" on page 210. Updated note in "Bit rate generator unit" on page 220. Updated "Bit 6 - ACBG: Analog comparator bandgap select" on page 247. Updated Features in "Analog-to-digital converter" on page 250. Updated "Prescaling and conversion timing" on page 253. Updated "Limitations of debugWIRE" on page 267. Added Table 29-1 on page 313. Updated Figure 16-7 on page 127, Figure 30-45 on page 346. Updated rev. A in "Errata Atmel ATmega48" on page 364. Added rev. C and D in "Errata Atmel ATmega48" on page 364. 36.16 Rev. 2545F-05/05 1. 2. 3. 4. 5. Added Section 3. "Resources" on page 8 Update Section 9.6 "Calibrated internal RC oscillator" on page 33. Updated Section 28.8.3 "Serial programming instruction set" on page 307. Table notes in Section 29.2 "DC characteristics" on page 310 updated. Updated Section 35. "Errata" on page 364. 36.17 Rev. 2545E-02/05 1. 2. 3. 4. 5. 6. 7. 8. MLF-package alternative changed to "Quad Flat No-Lead/Micro Lead Frame Package QFN/MLF". Updated "EECR - The EEPROM control register" on page 22. Updated "Calibrated internal RC oscillator" on page 33. Updated "External clock" on page 35. Updated Table 29-3 on page 314, Table 29-6 on page 316, Table 29-2 on page 313 and Table 28-16 on page 307 Added "Pin change interrupt timing" on page 70 Updated "8-bit timer/counter block diagram." on page 95. Updated "SPMCSR - Store program memory control and status register" on page 273. 378 2545U-AVR-11/2015 ATmega48/88/168 9. 10. 11. 12. Updated "Enter programming mode" on page 298. Updated "DC characteristics" on page 310. Updated "Ordering information" on page 357. Updated "Errata Atmel ATmega88" on page 368 and "Errata Atmel ATmega168" on page 371. 36.18 Rev. 2545D-07/04 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. Updated instructions used with WDTCSR in relevant code examples. Updated Table 9-5 on page 31, Table 29-4 on page 314, Table 27-9 on page 288, and Table 27-11 on page 290. Updated "System clock prescaler" on page 36. Moved "TIMSK2 - Timer/Counter2 interrupt mask register" on page 162 and "TIFR2 - Timer/Counter2 interrupt flag register" on page 162 to "Register description" on page 157. Updated cross-reference in "Electrical interconnection" on page 214. Updated equation in "Bit rate generator unit" on page 220. Added "Page size" on page 296. Updated "Serial programming algorithm" on page 306. Updated Ordering Information for "Atmel ATmega168" on page 359. Updated "Errata Atmel ATmega88" on page 368 and "Errata Atmel ATmega168" on page 371. Updated equation in "Bit rate generator unit" on page 220. 36.19 Rev. 2545C-04/04 1. 2. 3. 4. Speed Grades changed: 12MHz to 10MHz and 24MHz to 20MHz Updated "Speed grades" on page 312. Updated "Ordering information" on page 357. Updated "Errata Atmel ATmega88" on page 368. 36.20 Rev. 2545B-01/04 1. 2. 3. 4. 5. 6. Added PDIP to "I/O and Packages", updated "Speed Grade" and Power Consumption Estimates in 36."Features" on page 1. Updated "Stack pointer" on page 13 with RAMEND as recommended Stack Pointer value. Added section "Power reduction register" on page 41 and a note regarding the use of the PRR bits to 2-wire, Timer/Counters, USART, Analog Comparator and ADC sections. Updated "Watchdog timer" on page 49. Updated Figure 16-2 on page 134 and Table 16-3 on page 135. Extra Compare Match Interrupt OCF2B added to features in section "8-bit Timer/Counter2 with PWM and asynchronous operation" on page 144 379 2545U-AVR-11/2015 ATmega48/88/168 7. 8. 9. 10. 11. 12. Updated Table 10-1 on page 39, Table 24-5 on page 265, Table 28-4 to Table 28-7 on page 293 to 295 and Table 24-1 on page 255. Added note 2 to Table 28-1 on page 292. Fixed typo in Table 13-1 on page 71. Updated whole "Typical characteristics" on page 322. Added item 2 to 5 in "Errata Atmel ATmega48" on page 364. Renamed the following bits: - SPMEN to SELFPRGEN - PSR2 to PSRASY - PSR10 to PSRSYNC - Watchdog Reset to Watchdog System Reset Updated C code examples containing old IAR syntax. Updated BLBSET description in "SPMCSR - Store program memory control and status register" on page 290. 380 2545U-AVR-11/2015 ATmega48/88/168 Table of Content Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 1. Pin configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 1.1 2. Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.1 VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.2 GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.3 Port B (PB7:0) XTAL1/XTAL2/TOSC1/TOSC2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.4 Port C (PC5:0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.5 PC6/RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.6 Port D (PD7:0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.7 AVCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.8 AREF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.9 ADC7:6 (TQFP and QFN/MLF package only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 2.1 2.2 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Comparison between Atmel ATmega48, Atmel ATmega88, and Atmel ATmega168 . . . . . . . . . . . . 6 3. Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 4. Data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 5. About code examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 6. Capacitive touch sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 7. AVR CPU core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 8. Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Architectural overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 ALU - Arithmetic Logic Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 7.4.1 SREG - AVR Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 General purpose register file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 7.5.1 The X-register, Y-register, and Z-register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Stack pointer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 7.6.1 SPH and SPL - Stack pointer high and stack pointer low register . . . . . . . . . . . . . . . . . . 14 Instruction execution timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Reset and interrupt handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 7.8.1 Interrupt response time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 AVR memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 8.1 8.2 8.3 8.4 8.5 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . In-system reprogrammable flash program memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SRAM data memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.3.1 Data memory access times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EEPROM data memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.4.1 EEPROM read/write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.4.2 Preventing EEPROM corruption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I/O memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.5.1 General purpose I/O registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 17 19 19 20 20 20 21 21 i 2545U-AVR-11/2015 ATmega48/88/168 8.6 9. Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.6.1 EEARH and EEARL - The EEPROM address register . . . . . . . . . . . . . . . . . . . . . . . . . . 8.6.2 EEDR - The EEPROM data register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.6.3 EECR - The EEPROM control register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.6.4 GPIOR2 - General purpose I/O register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.6.5 GPIOR1 - General purpose I/O register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.6.6 GPIOR0 - General purpose I/O register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 22 22 22 26 26 26 System clock and clock options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 9.11 9.12 Clock systems and their distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 9.1.1 CPU clock - clkCPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 9.1.2 I/O clock - clkI/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 9.1.3 Flash clock - clkFLASH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 9.1.4 Asynchronous timer clock - clkASY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 9.1.5 ADC clock - clkADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Clock sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 9.2.1 Default clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 9.2.2 Clock startup sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Low power crystal oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Full swing crystal oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Low frequency crystal oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Calibrated internal RC oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 128kHz internal oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 External clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Clock output buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Timer/counter oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 System clock prescaler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 9.12.1 OSCCAL - Oscillator calibration register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 9.12.2 CLKPR - Clock prescale register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 10. Power management and sleep modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 Sleep modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Idle mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ADC noise reduction mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power-down mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power-save mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power reduction register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Minimizing power consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.8.1 Analog to digital converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.8.2 Analog comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.8.3 Brown-out detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.8.4 Internal voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.8.5 Watchdog timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.8.6 Port pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.8.7 On-chip debug system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.9.1 SMCR - Sleep mode control register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.9.2 PRR - Power reduction register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 39 40 40 40 41 41 41 41 41 42 42 42 42 42 43 43 44 ii 2545U-AVR-11/2015 ATmega48/88/168 11. System control and reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 Resetting the AVR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reset sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power-on reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Brown-out detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Watchdog system reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Internal voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.7.1 Voltage reference enable signals and start-up time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Watchdog timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.8.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.9.1 MCUSR - MCU status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.9.2 WDTCSR - Watchdog timer control register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 45 46 47 47 48 48 48 49 49 53 53 53 12. Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56 12.1 12.2 12.3 12.4 12.5 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Interrupt vectors in ATmega48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Interrupt vectors in Atmel ATmega88 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Interrupt vectors in Atmel ATmega168 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 12.4.1 Moving interrupts between application and boot space, Atmel ATmega88 and Atmel ATmega168 67 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 12.5.1 MCUCR - MCU control register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 13. External interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70 13.1 13.2 Pin change interrupt timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.2.1 EICRA - External interrupt control register A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.2.2 EIMSK - External interrupt mask register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.2.3 EIFR - External interrupt flag register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.2.4 PCICR - Pin change interrupt control register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.2.5 PCIFR - Pin change interrupt flag register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.2.6 PCMSK2 - Pin change mask register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.2.7 PCMSK1 - Pin change mask register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.2.8 PCMSK0 - Pin change mask register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 71 71 73 73 74 74 75 75 75 14. I/O-ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76 14.1 14.2 14.3 14.4 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ports as general digital I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.2.1 Configuring the pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.2.2 