The information in this document is subject to change without notice. Before using this document, please
confirm that this is the latest version.
Not all devices/types available in every country. Please check with local NEC representative for
availability and additional information.
© 1998
MOS INTEGRATED CIRCUIT
µ
µµ
µ
PD16750
384-OUTPUT TFT-LCD SOURCE DRIVER
(COMPATIBLE WITH 256-GRAY SCALES)
DATA SHEET
Document No. S13719EJ4V0DS00 (4th edition)
Date Published April 2000 NS CP (K)
Printed in Japan
The mar k
shows major revised points.
DESCRIPTION
The
µ
PD16750 is a source driver for TFT-LCDs capable of dealing with displays with 256-gray scales. Data input is
based on digital input configured as 8 bits by 6 dots (2 pixels), which can realize a full-color display of 16,777,216
colors by output of 256 values
γ
-corrected by an internal D/A converter and 8-by-2 external power modules.
Because the output dynamic range is as large as VDD2 0.2 V to VSS2 + 0.2 V, level inversion operation of the LCD’s
common electrode is rendered unnecessary. Also, to be able to deal with dot-line inversion, n-line inversion and
column line inversion when mounted on a single side, this source driver is equipped with a built-in 8-bit D/A converter
circuit whose odd output pins and even output pins respectively output gray scale voltages of differing polarity.
Assuring a maximum clock frequency of 40 MHz when driving at 3.0 V, this driver is applicable to XGA-standard TFT-
LCD panels and SXGA TFT-LCD panels. This driver is applicable to SXGA TFT-LCD panels by input display signal 2
systems (Clock divide).
FEATURES
CMOS level input
384 outputs
Input of 8 bits (gradation data) by 6 dots
Capable of outputting 256 values by means of 8-by-2 external power modules (16 units) and a D/A converter
Output dynamic range: VDD2 – 0.2 V to VSS2 + 0.2 V
High-speed data transfer: fCLK = 40 MHz (internal data transfer speed when operating at 3.0 V)
Apply for dot-line inversion, n-line inversion and column line inversion
Output voltage polarity inversion function (POL)
Display data inversion function (POL21/22)
Logic power supply voltage (VDD1) : 3.3 V ± 0.3 V
Driver power supply voltage (VDD2) : 9.0 V ± 0.5 V
Low power control function (LPC)
ORDERING INFORMATION
Part Number Package
µ
PD16750N-xxx TCP (TAB package)
Remark The TCP’s external shape is customized. To order the required shape, please contact one of our sales
representatives.
Data Sheet S13719EJ4V0DS00
2
µ
µµ
µ
PD16750
1. BLOCK DIAGRAM
64-bit bidirectional shift register
C
1
C
2
C
63
C
64
Data register
Latch
Level shifter
D/A converter
Voltage follower output
S
1
S
2
S
3
S
384
V
0
- V
15
POL
D
00
- D
07
D
10
- D
17
D
20
- D
27
STHR
R,/L
CLK
STB
STHL
V
DD1
V
SS1
V
DD2
V
SS2
POL21
POL22
D
30
- D
37
D
40
- D
47
D
50
- D
57
LPC
Remark /xxx indicates active low signal.
2. RELATIONSHIP BETWEEN OUTPUT CIRCUIT AND D/A CONVERTER
V
0
V
7
V
8
V
15
··········
8
8
S
1
S
2
S
383
S
384
8-bit D/A converter
Multi-
plexer
POL
Data Sheet S13719EJ4V0DS00 3
µ
µµ
µ
PD16750
3. PIN CONFIGURATION (
µ
µµ
µ
PD16750N-xxx)
S384
S383
VSS2 S382
VDD2
V14
V12
V10
V8
V6
V4
V2
V0
R,/L
D50
D51
D52
D53
D54
D55
D56
D57
D40
D41
D42
D43
D44
D45
D46
D47
D30
D31
D32
D33
D34
D35
D36
D37
POL21
POL22
POL
STB
STHL
VDD1
CLK
VSS1
LPC
STHR
D20
D21
D22
D23
D24
D25
D26
D27
D10
D11
D12
D13
D14
D15
D16
D17
D00
D01
D02
D03
D04
D05
D06
D07
V1
V3
V5
V7
V9
V11 S3
V13 S2
V15 S1
VDD2
VSS2
Copper Foi l
Surface
Remark This figure does not specify the TCP package.
Data Sheet S13719EJ4V0DS00
4
µ
µµ
µ
PD16750
4. PIN FUNCTIONS
Pin Symbol Pin Nam e Descript i on
S1 to S384 Driver output The D/A convert ed 256-gray-scale analog vol tage is out put .
D00 to D07
D10 to D17
D20 to D27
D30 to D37
D40 to D47
D50 to D57
Display dat a i nput The display dat a i s input with a width of 48 bi ts, vi z. , the gray scale data (8 bit s) by 6 dots (2
pixels).
DX0: LSB, DX7: MSB
R,/L Shift di rection c ontrol
input
These refer to the start pulse input/output pi ns when driver ICs are connec t ed i n cascade.
The shift di rections of the shi f t regist ers are as fol l ows.
R,/L = H : STHR input, S1 S384, STHL output
R,/L = L : STHL input, S384 S1, STHR output
STHR Right shift start pul se
input/output
R,/L = H : Becomes the start pul se input pin.
R,/L = L : Becomes the start pul se output pi n.
STHL Left shift start pulse
input/output
R,/L = H : Becomes the start pul se output pi n.
R,/L = L : Becomes the start pul se input pin.
CLK Shift clock i nput Refers to the shif t regist er’ s shift clock i nput . The display data is incorporated int o t he data
register at the rising edge of the 64th clock af ter the st art pulse input, the start pulse output
reaches t he hi gh l evel , thus becoming t he start pulse of the next-level dri ver.
STB Latch input The contents of the data regist er are t ransferred to t he l atch ci rcuit at t he ri sing edge. A nd,
at the fal l i ng edge, the gray scale voltage i s supplied t o the driver. It is nec essary to ensure
input of one pul s e per hori zontal period.
POL Polarit y i nput POL = L : The S2n–1 output uses V0 to V7 as the referenc e supply. The S 2n out put uses V 8
to V15 as the reference supply.
POL = H : The S2n–1 output uses V8 to V15 as the reference suppl y. The S2n output uses V0
to V7 as the reference s uppl y.
S2n-1 indicates the odd out put: and S2n indi cates the even output. Input of t he P O L signal is
allowed the setup t i me(tPOL-STB) with respect t o S T B’s rising edge.
POL21
POL22
Data invers i on Data inversi on can invert when dis pl ay data is l oaded.
POL21/22 = H : Data inversion l oads display data after i nvert i ng i t.
POL21/22 = L : Data inversion does not invert i nput data.
POL21: D00 to D07, D10 to D17, D20 to D27
POL22: D30 to D37, D40 to D47, D50 to D57
LPC Low power control
input
The output buffer constant current source is bl ocked, reducing current c onsumption. I n l ower
power mode (LPC = L: DC-level i nput possi bl e), the ordinary st atic c urrent consumption c an
be reduced by approx. 33 %.
V0 to V15
γ
-correct ed power
supplies
Input the
γ
-correct ed power suppli es from outside by us i ng operat i onal amplifier. Make s ure
to m ai nt ai n the following relat i onships. Duri ng t he gray scale voltage output, be sure to keep
the gray sc al e l evel power suppl y at a const ant level.
VDD2 0.2 V > V0 > V1 > V2 > V3 > V4 > V5 > V6 > V7 > 0.5 V DD2
0.5 VDD2 0.3 V > V 8 > V9 > V10 > V 11 > V 12 > V 13 > V 14 > V 15 > V SS2 + 0.2 V
VDD1 Logic power supply 3.3 V ± 0.3 V
VDD2 Driver power supply 9.0 V ± 0. 5 V
VSS1 Logic ground Grounding
VSS2 Driver ground Grounding
Data Sheet S13719EJ4V0DS00 5
µ
µµ
µ
PD16750
Cautions 1. The power start sequence must be VDD1, logic input, and VDD2 & V0 to V15 in that order.
Reverse this sequence to shut down (Simultaneous power application to VDD2 and V0 to V15 is
possible.).
2. To stabilize the supply voltage, please be sure to insert a 0.1-
µ
µµ
µ
F bypass capacitor between
VDD1-VSS1 and VDD2-VSS2. Furthermore, for increased precision of the D/A converter, insertion
of a bypass capacitor of about 0.01
µ
µµ
µ
F is also advised between the
γ
γγ
γ
-corrected power supply
terminals (V0, V1, V2,....., V15) and VSS2.
Data Sheet S13719EJ4V0DS00
6
µ
µµ
µ
PD16750
5. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT VOLTAGE VALUE
This product incorporates a 8-bit D/A converter whose odd output pins and even output pins output respectively gray
scale voltages of differing polarity with respect to the LCD’s counter electrode (common electrode) voltage. The D/A
converter consists of ladder resistors.
Figure 51 shows the relationship between the driving voltages such as liquid-crystal driving voltages VDD2 and VSS2,
common electrode potential VCOM, and
γ
-corrected voltages V0 to V15 and the input data. Be sure to maintain the
voltage relationships of VDD2 0.2 V > V0 > V1 > V2 > V3 > V4 > V5 > V6 > V7 > 0.5 VDD2,
0.5 VDD2 0.3 V > V8 > V9 > V10 > V11 > V12 > V13 > V14 > V15 > VSS2 + 0.2 V
Figures 52 and 53 show the relationship between the input data and the output voltage. This driver IC is designed
for only single-sided mounting. Therefore, please do not use it for
γ
-corrected power supply level inversion in
double-sided mounting.
Figure 5–1. Relationship between Input Data and
γ
γγ
γ
-corrected Power Supplies
V
1
V
2
V
3
V
4
V
SS2
00 20 40 80 C0 E0 FF
V
0
V
10
V
7
V
11
V
DD2
64
32
32
V
5
V
6
32
32
E0
V
12
V
15
64
64
32
32
32
32
FE
V
13
V
14
Split interval
64
0.3 V V
8
0.5 V
DD2
0.2 V
V
9
0.2 V
Input data (HEX)
Data Sheet S13719EJ4V0DS00 7
µ
µµ
µ
PD16750
Figure 5–2. Relationship between Input Data and Output Voltage (1/4)
VDD2 – 0.2 V > V0 > V1 > V2 > V3 > V4 > V5 > V6 > V7 > 0.5 VDD2, POL21/22 = L
Data DX7 DX6 DX5 DX4 DX3 DX2 DX1 DX0 Output voltage rn ()
00H00000000 V
0'V0r0 400.0
01H00000001 V
1'V1+(V0-V1) X 3465.0 / 3865 r1 362.5
02H00000010 V2'V1+(V0-V1) X 3102.5 / 3865 r2 325.0
03H00000011 V3'V1+(V0-V1) X 2777.5 / 3865 r3 287.5
04H00000100 V4'V1+(V0-V1) X 2490.0 / 3865 r4 250.0
05H00000101 V5'V1+(V0-V1) X 2240.0 / 3865 r5 222.5
06H00000110 V6'V1+(V0-V1) X 2017.5 / 3865 r6 195.0
07H00000111 V7'V1+(V0-V1) X 1822.5 / 3865 r7 170.0
08H00001000 V8'V1+(V0-V1) X 1652.5 / 3865 r8 145.0
09H00001001 V9'V1+(V0-V1) X 1507.5 / 3865 r9 120.0
0AH00001010V10'V1+(V0-V1) X 1387.5 / 3865 r10 120.0
0BH00001011V11'V1+(V0-V1) X 1267.5 / 3865 r11 120.0
0CH00001100V12'V1+(V0-V1) X 1147.5 / 3865 r12 95.0
0DH00001101V13'V1+(V0-V1) X 1052.5 / 3865 r13 95.0
0EH00001110V14'V1+(V0-V1) X 957.5 / 3865 r14 95.0
0FH00001111V15'V1+(V0-V1) X 862.5 / 3865 r15 75.0
10H00010000V16'V1+(V0-V1) X 787.5 / 3865 r16 75.0
11H00010001V17'V1+(V0-V1) X 712.5 / 3865 r17 75.0
12H00010010V18'V1+(V0-V1) X 637.5 / 3865 r18 62.5
13H00010011V19'V1+(V0-V1) X 575.0 / 3865 r19 62.5
14H00010100V20'V1+(V0-V1) X 512.5 / 3865 r20 62.5
15H00010101V21'V1+(V0-V1) X 450.0 / 3865 r21 50.0
16H00010110V22'V1+(V0-V1) X 400.0 / 3865 r22 50.0
17H00010111V23'V1+(V0-V1) X 350.0 / 3865 r23 50.0
18H00011000V24'V1+(V0-V1) X 300.0 / 3865 r24 37.5
19H00011001V25'V1+(V0-V1) X 262.5 / 3865 r25 37.5
1AH00011010V26'V1+(V0-V1) X 225.0 / 3865 r26 37.5
1BH00011011V27'V1+(V0-V1) X 187.5 / 3865 r27 37.5
1CH00011100V28'V1+(V0-V1) X 150.0 / 3865 r28 37.5
1DH00011101V29'V1+(V0-V1) X 112.5 / 3865 r29 37.5
1EH00011110V30'V1+(V0-V1) X 75.0 / 3865 r30 37.5
1FH00011111V31'V1+(V0-V1) X 37.5 / 3865 r31 37.5
20H00100000V32'V1r32 35.0
21H00100001V33'V2+(V1-V2) X 965.0 / 1000 r33 35.0
22H00100010V34'V2+(V1-V2) X 930.0 / 1000 r34 35.0
23H00100011V35'V2+(V1-V2) X 895.0 / 1000 r35 35.0
24H00100100V36'V2+(V1-V2) X 860.0 / 1000 r36 35.0
25H00100101V37'V2+(V1-V2) X 825.0 / 1000 r37 35.0
26H00100110V38'V2+(V1-V2) X 790.0 / 1000 r38 35.0
27H00100111V39'V2+(V1-V2) X 755.0 / 1000 r39 35.0
28H00101000V40'V2+(V1-V2) X 720.0 / 1000 r40 32.5
29H00101001V41'V2+(V1-V2) X 687.5 / 1000 r41 32.5
2AH00101010V42'V2+(V1-V2) X 655.0 / 1000 r42 32.5
2BH00101011V43'V2+(V1-V2) X 622.5 / 1000 r43 32.5
2CH00101100V44'V2+(V1-V2) X 590.0 / 1000 r44 32.5
2DH00101101V45'V2+(V1-V2) X 557.5 / 1000 r45 32.5
2EH00101110V46'V2+(V1-V2) X 525.0 / 1000 r46 32.5
2FH00101111V47'V2+(V1-V2) X 492.5 / 1000 r47 32.5
30H00110000V48'V2+(V1-V2) X 460.0 / 1000 r48 30.0
31H00110001V49'V2+(V1-V2) X 430.0 / 1000 r49 30.0
32H00110010V50'V2+(V1-V2) X 400.0 / 1000 r50 30.0
33H00110011V51'V2+(V1-V2) X 370.0 / 1000 r51 30.0
34H00110100V52'V2+(V1-V2) X 340.0 / 1000 r52 30.0
35H00110101V53'V2+(V1-V2) X 310.0 / 1000 r53 30.0
36H00110110V54'V2+(V1-V2) X 280.0 / 1000 r54 30.0
37H00110111V55'V2+(V1-V2) X 250.0 / 1000 r55 30.0
38H00111000V56'V2+(V1-V2) X 220.0 / 1000 r56 27.5
39H00111001V57'V2+(V1-V2) X 192.5 / 1000 r57 27.5
3AH00111010V58'V2+(V1-V2) X 165.0 / 1000 r58 27.5
3BH00111011V59'V2+(V1-V2) X 137.5 / 1000 r59 27.5
3CH00111100V60'V2+(V1-V2) X 110.0 / 1000 r60 27.5
3DH00111101V61'V2+(V1-V2) X 82.5 / 1000 r61 27.5
3EH00111110V62'V2+(V1-V2) X 55.0 / 1000 r62 27.5
3FH00111111V63'V2+(V1-V2) X 27.5 / 1000 r63 27.5
Caution There is no connection between V7 and V8 in the chip.