Toggling the pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.2.3 Switching between input and output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.2.4 Reading the pin value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.2.5 Digital input enable and sleep modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.2.6 Unconnected pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alternate port functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.3.1 Alternate functions of port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.3.2 Alternate functions of port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.3.3 Alternate functions of port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 77 77 78 78 78 80 80 81 83 86 89 92 iii 2545U-AVR-11/2015 ATmega48/88/168 14.4.1 14.4.2 14.4.3 14.4.4 14.4.5 14.4.6 14.4.7 14.4.8 14.4.9 14.4.10 MCUCR - MCU control register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PORTB - The port B data register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DDRB - The port B data direction register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PINB - The port B input pins address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PORTC - The port C data register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DDRC - The port C data direction register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PINC - The port C input pins address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PORTD - The port D data register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DDRD - The port D data direction register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PIND - The port D input pins address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 92 92 92 92 92 92 93 93 93 15. 8-bit Timer/Counter0 with PWM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 15.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 15.2.2 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Timer/counter clock sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Counter unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Output compare unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 15.5.1 Force output compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 15.5.2 Compare match blocking by TCNT0 write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 15.5.3 Using the output compare unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Compare match output unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 15.6.1 Compare output mode and waveform generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Modes of operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 15.7.1 Normal mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 15.7.2 Clear timer on compare match (CTC) mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 15.7.3 Fast PWM mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 15.7.4 Phase correct PWM mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Timer/counter timing diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 15.9.1 TCCR0A - Timer/counter control register A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 15.9.2 TCCR0B - Timer/counter control register B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 15.9.3 TCNT0 - Timer/counter register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 15.9.4 OCR0A - Output compare register A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 15.9.5 OCR0B - Output compare register B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 15.9.6 TIMSK0 - Timer/counter interrupt mask register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 15.9.7 TIFR0 - Timer/Counter0 interrupt flag register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 16. 16-bit Timer/Counter1 with PWM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 16.1 16.2 16.3 16.4 16.5 16.6 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2.1 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Accessing 16-bit registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.3.1 Reusing the temporary high byte register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timer/counter clock sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Counter unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input capture unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.6.1 Input capture trigger source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 113 114 115 115 118 118 119 120 121 iv 2545U-AVR-11/2015 ATmega48/88/168 16.6.2 Noise canceler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.6.3 Using the input capture unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.7 Output compare units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.7.1 Force output compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.7.2 Compare match blocking by TCNT1 write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.7.3 Using the output compare unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.8 Compare match output unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.8.1 Compare output mode and waveform generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.9 Modes of operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.9.1 Normal mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.9.2 Clear timer on compare match (CTC) mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.9.3 Fast PWM mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.9.4 Phase correct PWM mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.9.5 Phase and frequency correct PWM mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.10 Timer/counter timing diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.11 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.11.1 TCCR1A - Timer/Counter1 control register A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.11.2 TCCR1B - Timer/Counter1 control register B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.11.3 TCCR1C - Timer/Counter1 control register C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.11.4 TCNT1H and TCNT1L - Timer/Counter1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.11.5 OCR1AH and OCR1AL - Output compare register 1 A . . . . . . . . . . . . . . . . . . . . . . . . . 16.11.6 OCR1BH and OCR1BL - Output compare register 1 B . . . . . . . . . . . . . . . . . . . . . . . . . 16.11.7 ICR1H and ICR1L - Input capture register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.11.8 TIMSK1 - Timer/Counter1 interrupt mask register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.11.9 TIFR1 - Timer/Counter1 interrupt flag register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 121 121 123 123 123 123 124 124 125 125 126 128 130 132 134 134 136 137 138 138 138 139 139 140 17. Timer/Counter0 and Timer/Counter1 prescalers . . . . . . . . . . . . . . . . . . . . . . . . . . 141 17.1 17.0.1 Internal clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17.0.2 Prescaler reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17.0.3 External clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17.1.1 GTCCR - General timer/counter control register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 141 141 143 143 18. 8-bit Timer/Counter2 with PWM and asynchronous operation . . . . . . . . . . . . . . . 144 18.1 18.2 18.3 18.4 18.5 18.6 18.7 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.2.1 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.2.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timer/counter clock sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Counter unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output compare unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.5.1 Force output compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.5.2 Compare match blocking by TCNT2 write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.5.3 Using the output compare unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Compare match output unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.6.1 Compare output mode and waveform generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Modes of operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.7.1 Normal mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.7.2 Clear timer on compare match (CTC) mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.7.3 Fast PWM mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 144 145 145 145 145 146 147 147 147 148 149 149 149 149 150 v 2545U-AVR-11/2015 ATmega48/88/168 18.8 18.9 18.10 18.11 18.7.4 Phase correct PWM mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timer/counter timing diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Asynchronous operation of Timer/Counter2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timer/counter prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.11.1 TCCR2A - Timer/counter control register A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.11.2 TCCR2B - Timer/counter control register B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.11.3 TCNT2 - Timer/counter register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.11.4 OCR2A - Output compare register A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.11.5 OCR2B - Output compare register B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.11.6 TIMSK2 - Timer/Counter2 interrupt mask register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.11.7 TIFR2 - Timer/Counter2 interrupt flag register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.11.8 ASSR - Asynchronous status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.11.9 GTCCR - General timer/counter control register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 153 155 156 157 157 160 161 161 162 162 162 163 164 19. SPI - Serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 19.1 19.2 19.3 19.4 19.5 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SS pin functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.3.1 Slave mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.3.2 Master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.5.1 SPCR - SPI control register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.5.2 SPSR - SPI status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.5.3 SPDR - SPI data register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 165 170 170 170 170 172 172 173 174 20. USART0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 20.1 20.2 20.3 20.4 20.5 20.6 20.7 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Clock generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.3.1 Internal clock generation - The baud rate generator . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.3.2 Double speed operation (U2Xn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.3.3 External clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.3.4 Synchronous clock operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Frame formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.4.1 Parity bit calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . USART initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data transmission - The USART transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.6.1 Sending frames with 5 to 8 data bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.6.2 Sending frames with 9 data bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.6.3 Transmitter flags and interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.6.4 Parity generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.6.5 Disabling the transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data reception - The USART receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.7.1 Receiving frames with 5 to 8 data bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.7.2 Receiving frames with 9 data bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.7.3 Receive complete flag and interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.7.4 Receiver error flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.7.5 Parity checker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 175 176 177 178 179 179 179 180 180 183 183 184 184 185 185 185 185 186 187 188 188 vi 2545U-AVR-11/2015 ATmega48/88/168 20.7.6 Disabling the receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.7.7 Flushing the receive buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.8 Asynchronous data reception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.8.1 Asynchronous clock recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.8.2 Asynchronous data recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.8.3 Asynchronous operational range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.9 Multi-processor communication mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.9.1 Using MPCMn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.10 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.10.1 UDRn - USART I/O data register n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.10.2 UCSRnA - USART control and status register n A . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.10.3 UCSRnB - USART control and status register n B . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.10.4 UCSRnC - USART control and status register n C . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.10.5 UBRRnL and UBRRnH - USART baud rate registers . . . . . . . . . . . . . . . . . . . . . . . . . . 20.11 Examples of baud rate setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 189 189 189 190 191 192 193 194 194 194 195 196 198 198 21. USART in SPI mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 21.1 21.2 21.3 21.4 21.5 21.6 21.7 21.8 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Clock generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPI data modes and timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Frame formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.5.1 USART MSPIM initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.6.1 Transmitter and receiver flags and interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.6.2 Disabling the transmitter or receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AVR USART MSPIM vs. AVR SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.8.1 UDRn - USART MSPIM I/O data register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.8.2 UCSRnA - USART MSPIM control and status register n A . . . . . . . . . . . . . . . . . . . . . . 21.8.3 UCSRnB - USART MSPIM control and status register n B . . . . . . . . . . . . . . . . . . . . . . 21.8.4 UCSRnC - USART MSPIM control and status register n C . . . . . . . . . . . . . . . . . . . . . . 21.8.5 USART MSPIM baud rate registers - UBRRnL and UBRRnH . . . . . . . . . . . . . . . . . . . . 203 203 203 204 205 205 207 208 208 209 210 210 210 210 211 212 22. 2-wire serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 22.1 22.2 22.3 22.4 22.5 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-wire serial interface bus definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22.2.1 TWI terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22.2.2 Electrical interconnection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data transfer and frame format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22.3.1 Transferring bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22.3.2 START and STOP conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22.3.3 Address packet format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22.3.4 Data packet format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22.3.5 Combining address and data packets into a transmission . . . . . . . . . . . . . . . . . . . . . . . Multi-master bus systems, arbitration and synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of the TWI module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22.5.1 SCL and SDA pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22.5.2 Bit rate generator unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22.5.3 Bus interface unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 213 214 214 214 214 215 215 216 217 217 220 220 220 221 vii 2545U-AVR-11/2015 ATmega48/88/168 22.6 22.7 22.8 22.9 22.5.4 Address match unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22.5.5 Control unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Using the TWI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transmission modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22.7.1 Master transmitter mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22.7.2 Master receiver mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22.7.3 Slave receiver mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22.7.4 Slave transmitter mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22.7.5 Miscellaneous states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22.7.6 Combining Several TWI Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Multi-master systems and arbitration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22.9.1 TWBR - TWI bit rate register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22.9.2 TWCR - TWI control register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22.9.3 TWSR - TWI status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22.9.4 TWDR - TWI data register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22.9.5 TWAR - TWI (slave) address register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22.9.6 TWAMR - TWI (slave) address mask register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 221 222 226 227 230 233 236 239 239 240 241 241 241 243 243 244 244 23. Analog comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 23.1 23.2 23.3 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Analog comparator multiplexed input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23.3.1 ADCSRB - ADC control and status register B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23.3.2 ACSR - Analog comparator control and status register . . . . . . . . . . . . . . . . . . . . . . . . . 23.3.3 DIDR1 - Digital input disable register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 246 247 247 247 248 24. Analog-to-digital converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 24.1 24.2 24.3 24.4 24.5 24.6 24.7 24.8 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Starting a conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Prescaling and conversion timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Changing channel or reference selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24.5.1 ADC input channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24.5.2 ADC voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ADC noise canceler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24.6.1 Analog input circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24.6.2 Analog noise canceling techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24.6.3 ADC accuracy definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ADC conversion result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24.8.1 ADMUX - ADC multiplexer selection register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24.8.2 ADCSRA - ADC control and status register A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24.8.3 ADCL and ADCH - The ADC data register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24.8.4 ADCSRB - ADC control and status register B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24.8.5 DIDR0 - Digital Input Disable Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 250 252 253 255 256 256 256 257 257 258 261 261 261 262 264 264 265 25. debugWIRE on-chip debug system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 25.1 25.