V6
V7V255
V1
V0
V1
V2
V3
V31
V32
V33
V223
V224
V225
V252
V253
V254
V0r0
r1
r2
r3
r30
r31
r32
r33
r222
r223
V5r224
r225
r251
r252
r253
r254
Data Sheet S13719EJ4V0DS00
8
µ
µµ
µ
PD16750
Figure 5–2. Relationship between Input Data and Output Voltage (2/4)
VDD2 – 0.2 V > V0 > V1 > V2 > V3 > V4 > V5 > V6 > V7 > 0.5 VDD2, POL21/22 = L
Data DX7 DX6 DX5 DX4 DX3 DX2 DX1 DX0 Output voltage rn ()
40H01000000V64'V
2r64 25.0
41H01000001V65'V
3+(V2-V3) X 1575 / 1600 r65 25.0
42H01000010V66'V
3+(V2-V3) X 1550 / 1600 r66 25.0
43H01000011V67'V
3+(V2-V3) X 1525 / 1600 r67 25.0
44H01000100V68'V
3+(V2-V3) X 1500 / 1600 r68 25.0
45H01000101V69'V
3+(V2-V3) X 1475 / 1600 r69 25.0
46H01000110V70'V
3+(V2-V3) X 1450 / 1600 r70 25.0
47H01000111V71'V
3+(V2-V3) X 1425 / 1600 r71 25.0
48H01001000V72'V
3+(V2-V3) X 1400 / 1600 r72 25.0
49H01001001V73'V
3+(V2-V3) X 1375 / 1600 r73 25.0
4AH01001010V74'V
3+(V2-V3) X 1350 / 1600 r74 25.0
4BH01001011V75'V
3+(V2-V3) X 1325 / 1600 r75 25.0
4CH01001100V76'V
3+(V2-V3) X 1300 / 1600 r76 25.0
4DH01001101V77'V
3+(V2-V3) X 1275 / 1600 r77 25.0
4EH01001110V78'V
3+(V2-V3) X 1250 / 1600 r78 25.0
4FH01001111V79'V
3+(V2-V3) X 1225 / 1600 r79 25.0
50H01010000V80'V
3+(V2-V3) X 1200 / 1600 r80 25.0
51H01010001V81'V
3+(V2-V3) X 1175 / 1600 r81 25.0
52H01010010V82'V
3+(V2-V3) X 1150 / 1600 r82 25.0
53H01010011V83'V
3+(V2-V3) X 1125 / 1600 r83 25.0
54H01010100V84'V
3+(V2-V3) X 1100 / 1600 r84 25.0
55H01010101V85'V
3+(V2-V3) X 1075 / 1600 r85 25.0
56H01010110V86'V
3+(V2-V3) X 1050 / 1600 r86 25.0
57H01010111V87'V
3+(V2-V3) X 1025 / 1600 r87 25.0
58H01011000V88'V
3+(V2-V3) X 1000 / 1600 r88 25.0
59H01011001V89'V
3+(V2-V3) X 975 / 1600 r89 25.0
5AH01011010V90'V
3+(V2-V3) X 950 / 1600 r90 25.0
5BH01011011V91'V
3+(V2-V3) X 925 / 1600 r91 25.0
5CH01011100V92'V
3+(V2-V3) X 900 / 1600 r92 25.0
5DH01011101V93'V
3+(V2-V3) X 875 / 1600 r93 25.0
5EH01011110V94'V
3+(V2-V3) X 850 / 1600 r94 25.0
5FH01011111V95'V
3+(V2-V3) X 825 / 1600 r95 25.0
60H01100000V96'V
3+(V2-V3) X 800 / 1600 r96 25.0
61H01100001V97'V
3+(V2-V3) X 775 / 1600 r97 25.0
62H01100010V98'V
3+(V2-V3) X 750 / 1600 r98 25.0
63H01100011V99'V
3+(V2-V3) X 725 / 1600 r99 25.0
64H01100100V100'V
3+(V2-V3) X 700 / 1600 r100 25.0
65H01100101V101'V
3+(V2-V3) X 675 / 1600 r101 25.0
66H01100110V102'V
3+(V2-V3) X 650 / 1600 r102 25.0
67H01100111V103'V
3+(V2-V3) X 625 / 1600 r103 25.0
68H01101000V104'V
3+(V2-V3) X 600 / 1600 r104 25.0
69H01101001V105'V
3+(V2-V3) X 575 / 1600 r105 25.0
6AH01101010V106'V
3+(V2-V3) X 550 / 1600 r106 25.0
6BH01101011V107'V
3+(V2-V3) X 525 / 1600 r107 25.0
6CH01101100V108'V
3+(V2-V3) X 500 / 1600 r108 25.0
6DH01101101V109'V
3+(V2-V3) X 475 / 1600 r109 25.0
6EH01101110V110'V
3+(V2-V3) X 450 / 1600 r110 25.0
6FH01101111V111'V
3+(V2-V3) X 425 / 1600 r111 25.0
70H01110000V112'V
3+(V2-V3) X 400 / 1600 r112 25.0
71H01110001V113'V
3+(V2-V3) X 375 / 1600 r113 25.0
72H01110010V114'V
3+(V2-V3) X 350 / 1600 r114 25.0
73H01110011V115'V
3+(V2-V3) X 325 / 1600 r115 25.0
74H01110100V116'V
3+(V2-V3) X 300 / 1600 r116 25.0
75H01110101V117'V
3+(V2-V3) X 275 / 1600 r117 25.0
76H01110110V118'V
3+(V2-V3) X 250 / 1600 r118 25.0
77H01110111V119'V
3+(V2-V3) X 225 / 1600 r119 25.0
78H01111000V120'V
3+(V2-V3) X 200 / 1600 r120 25.0
79H01111001V121'V
3+(V2-V3) X 175 / 1600 r121 25.0
7AH01111010V122'V
3+(V2-V3) X 150 / 1600 r122 25.0
7BH01111011V123'V
3+(V2-V3) X 125 / 1600 r123 25.0
7CH01111100V124'V
3+(V2-V3) X 100 / 1600 r124 25.0
7DH01111101V125'V
3+(V2-V3) X 75 / 1600 r125 25.0
7EH01111110V126'V
3+(V2-V3) X 50 / 1600 r126 25.0
7FH01111111V127'V
3+(V2-V3) X 25 / 1600 r127 25.0
Caution There is no connection between V7 and V8 in the chip.
V6
V7V255
V1
V0
V1
V2
V3
V31
V32
V33
V223
V224
V225
V252
V253
V254
V0r0
r1
r2
r3
r30
r31
r32
r33
r222
r223
V5r224
r225
r251
r252
r253
r254
Data Sheet S13719EJ4V0DS00 9
µ
µµ
µ
PD16750
Figure 5–2. Relationship between Input Data and Output Voltage (3/4)
VDD2 – 0.2 V > V0 > V1 > V2 > V3 > V4 > V5 > V6 > V7 > 0.5 VDD2, POL21/22 = L
Data DX7 DX6 DX5 DX4 DX3 DX2 DX1 DX0 Output voltage rn ()
80H10000000V128'V
3r128 25.0
81H10000001V129'V
4+(V3-V4) X 1875.0 / 1900.0 r129 25.0
82H10000010V130'V
4+(V3-V4) X 1850.0 / 1900.0 r130 25.0
83H10000011V131'V
4+(V3-V4) X 1825.0 / 1900.0 r131 25.0
84H10000100V132'V
4+(V3-V4) X 1800.0 / 1900.0 r132 25.0
85H10000101V133'V
4+(V3-V4) X 1775.0 / 1900.0 r133 25.0
86H10000110V134'V
4+(V3-V4) X 1750.0 / 1900.0 r134 25.0
87H10000111V135'V
4+(V3-V4) X 1725.0 / 1900.0 r135 25.0
88H10001000V136'V
4+(V3-V4) X 1700.0 / 1900.0 r136 25.0
89H10001001V137'V
4+(V3-V4) X 1675.0 / 1900.0 r137 25.0
8AH10001010V138'V
4+(V3-V4) X 1650.0 / 1900.0 r138 25.0
8BH10001011V139'V
4+(V3-V4) X 1625.0 / 1900.0 r139 25.0
8CH10001100V140'V
4+(V3-V4) X 1600.0 / 1900.0 r140 25.0
8DH10001101V141'V
4+(V3-V4) X 1575.0 / 1900.0 r141 25.0
8EH10001110V142'V
4+(V3-V4) X 1550.0 / 1900.0 r142 25.0
8FH10001111V143'V
4+(V3-V4) X 1525.0 / 1900.0 r143 25.0
90H10010000V144'V
4+(V3-V4) X 1500.0 / 1900.0 r144 25.0
91H10010001V145'V
4+(V3-V4) X 1475.0 / 1900.0 r145 25.0
92H10010010V146'V
4+(V3-V4) X 1450.0 / 1900.0 r146 25.0
93H10010011V147'V
4+(V3-V4) X 1425.0 / 1900.0 r147 25.0
94H10010100V148'V
4+(V3-V4) X 1400.0 / 1900.0 r148 25.0
95H10010101V149'V
4+(V3-V4) X 1375.0 / 1900.0 r149 25.0
96H10010110V150'V
4+(V3-V4) X 1350.0 / 1900.0 r150 25.0
97H10010111V151'V
4+(V3-V4) X 1325.0 / 1900.0 r151 25.0
98H10011000V152'V
4+(V3-V4) X 1300.0 / 1900.0 r152 27.5
99H10011001V153'V
4+(V3-V4) X 1272.5 / 1900.0 r153 27.5
9AH10011010V154'V
4+(V3-V4) X 1245.0 / 1900.0 r154 27.5
9BH10011011V155'V
4+(V3-V4) X 1217.5 / 1900.0 r155 27.5
9CH10011100V156'V
4+(V3-V4) X 1190.0 / 1900.0 r156 27.5
9DH10011101V157'V
4+(V3-V4) X 1162.5 / 1900.0 r157 27.5
9EH10011110V158'V
4+(V3-V4) X 1135.0 / 1900.0 r158 27.5
9FH10011111V159'V
4+(V3-V4) X 1107.5 / 1900.0 r159 27.5
A0H10100000V160'V
4+(V3-V4) X 1080.0 1900.0 r160 30.0
A1H10100001V161'V
4+(V3-V4) X 1050.0 / 1900.0 r161 30.0
A2H10100010V162'V
4+(V3-V4) X 1020.0 / 1900.0 r162 30.0
A3H10100011V163'V
4+(V3-V4) X 990.0 / 1900.0 r163 30.0
A4H10100100V164'V
4+(V3-V4) X 960.0 / 1900.0 r164 30.0
A5H10100101V165'V
4+(V3-V4) X 930.0 / 1900.0 r165 30.0
A6H10100110V166'V
4+(V3-V4) X 900.0 / 1900.0 r166 30.0
A7H10100111V167'V
4+(V3-V4) X 870.0 / 1900.0 r167 30.0
A8H10101000V168'V
4+(V3-V4) X 840.0 / 1900.0 r168 32.5
A9H10101001V169'V
4+(V3-V4) X 807.5 / 1900.0 r169 32.5
AAH10101010V170'V
4+(V3-V4) X 775.0 / 1900.0 r170 32.5
ABH10101011V171'V
4+(V3-V4) X 742.5 / 1900.0 r171 32.5
ACH10101100V172'V
4+(V3-V4) X 710.0 / 1900.0 r172 32.5
ADH10101101V173'V
4+(V3-V4) X 677.5 / 1900.0 r173 32.5
AEH10101110V174'V
4+(V3-V4) X 645.0 / 1900.0 r174 32.5
AFH10101111V175'V
4+(V3-V4) X 612.5 / 1900.0 r175 32.5
B0H10110000V176'V
4+(V3-V4) X 580.0 / 1900.0 r176 35.0
B1H10110001V177'V
4+(V3-V4) X 545.0 / 1900.0 r177 35.0
B2H10110010V178'V
4+(V3-V4) X 510.0 / 1900.0 r178 35.0
B3H10110011V179'V
4+(V3-V4) X 475.0 / 1900.0 r179 35.0
B4H10110100V180'V
4+(V3-V4) X 440.0 / 1900.0 r180 35.0
B5H10110101V181'V
4+(V3-V4) X 405.0 / 1900.0 r181 35.0
B6H10110110V182'V
4+(V3-V4) X 370.0 / 1900.0 r182 35.0
B7H10110111V183'V
4+(V3-V4) X 335.0 / 1900.0 r183 35.0
B8H10111000V184'V
4+(V3-V4) X 300.0 / 1900.0 r184 37.5
B9H10111001V185'V
4+(V3-V4) X 262.5 / 1900.0 r185 37.5
BAH10111010V186'V
4+(V3-V4) X 225.0 / 1900.0 r186 37.5
BBH10111011V187'V
4+(V3-V4) X 187.5 / 1900.0 r187 37.5
BCH10111100V188'V
4+(V3-V4) X 150.0 / 1900.0 r188 37.5
BDH10111101V189'V
4+(V3-V4) X 112.5 / 1900.0 r189 37.5
BEH10111110V190'V
4+(V3-V4) X 75.0 / 1900.0 r190 37.5
BFH10111111V191'V
4+(V3-V4) X 37.5 / 1900.0 r191 37.5
Caution There is no connection between V7 and V8 in the chip.
V6
V7V255
V1
V0
V1
V2
V3
V31
V32
V33
V223
V224
V225
V252
V253
V254
V0r0
r1
r2
r3
r30
r31
r32
r33
r222
r223
V5r224
r225
r251
r252
r253
r254
Data Sheet S13719EJ4V0DS00
10
µ
µµ
µ
PD16750
Figure 5–2. Relationship between Input Data and Output Voltage (4/4)
VDD2 – 0.2 V > V0 > V1 > V2 > V3 > V4 > V5 > V6 > V7 > 0.5 VDD2
Data DX7 DX6 DX5 DX4 DX3 DX2 DX1 DX0 Output voltage rn ()
C0H11000000V192'V
4r192 42.5
C1H11000001V193'V
5+(V4-V5) X 1557.5 / 1600.0 r193 42.5
C2H11000010V194'V
5+(V4-V5) X 1515.0 / 1600.0 r194 42.5
C3H11000011V195'V
5+(V4-V5) X 1472.5 / 1600.0 r195 42.5
C4H11000100V196'V
5+(V4-V5) X 1430.0 / 1600.0 r196 42.5
C5H11000101V197'V
5+(V4-V5) X 1387.5 / 1600.0 r197 42.5
C6H11000110V198'V
5+(V4-V5) X 1345.0 / 1600.0 r198 42.5
C7H11000111V199'V
5+(V4-V5) X 1302.5 / 1600.0 r199 42.5
C8H11001000V200'V
5+(V4-V5) X 1260.0 / 1600.0 r200 47.5
C9H11001001V201'V
5+(V4-V5) X 1212.5 / 1600.0 r201 47.5
CAH11001010V202'V
5+(V4-V5) X 1165.0 / 1600.0 r202 47.5
CBH11001011V203'V
5+(V4-V5) X 1117.5 / 1600.0 r203 47.5
CCH11001100V204'V
5+(V4-V5) X 1070.0 / 1600.0 r204 47.5
CDH11001101V205'V
5+(V4-V5) X 1022.5 / 1600.0 r205 47.5
CEH11001110V206'V
5+(V4-V5) X 975.0 / 1600.0 r206 47.5
CFH11001111V207'V
5+(V4-V5) X 927.5 / 1600.0 r207 47.5
D0H11010000V208'V
5+(V4-V5) X 880.0 / 1600.0 r208 52.5
D1H11010001V209'V
5+(V4-V5) X 827.5 / 1600.0 r209 52.5
D2H11010010V210'V
5+(V4-V5) X 775.0 / 1600.0 r210 52.5
D3H11010011V211'V
5+(V4-V5) X 722.5 / 1600.0 r211 52.5
D4H11010100V212'V
5+(V4-V5) X 670.0 / 1600.0 r212 52.5
D5H11010101V213'V
5+(V4-V5) X 617.5 / 1600.0 r213 52.5
D6H11010110V214'V
5+(V4-V5) X 565.0 / 1600.0 r214 52.5
D7H11010111V215'V
5+(V4-V5) X 512.5 / 1600.0 r215 52.5
D8H11011000V216'V
5+(V4-V5) X 460.0 / 1600.0 r216 57.5
D9H11011001V217'V
5+(V4-V5) X 402.5 / 1600.0 r217 57.5
DAH11011010V218'V
5+(V4-V5) X 345.0 / 1600.0 r218 57.5
DBH11011011V219'V
5+(V4-V5) X 287.5 / 1600.0 r219 57.5
DCH11011100V220'V