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 viii 2545U-AVR-11/2015 ATmega48/88/168 25.3 25.4 25.5 25.6 Physical interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Software break points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Limitations of debugWIRE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25.6.1 DWDR - debugWire data register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 267 267 267 267 26. Self-programming the flash, Atmel ATmega48 . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 26.1 26.2 26.3 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26.1.1 Performing page erase by SPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26.1.2 Filling the temporary buffer (page loading) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26.1.3 Performing a page write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Addressing the flash during self-programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26.2.1 EEPROM write prevents writing to SPMCSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26.2.2 Reading the fuse and lock bits from software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26.2.3 Preventing flash corruption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26.2.4 Programming time for flash when using SPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26.2.5 Simple assembly code example for a boot loader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26.3.1 SPMCSR - Store program memory control and status register . . . . . . . . . . . . . . . . . . . 268 268 268 269 269 270 270 270 271 271 273 273 27. Boot loader support - Read-while-write self-programming, Atmel ATmega88 and Atmel ATmega168 275 27.1 27.2 27.3 27.4 27.5 27.6 27.7 27.8 27.9 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Application and boot loader flash sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27.3.1 Application section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27.3.2 BLS - Boot loader section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read-while-write and no read-while-write flash sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27.4.1 RWW - Read-while-write section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27.4.2 NRWW - No read-while-write section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Boot loader lock bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Entering the boot loader program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Addressing the flash during self-programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Self-programming the flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27.8.1 Performing page erase by SPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27.8.2 Filling the temporary buffer (page loading) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27.8.3 Performing a page write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27.8.4 Using the SPM interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27.8.5 Consideration while updating BLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27.8.6 Prevent reading the RWW section during self-programming . . . . . . . . . . . . . . . . . . . . . 27.8.7 Setting the boot loader lock bits by SPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27.8.8 EEPROM write prevents writing to SPMCSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27.8.9 Reading the fuse and lock bits from software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27.8.10 Preventing flash corruption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27.8.11 Programming time for flash when using SPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27.8.12 Simple assembly code example for a boot loader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27.8.13 Atmel ATmega88 boot loader parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27.8.14 Atmel ATmega168 boot loader parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27.9.1 SPMCSR - Store program memory control and status register . . . . . . . . . . . . . . . . . . . 275 275 275 275 275 276 276 276 278 279 280 281 282 282 282 282 282 282 283 283 283 284 285 285 287 288 290 290 ix 2545U-AVR-11/2015 ATmega48/88/168 28. Memory programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 28.1 28.2 28.3 28.4 28.5 28.6 28.7 28.8 Program and data memory lock bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fuse bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28.2.1 Latching of fuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Signature bytes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Calibration byte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Parallel programming parameters, pin mapping, and commands . . . . . . . . . . . . . . . . . . . . . . . . . 28.6.1 Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Parallel programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28.7.1 Enter programming mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28.7.2 Considerations for efficient programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28.7.3 Chip erase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28.7.4 Programming the flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28.7.5 Programming the EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28.7.6 Reading the flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28.7.7 Reading the EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28.7.8 Programming the fuse low bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28.7.9 Programming the fuse high bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28.7.10 Programming the extended fuse bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28.7.11 Programming the lock bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28.7.12 Reading the fuse and lock bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28.7.13 Reading the signature bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28.7.14 Reading the calibration byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28.7.15 Parallel programming characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Serial downloading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28.8.1 Serial programming pin mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28.8.2 Serial programming algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28.8.3 Serial programming instruction set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28.8.4 SPI serial programming characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 293 295 295 295 296 296 296 298 298 299 299 299 301 302 302 303 303 303 304 304 304 305 305 305 306 306 307 309 29. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310 29.1 29.2 29.3 29.4 29.5 29.6 29.7 29.8 29.9 Absolute maximum ratings* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Speed grades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29.4.1 Calibrated internal RC oscillator accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29.4.2 External clock drive waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29.4.3 External clock drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . System and reset characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-wire serial interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPI timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Parallel programming characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310 310 312 313 313 313 313 314 315 316 318 319 30. Typical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 30.1 30.2 30.3 30.4 Active supply current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Idle supply current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Supply current of I/O modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power-down supply current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 325 328 330 x 2545U-AVR-11/2015 ATmega48/88/168 30.5 30.6 30.7 30.8 30.9 30.10 30.11 30.12 30.13 Power-save supply current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Standby supply current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin pull-up. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin driver strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin thresholds and hysteresis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BOD thresholds and analog comparator offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Internal oscillator speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Current consumption of peripheral units. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Current consumption in reset and reset pulse width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331 331 332 334 337 340 343 345 348 31. Register summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350 32. Instruction set summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354 33. Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357 33.1 33.2 33.3 Atmel ATmega48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357 Atmel ATmega88 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358 Atmel ATmega168 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359 34. Packaging information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360 34.1 34.2 34.3 34.4 32A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28M1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32M1-A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28P3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360 361 362 363 35. Errata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364 35.1 35.2 35.3 Errata Atmel ATmega48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35.1.1 Rev K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35.1.2 Rev E to J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35.1.3 Rev. D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35.1.4 Rev. C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35.1.5 Rev. B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35.1.6 Rev A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Errata Atmel ATmega88 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35.2.1 Rev K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35.2.2 Rev E to J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35.2.3 Rev. D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35.2.4 Rev. B/C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35.2.5 Rev. A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Errata Atmel ATmega168 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35.3.1 Rev K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35.3.2 Rev D to J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35.3.3 Rev C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35.3.4 Rev B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35.3.5 Rev A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364 364 365 365 365 365 366 368 368 369 369 369 369 371 371 372 372 372 373 36. Datasheet revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375 36.1 36.2 36.3 36.4 Rev. 2545U-11/15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rev. 2545T-04/11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rev. 2545S-07/10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rev. 2545R-07/09 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375 375 375 375 xi 2545U-AVR-11/2015 ATmega48/88/168 36.5 36.6 36.7 36.8 36.9 36.10 36.11 36.12 36.13 36.14 36.15 36.16 36.17 36.18 36.19 36.20 Rev. 2545Q-06/09 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rev. 2545P-02/09. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rev. 2545O-02/09 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rev. 2545N-01/09 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rev. 2545M-09/07 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rev. 2545L-08/07 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rev. 2545K-04/07. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rev. 2545J-12/06 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rev. 2545I-11/06 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rev. 2545H-10/06 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rev. 2545G-06/06 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rev. 2545F-05/05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rev. 2545E-02/05. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rev. 2545D-07/04 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rev. 2545C-04/04 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rev. 2545B-01/04. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375 376 376 376 376 376 377 377 377 377 378 378 378 379 379 379 xii 2545U-AVR-11/2015 (c) 2015 Atmel Corporation. All rights reserved. / Rev. 2545U-AVR-11/2015 Atmel (R), Atmel logo and combinations thereof, Enabling Unlimited Possibilities (R), AVR(R) and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others. Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life. 2545U-AVR-11/2015 Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: Atmel: ATMEGA168-20MQ ATMEGA48-20MMU ATMEGA48V-10MMU ATMEGA168-20AUR ATMEGA168-20MQR ATMEGA168-20MUR ATMEGA168V-10AUR ATMEGA168V-10MUR ATMEGA168V-10MQR ATMEGA48-20MUR ATMEGA48V-10AUR ATMEGA48V-10MUR ATMEGA88-20AUR ATMEGA88-20MUR ATMEGA88V-10AUR ATMEGA88V-10MUR ATmega48V-10AU ATmega48V-10PU ATmega48V-10MU ATmega88V-10AU ATmega88V10PU ATmega88V-10MU ATmega168V-10AU ATmega168V-10PU ATmega168V-10MU ATmega48-20AU ATmega48-20PU ATmega48-20MU ATmega88-20AU ATmega88-20PU ATmega88-20MU ATmega168-20AU ATmega168-20PU ATmega168-20MU ATMEGA168V-10MQ ATMEGA48-20MMH ATMEGA48V-10MMH ATMEGA48V-10MMUR ATMEGA48-20AUR