5+(V4-V5) X 230.0 / 1600.0 r220 57.5
DDH11011101V221'V
5+(V4-V5) X 172.5 / 1600.0 r221 57.5
DEH11011110V222'V
5+(V4-V5) X 115.0 / 1600.0 r222 57.5
DFH11011111V223'V
5+(V4-V5) X 57.5 / 1600.0 r223 57.5
E0H11100000V224'V
5r224 57.5
E1H11100001V225'V
6+(V5-V6) X 4630.0 / 4687.5 r225 70.0
E2H11100010V226'V
6+(V5-V6) X 4560.0 / 4687.5 r226 70.0
E3H11100011V227'V
6+(V5-V6) X 4490.0 / 4687.5 r227 70.0
E4H11100100V228'V
6+(V5-V6) X 4420.0 / 4687.5 r228 82.5
E5H11100101V229'V
6+(V5-V6) X 4337.5 / 4687.5 r229 82.5
E6H11100110V230'V
6+(V5-V6) X 4255.0 / 4687.5 r230 82.5
E7H11100111V231'V
6+(V5-V6) X 4172.5 / 4687.5 r231 95.0
E8H11101000V232'V
6+(V5-V6) X 4077.5 / 4687.5 r232 95.0
E9H11101001V233'V
6+(V5-V6) X 3982.5 / 4687.5 r233 95.0
EAH11101010V234'V
6+(V5-V6) X 3887.5 / 4687.5 r234 112.5
EBH11101011V235'V
6+(V5-V6) X 3775.0 / 4687.5 r235 112.5
ECH11101100V236'V
6+(V5-V6) X 3662.5 / 4687.5 r236 112.5
EDH11101101V237'V
6+(V5-V6) X 3550.0 / 4687.5 r237 130.0
EEH11101110V238'V
6+(V5-V6) X 3420.0 / 4687.5 r238 130.0
EFH11101111V239'V
6+(V5-V6) X 3290.0 / 4687.5 r239 147.5
F0H11110000V240'V
6+(V5-V6) X 3142.5 / 4687.5 r240 147.5
F1H11110001V241'V
6+(V5-V6) X 2995.0 / 4687.5 r241 165.0
F2H11110010V242'V
6+(V5-V6) X 2830.0 / 4687.5 r242 165.0
F3H11110011V243'V
6+(V5-V6) X 2665.0 / 4687.5 r243 182.5
F4H11110100V244'V
6+(V5-V6) X 2482.5 / 4687.5 r244 182.5
F5H11110101V245'V
6+(V5-V6) X 2300.0 / 4687.5 r245 200.0
F6H11110110V246'V
6+(V5-V6) X 2100.0 / 4687.5 r246 200.0
F7H11110111V247'V
6+(V5-V6) X 1900.0 / 4687.5 r247 225.0
F8H11111000V248'V
6+(V5-V6) X 1675.0 / 4687.5 r248 225.0
F9H11111001V249'V
6+(V5-V6) X 1450.0 / 4687.5 r249 250.0
FAH11111010V250'V
6+(V5-V6) X 1200.0 / 4687.5 r250 250.0
FBH11111011V251'V
6+(V5-V6) X 950.0 / 4687.5 r251 300.0
FCH11111100V252'V
6+(V5-V6) X 650.0 / 4687.5 r252 300.0
FDH11111101V253'V
6+(V5-V6) X 350.0 / 4687.5 r253 350.0
FEH11111110V254'V
6r254 350.0
FFH11111111V255'V
7TOTAL 15002.5
Caution There is no connection between V7 and V8 in the chip.
V6
V7V255
V1
V0
V1
V2
V3
V31
V32
V33
V223
V224
V225
V252
V253
V254
V0r0
r1
r2
r3
r30
r31
r32
r33
r222
r223
V5r224
r225
r251
r252
r253
r254
Data Sheet S13719EJ4V0DS00 11
µ
µµ
µ
PD16750
Figure 5–3. Relationship between Input Data and Output Voltage (1/4)
0.5 VDD2 – 0.3 V > V8 > V9 > V10 > V11 > V12 > V13 > V14 > V15 > VSS2 + 0.2 V, POL21/22 = L
Data DX7 DX6 DX5 DX4 DX3 DX2 DX1 DX0 Output voltage rn ()
00H00000000 V0"V
15 r0 400.0
01H00000001 V1"V
15+(V14-V15) X 400.0 / 3865 r1 362.5
02H00000010 V2"V
15+(V14-V15) X 762.5 / 3865 r2 325.0
03H00000011 V3"V
15+(V14-V15) X 1087.5 / 3865 r3 287.5
04H00000100 V4"V
15+(V14-V15) X 1375.0 / 3865 r4 250.0
05H00000101 V5"V
15+(V14-V15) X 1625.0 / 3865 r5 222.5
06H00000110 V6"V
15+(V14-V15) X 1847.5 / 3865 r6 195.0
07H00000111 V7"V
15+(V14-V15) X 2042.5 / 3865 r7 170.0
08H00001000 V8"V
15+(V14-V15) X 2212.5 / 3865 r8 145.0
09H00001001 V9"V
15+(V14-V15) X 2357.5 / 3865 r9 120.0
0AH00001010V10"V
15+(V14-V15) X 2477.5 / 3865 r10 120.0
0BH00001011V11"V
15+(V14-V15) X 2597.5 / 3865 r11 120.0
0CH00001100V12"V
15+(V14-V15) X 2717.5 / 3865 r12 95.0
0DH00001101V13"V
15+(V14-V15) X 2812.5 / 3865 r13 95.0
0EH00001110V14"V
15+(V14-V15) X 2907.5 / 3865 r14 95.0
0FH00001111V15"V
15+(V14-V15) X 3002.5 / 3865 r15 75.0
10H00010000V16"V
15+(V14-V15) X 3077.5 / 3865 r16 75.0
11H00010001V17"V
15+(V14-V15) X 3152.5 / 3865 r17 75.0
12H00010010V18"V
15+(V14-V15) X 3227.5 / 3865 r18 62.5
13H00010011V19"V
15+(V14-V15) X 3290.0 / 3865 r19 62.5
14H00010100V20"V
15+(V14-V15) X 3352.5 / 3865 r20 62.5
15H00010101V21"V
15+(V14-V15) X 3415.0 / 3865 r21 50.0
16H00010110V22"V
15+(V14-V15) X 3465.0 / 3865 r22 50.0
17H00010111V23"V
15+(V14-V15) X 3515.0 / 3865 r23 50.0
18H00011000V24"V
15+(V14-V15) X 3565.0 / 3865 r24 37.5
19H00011001V25"V
15+(V14-V15) X 3602.5 / 3865 r25 37.5
1AH00011010V26"V
15+(V14-V15) X 3640.0 / 3865 r26 37.5
1BH00011011V27"V
15+(V14-V15) X 3677.5 / 3865 r27 37.5
1CH00011100V28"V
15+(V14-V15) X 3715.0 / 3865 r28 37.5
1DH00011101V29"V
15+(V14-V15) X 3752.5 / 3865 r29 37.5
1EH00011110V30"V
15+(V14-V15) X 3790.0 / 3865 r30 37.5
1FH00011111V31"V
15+(V14-V15) X 3827.5 / 3865 r31 37.5
20H00100000V32"V
14 r32 35.0
21H00100001V33"V
14+(V13-V14) X 35.0 / 1000 r33 35.0
22H00100010V34"V
14+(V13-V14) X 70.0 / 1000 r34 35.0
23H00100011V35"V
14+(V13-V14) X 105.0 / 1000 r35 35.0
24H00100100V36"V
14+(V13-V14) X 140.0 / 1000 r36 35.0
25H00100101V37"V
14+(V13-V14) X 175.0 / 1000 r37 35.0
26H00100110V38"V
14+(V13-V14) X 210.0 / 1000 r38 35.0
27H00100111V39"V
14+(V13-V14) X 245.0 / 1000 r39 35.0
28H00101000V40"V
14+(V13-V14) X 280.0 / 1000 r40 32.5
29H00101001V41"V
14+(V13-V14) X 312.5 / 1000 r41 32.5
2AH00101010V42"V
14+(V13-V14) X 345.0 / 1000 r42 32.5
2BH00101011V43"V
14+(V13-V14) X 377.5 / 1000 r43 32.5
2CH00101100V44"V
14+(V13-V14) X 410.0 / 1000 r44 32.5
2DH00101101V45"V
14+(V13-V14) X 442.5 / 1000 r45 32.5
2EH00101110V46"V
14+(V13-V14) X 475.0 / 1000 r46 32.5
2FH00101111V47"V
14+(V13-V14) X 507.5 / 1000 r47 32.5
30H00110000V48"V
14+(V13-V14) X 540.0 / 1000 r48 30.0
31H00110001V49"V
14+(V13-V14) X 570.0 / 1000 r49 30.0
32H00110010V50"V
14+(V13-V14) X 600.0 / 1000 r50 30.0
33H00110011V51"V
14+(V13-V14) X 630.0 / 1000 r51 30.0
34H00110100V52"V
14+(V13-V14) X 660.0 / 1000 r52 30.0
35H00110101V53"V
14+(V13-V14) X 690.0 / 1000 r53 30.0
36H00110110V54"V
14+(V13-V14) X 720.0 / 1000 r54 30.0
37H00110111V55"V
14+(V13-V14) X 750.0 / 1000 r55 30.0
38H00111000V56"V
14+(V13-V14) X 780.0 / 1000 r56 27.5
39H00111001V57"V
14+(V13-V14) X 807.5 / 1000 r57 27.5
3AH00111010V58"V
14+(V13-V14) X 835.0 / 1000 r58 27.5
3BH00111011V59"V
14+(V13-V14) X 862.5 / 1000 r59 27.5
3CH00111100V60"V
14+(V13-V14) X 890.0 / 1000 r60 27.5
3DH00111101V61"V
14+(V13-V14) X 917.5 / 1000 r61 27.5
3EH00111110V62"V
14+(V13-V14) X 945.0 / 1000 r62 27.5
3FH00111111V63"V
14+(V13-V14) X 972.5 / 1000 r63 27.5
Caution There is no connection between V7 and V8 in the chip.
V
33
’’
V
0
’’
V
32
’’
V
31
’’
V
2
’’
V
1
’’
V
254
’’
V
253
’’
V
252
’’
V
225
’’
V
224
’’
V
223
’’
r
252
r
251
r
250
r
225
r
224
r
223
r
222
V
10
r
253
V
9
r
33
r
0
r
32
r
31
r
30
r
2
r
1
V
15
V
14
V
251
’’
V
255
’’
V
8
r
254
Data Sheet S13719EJ4V0DS00
12
µ
µµ
µ
PD16750
Figure 5–3. Relationship between Input Data and Output Voltage (2/4)
0.5 VDD2 – 0.3 V > V8 > V9 > V10 > V11 > V12 > V13 > V14 > V15 > VSS2 + 0.2 V, POL21/22 = L
Data DX7 DX6 DX5 DX4 DX3 DX2 DX1 DX0 Output voltage rn ()
40H01000000V64"V
13 r64 25.0
41H01000001V65"V
13+(V12-V13) X 25 / 1600 r65 25.0
42H01000010V66"V
13+(V12-V13) X 50 / 1600 r66 25.0
43H01000011V67"V
13+(V12-V13) X 75 / 1600 r67 25.0
44H01000100V68"V
13+(V12-V13) X 100 / 1600 r68 25.0
45H01000101V69"V
13+(V12-V13) X 125 / 1600 r69 25.0
46H01000110V70"V
13+(V12-V13) X 150 / 1600 r70 25.0
47H01000111V71"V
13+(V12-V13) X 175 / 1600 r71 25.0
48H01001000V72"V
13+(V12-V13) X 200 / 1600 r72 25.0
49H01001001V73"V
13+(V12-V13) X 225 / 1600 r73 25.0
4AH01001010V74"V
13+(V12-V13) X 250 / 1600 r74 25.0
4BH01001011V75"V
13+(V12-V13) X 275 / 1600 r75 25.0
4CH01001100V76"V
13+(V12-V13) X 300 / 1600 r76 25.0
4DH01001101V77"V
13+(V12-V13) X 325 / 1600 r77 25.0
4EH01001110V78"V
13+(V12-V13) X 350 / 1600 r78 25.0
4FH01001111V79"V
13+(V12-V13) X 375 / 1600 r79 25.0
50H01010000V80"V
13+(V12-V13) X 400 / 1600 r80 25.0
51H01010001V81"V
13+(V12-V13) X 425 / 1600 r81 25.0
52H01010010V82"V
13+(V12-V13) X 450 / 1600 r82 25.0
53H01010011V83"V
13+(V12-V13) X 475 / 1600 r83 25.0
54H01010100V84"V
13+(V12-V13) X 500 / 1600 r84 25.0
55H01010101V85"V
13+(V12-V13) X 525 / 1600 r85 25.0
56H01010110V86"V
13+(V12-V13) X 550 / 1600 r86 25.0
57H01010111V87"V
13+(V12-V13) X 575 / 1600 r87 25.0
58H01011000V88"V
13+(V12-V13) X 600 / 1600 r88 25.0
59H01011001V89"V
13+(V12-V13) X 625 / 1600 r89 25.0
5AH01011010V90"V
13+(V12-V13) X 650 / 1600 r90 25.0
5BH01011011V91"V
13+(V12-V13) X 675 / 1600 r91 25.0
5CH01011100V92"V
13+(V12-V13) X 700 / 1600 r92 25.0
5DH01011101V93"V
13+(V12-V13) X 725 / 1600 r93 25.0
5EH01011110V94"V
13+(V12-V13) X 750 / 1600 r94 25.0
5FH01011111V95"V
13+(V12-V13) X 775 / 1600 r95 25.0
60H01100000V96"V
13+(V12-V13) X 800 1600 r96 25.0
61H01100001V97"V
13+(V12-V13) X 825 / 1600 r97 25.0
62H01100010V98"V
13+(V12-V13) X 850 / 1600 r98 25.0
63H01100011V99"V
13+(V12-V13) X 875 / 1600 r99 25.0
64H01100100V100"V
13+(V12-V13) X 900 / 1600 r100 25.0
65H01100101V101"V
13+(V12-V13) X 925 / 1600 r101 25.0
66H01100110V102"V
13+(V12-V13) X 950 / 1600 r102 25.0
67H01100111V103"V
13+(V12-V13) X 975 / 1600 r103 25.0
68H01101000V104"V
13+(V12-V13) X 1000 / 1600 r104 25.0
69H01101001V105"V
13+(V12-V13) X 1025 / 1600 r105 25.0
6AH01101010V106"V
13+(V12-V13) X 1050 / 1600 r106 25.0
6BH01101011V107"V
13+(V12-V13) X 1075 / 1600 r107 25.0
6CH01101100V108"V
13+(V12-V13) X 1100 / 1600 r108 25.0
6DH01101101V109"V
13+(V12-V13) X 1125 / 1600 r109 25.0
6EH01101110V110"V
13+(V12-V13) X 1150 / 1600 r110 25.0
6FH01101111V111"V
13+(V12-V13) X 1175 / 1600 r111 25.0
70H01110000V112"V
13+(V12-V13) X 1200 / 1600 r112 25.0
71H01110001V113"V
13+(V12-V13) X 1225 / 1600 r113 25.0
72H01110010V114"V
13+(V12-V13) X 1250 / 1600 r114 25.0
73H01110011V115"V
13+(V12-V13) X 1275 / 1600 r115 25.0
74H01110100V116"V
13+(V12-V13) X 1300 / 1600 r116 25.0
75H01110101V117"V
13+(V12-V13) X 1325 / 1600 r117 25.0
76H01110110V118"V
13+(V12-V13) X 1350 / 1600 r118 25.0
77H01110111V119"V
13+(V12-V13) X 1375 / 1600 r119 25.0
78H01111000V120"V
13+(V12-V13) X 1400 / 1600 r120 25.0
79H01111001V121"V
13+(V12-V13) X 1425 / 1600 r121 25.0
7AH01111010V122"V
13+(V12-V13) X 1450 / 1600 r122 25.0
7BH01111011V123"V
13+(V12-V13) X 1475 / 1600 r123 25.0
7CH01111100V124"V
13+(V12-V13) X 1500 / 1600 r124 25.0
7DH01111101V125"V
13+(V12-V13) X 1525 / 1600 r125 25.0
7EH01111110V126"V
13+(V12-V13) X 1550 / 1600 r126 25.0
7FH01111111V127"V
13+(V12-V13) X 1575 / 1600 r127 25.0
Caution There is no connection between V7 and V8 in the chip.
V
33
’’
V
0
’’
V
32
’’
V
31
’’
V
2
’’
V
1
’’
V
254
’’
V
253
’’
V
252
’’
V
225
’’
V
224
’’
V
223
’’
r
252
r
251
r
250
r
225
r
224
r
223
r
222
V
10
r
253
V
9
r
33
r
0
r
32
r
31
r
30
r
2
r
1
V
15
V
14
V
251
’’
V
255
’’
V
8
r
254
Data Sheet S13719EJ4V0DS00 13
µ
µµ
µ
PD16750
Figure 5–3. Relationship between Input Data and Output Voltage (3/4)
0.5 VDD2 – 0.3 V > V8 > V9 > V10 > V11 > V12 > V13 > V14 > V15 > VSS2 + 0.2 V, POL21/22 = L
Data DX7 DX6 DX5 DX4 DX3 DX2 DX1 DX0 Output voltage rn ()
80H10000000V128"V
12 r128 25.0
81H10000001V129"V
12+(V11-V12) X 25.0 / 1900.0 r129 25.0
82H10000010V130"V
12+(V11-V12) X 50.0 / 1900.0 r130 25.0
83H10000011V131"V
12+(V11-V12) X 75.0 / 1900.0 r131 25.0
84H10000100V132"V
12+(V11-V12) X 100.0 / 1900.0 r132 25.0
85H10000101V133"V
12+(V11-V12) X 125.0 / 1900.0 r133 25.0
86H10000110V134"V
12+(V11-V12) X 150.0 / 1900.0 r134 25.0
87H10000111V135"V
12+(V11-V12) X 175.0 / 1900.0 r135 25.0
88H10001000V136"V
12+(V11-V12) X 200.0 / 1900.0 r136 25.0
89H10001001V137"V
12+(V11-V12) X 225.0 / 1900.0 r137 25.0
8AH10001010V138"V
12+(V11-V12) X 250.0 / 1900.0 r138 25.0
8BH10001011V139"V
12+(V11-V12) X 275.0 / 1900.0 r139 25.0
8CH10001100V140"V
12+(V11-V12) X 300.0 / 1900.0 r140 25.0
8DH10001101V141"V
12+(V11-V12) X 325.0 / 1900.0 r141 25.0
8EH10001110V142"V
12+(V11-V12) X 350.0 / 1900.0 r142 25.0
8FH10001111V143"V
12+(V11-V12) X 375.0 / 1900.0 r143 25.0
90H10010000V144"V
12+(V11-V12) X 400.0 / 1900.0 r144 25.0
91H10010001V145"V
12+(V11-V12) X 425.0 / 1900.0 r145 25.0
92H10010010V146"V
12+(V11-V12) X 450.0 / 1900.0 r146 25.0
93H10010011V147"V
12+(V11-V12) X 475.0 / 1900.0 r147 25.0
94H10010100V148"V
12+(V11-V12) X 500.0 / 1900.0 r148 25.0
95H10010101V149"V
12+(V11-V12) X 525.0 / 1900.0 r149 25.0
96H10010110V150"V
12+(V11-V12) X 550.0 / 1900.0 r150 25.0
97H10010111V151"V
12+(V11-V12) X 575.0 / 1900.0 r151 25.0
98H10011000V152"V
12+(V11-V12) X 600.0 / 1900.0 r152 27.5
99H10011001V153"V
12+(V11-V12) X 627.5 / 1900.0 r153 27.5
9AH10011010V154"V
12+(V11-V12) X 655.0 / 1900.0 r154 27.5
9BH10011011V155"V
12+(V11-V12) X 682.5 / 1900.0 r155 27.5
9CH10011100V156"V
12+(V11-V12) X 710.0 / 1900.0 r156 27.5
9DH10011101V157"V
12+(V11-V12) X 737.5 / 1900.0 r157 27.5
9EH10011110V158"V
12+(V11-V12) X 765.0 / 1900.0 r158 27.5
9FH10011111V159"V
12+(V11-V12) X 792.5 / 1900.0 r159 27.5
A0H10100000V160"V
12+(V11-V12) X 820.0 1900.0 r160 30.0
A1H10100001V161"V
12+(V11-V12) X 850.0 / 1900.0 r161 30.0
A2H10100010V162"V
12+(V11-V12) X 880.0 / 1900.0 r162 30.0
A3H10100011V163"V
12+(V11-V12) X 910.0 / 1900.0 r163 30.0
A4H10100100V164"V
12+(V11-V12) X 940.0 / 1900.0 r164 30.0
A5H10100101V165"V
12+(V11-V12) X 970.0 / 1900.0 r165 30.0
A6H10100110V166"V
12+(V11-V12) X 1000.0 / 1900.0 r166 30.0
A7H10100111V167"V
12+(V11-V12) X 1030.0 / 1900.0 r167 30.0
A8H10101000V168"V
12+(V11-V12) X 1060.0 / 1900.0 r168 32.5
A9H10101001V169"V
12+(V11-V12) X 1092.5 / 1900.0 r169 32.5
AAH10101010V170"V
12+(V11-V12) X 1125.0 / 1900.0 r170 32.5
ABH10101011V171"V
12+(V11-V12) X 1157.5 / 1900.0 r171 32.5
ACH10101100V172"V
12+(V11-V12) X 1190.0 / 1900.0 r172 32.5
ADH10101101V173"V
12+(V11-V12) X 1222.5 / 1900.0 r173 32.5
AEH10101110V174"V
12+(V11-V12) X 1255.0 / 1900.0 r174 32.5
AFH10101111V175"V
12+(V11-V12) X 1287.5 / 1900.0 r175 32.5
B0H10110000V176"V
12+(V11-V12) X 1320.0 / 1900.0 r176 35.0
B1H10110001V177"V
12+(V11-V12) X 1355.0 / 1900.0 r177 35.0
B2H10110010V178"V
12+(V11-V12) X 1390.0 / 1900.0 r178 35.0
B3H10110011V179"V
12+(V11-V12) X 1425.0 / 1900.0 r179 35.0
B4H10110100V180"V
12+(V11-V12) X 1460.0 / 1900.0 r180 35.0
B5H10110101V181"V
12+(V11-V12) X 1495.0 / 1900.0 r181 35.0
B6H10110110V182"V
12+(V11-V12) X 1530.0 / 1900.0 r182 35.0
B7H10110111V183"V
12+(V11-V12) X 1565.0 / 1900.0 r183 35.0
B8H10111000V184"V
12+(V11-V12) X 1600.0 / 1900.0 r184 37.5
B9H10111001V185"V
12+(V11-V12) X 1637.5 / 1900.0 r185 37.5
BAH10111010V186"V
12+(V11-V12) X 1675.0 / 1900.0 r186 37.5
BBH10111011V187"V
12+(V11-V12) X 1712.5 / 1900.0 r187 37.5
BCH10111100V188"V
12+(V11-V12) X 1750.0 / 1900.0 r188 37.5
BDH10111101V189"V
12+(V11-V12) X 1787.5 / 1900.0 r189 37.5
BEH10111110V190"V
12+(V11-V12) X 1825.0 / 1900.0 r190 37.5
BFH10111111V191"V
12+(V11-V12) X 1862.5 / 1900.0 r191 37.5
Caution There is no connection between V7 and V8 in the chip.
V
33
’’
V
0
’’
V
32
’’
V
31
’’
V
2
’’
V
1
’’
V
254
’’
V
253
’’
V
252
’’
V
225
’’
V
224
’’
V
223
’’
r
252
r
251
r
250
r
225
r
224
r
223
r
222
V
10
r
253
V
9
r
33
r
0
r
32
r
31
r
30
r
2
r
1
V
15
V
14
V
251
’’
V
255
’’
V
8
r
254
Data Sheet S13719EJ4V0DS00
14
µ
µµ
µ
PD16750
Figure 5–3. Relationship between Input Data and Output Voltage (4/4)
0.5 VDD2 – 0.3 V > V8 > V9 > V10 > V11 > V12 > V13 > V14 > V15 > VSS2 + 0.2 V, POL21/22 = L
Data DX7 DX6 DX5 DX4 DX3 DX2 DX1 DX0 Output voltage rn ()
C0H11000000V192"V
11 r192 42.5
C1H11000001V193"V
11+(V10-V11) X 42.5 / 1600.0 r193 42.5
C2H11000010V194"V
11+(V10-V11) X 85.0 / 1600.0 r194 42.5
C3H11000011V195"V
11+(V10-V11) X 127.5 / 1600.0 r195 42.5
C4H11000100V196"V
11+(V10-V11) X 170.0 / 1600.0 r196 42.5
C5H11000101V197"V
11+(V10-V11) X 212.5 / 1600.0 r197 42.5
C6H11000110V198"V
11+(V10-V11) X 255.0 / 1600.0 r198 42.5
C7H11000111V199"V
11+(V10-V11) X 297.5 / 1600.0 r199 42.5
C8H11001000V200"V
11+(V10-V11) X 340.0 / 1600.0 r200 47.5
C9H11001001V201"V
11+(V10-V11) X 387.5 / 1600.0 r201 47.5
CAH11001010V202"V
11+(V10-V11) X 435.0 / 1600.0 r202 47.5
CBH11001011V203"V
11+(V10-V11) X 482.5 / 1600.0 r203 47.5
CCH11001100V204"V
11+(V10-V11) X 530.0 / 1600.0 r204 47.5
CDH11001101V205"V
11+(V10-V11) X 577.5 / 1600.0 r205 47.5
CEH11001110V206"V
11+(V10-V11) X 625.0 / 1600.0 r206 47.5
CFH11001111V207"V
11+(V10-V11) X 672.5 / 1600.0 r207 47.5
D0H11010000V208"V
11+(V10-V11) X 720.0 / 1600.0 r208 52.5
D1H11010001V209"V
11+(V10-V11) X 772.5 / 1600.0 r209 52.5
D2H11010010V210"V
11+(V10-V11) X 825.0 / 1600.0 r210 52.5
D3H11010011V211"V
11+(V10-V11) X 877.5 / 1600.0 r211 52.5
D4H11010100V212"V
11+(V10-V11) X 930.0 / 1600.0 r212 52.5
D5H11010101V213"V
11+(V10-V11) X 982.5 / 1600.0 r213 52.5
D6H11010110V214"V
11+(V10-V11) X 1035.0 / 1600.0 r214 52.5
D7H11010111V215"V
11+(V10-V11) X 1087.5 / 1600.0 r215 52.5
D8H11011000V216"V
11+(V10-V11) X 1140.0 / 1600.0 r216 57.5
D9H11011001V217"V
11+(V10-V11) X 1197.5 / 1600.0 r217 57.5
DAH11011010V218"V
11+(V10-V11) X 1255.0 / 1600.0 r218 57.5
DBH11011011V219"V
11+(V10-V11) X 1312.5 / 1600.0 r219 57.5
DCH11011100V220"V
11+(V10-V11) X 1370.0 / 1600.0 r220 57.5
DDH11011101V221"V
11+(V10-V11) X 1427.5 / 1600.0 r221 57.5
DEH11011110V222"V
11+(V10-V11) X 1485.0 / 1600.0 r222 57.5
DFH11011111V223"V
11+(V10-V11) X 1542.5 / 1600.0 r223 57.5
E0H11100000V224"V
10 r224 57.5
E1H11100001V225"V
10+(V9-V10) X 57.5 / 4687.5 r225 70.0
E2H11100010V226"V
10+(V9-V10) X 127.5 / 4687.5 r226 70.0
E3H11100011V227"V
10+(V9-V10) X 197.5 / 4687.5 r227 70.0
E4H11100100V228"V
10+(V9-V10) X 267.5 / 4687.5 r228 82.5
E5H11100101V229"V
10+(V9-V10) X 350.0 / 4687.5 r229 82.5
E6H11100110V230"V
10+(V9-V10) X 432.5 / 4687.5 r230 82.5
E7H11100111V231"V
10+(V9-V10) X 515.0 / 4687.5 r231 95.0
E8H11101000V232"V
10+(V9-V10) X 610.0 / 4687.5 r232 95.0
E9H11101001V233"V
10+(V9-V10) X 705.0 / 4687.5 r233 95.0
EAH11101010V234"V
10+(V9-V10) X 800.0 / 4687.5 r234 112.5
EBH11101011V235"V
10+(V9-V10) X 912.5 / 4687.5 r235 112.5
ECH11101100V236"V
10+(V9-V10) X 1025.0 / 4687.5 r236 112.5
EDH11101101V237"V
10+(V9-V10) X 1137.5 / 4687.5 r237 130.0
EEH11101110V238"V
10+(V9-V10) X 1267.5 / 4687.5 r238 130.0
EFH11101111V239"V
10+(V9-V10) X 1397.5 / 4687.5 r239 147.5
F0H11110000V240"V
10+(V9-V10) X 1545.0 / 4687.5 r240 147.5
F1H11110001V241"V
10+(V9-V10) X 1692.5 / 4687.5 r241 165.0
F2H11110010V242"V
10+(V9-V10) X 1857.5 / 4687.5 r242 165.0
F3H11110011V243"V
10+(V9-V10) X 2022.5 / 4687.5 r243 182.5
F4H11110100V244"V
10+(V9-V10) X 2205.0 / 4687.5 r244 182.5
F5H11110101V245"V
10+(V9-V10) X 2387.5 / 4687.5 r245 200.0
F6H11110110V246"V
10+(V9-V10) X 2587.5 / 4687.5 r246 200.0
F7H11110111V247"V
10+(V9-V10) X 2787.5 / 4687.5 r247 225.0
F8H11111000V248"V
10+(V9-V10) X 3012.5 / 4687.5 r248 225.0
F9H11111001V249"V
10+(V9-V10) X 3237.5 / 4687.5 r249 250.0
FAH11111010V250"V
10+(V9-V10) X 3487.5 / 4687.5 r250 250.0
FBH11111011V251"V
10+(V9-V10) X 3737.5 / 4687.5 r251 300.0
FCH11111100V252"V
10+(V9-V10) X 4037.5 / 4687.5 r252 300.0
FDH11111101V253"V
10+(V9-V10) X 4337.5 / 4687.5 r253 350.0
FEH11111110V254"V
9r254 350.0
FFH11111111V255"V
8TOTAL 15002.5
Caution There is no connection between V7 and V8 in the chip.
V
33
’’
V
0
’’
V
32
’’
V
31
’’
V
2
’’
V
1
’’
V
254
’’
V
253
’’
V
252
’’
V
225
’’
V
224
’’
V
223
’’
r
252
r
251
r
250
r
225
r
224
r
223
r
222
V
10
r
253
V
9
r
33
r
0
r
32
r
31
r
30
r
2
r
1
V
15
V
14
V
251
’’
V
255
’’
V
8
r
254
Data Sheet S13719EJ4V0DS00 15
µ
µµ
µ
PD16750
6. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT PIN
Data format : 8 bits x 2 RGBs (6 dots)
Input width : 48 bits (2-pixel data)
(1) R,/L = H (Right shift)
Output S1S2S3S4xxx S383 S384
Data D00 to D07 D10 to D17 D20 to D27 D30 to D37 xxx D40 to D47 D50 to D57
(2) R,/L = L (Left shift)
Output S1S2S3 S4 xxx S383 S384
Data D00 to D07 D10 to D17 D20 to D27 D30 to D37 xxx D40 to D47 D50 to D57
POL S2n–1Note S2nNote
LV
0 to V7V8 to V15
HV
8 to V15 V0 to V7
Note S2n–1 (Odd output), S2n (Even output)
7. RELATIONSHIP BETWEEN STB, POL AND OUTPUT WAVEFORM
The output voltage is written to the LCD panel synchronized with the STB falling edge.
Selected voltage V
0
to
V
7
Hi-Z
STB
POL
S
2n
S
2n-1
Hi-Z Hi-Z
Selected voltage V
8
to
V
15
Selected voltage V
0
to
V
7
Selected voltage V
0
to
V
7
Selected voltage V
8
to
V
15
Selected voltage V
8
to
V
15
Data Sheet S13719EJ4V0DS00
16
µ
µµ
µ
PD16750
8. ELECTRICAL SPECIFICATIONS
Absolute Maximum Ratings (TA = 25°
°°
°C, VSS1 = VSS2 = 0 V)
Parameter Symbol Rating Unit
Logic Part Supply V ol tage VDD1 –0.5 t o +4.0 V
Driver Part S upply Volt age VDD2 –0.5 to +10.0 V
Logic Part Input Vol t age VI1 –0.5 to V DD1 + 0.5 V
Driver Part I nput Voltage VI2 –0.5 to VDD2 + 0.5 V
Logic Part Output Vol t age VO1 –0.5 to V DD1 + 0.5 V
Driver Part Out put Voltage VO2 –0.5 to VDD2 + 0.5 V
Operating Ambient Temperature TA–10 to +75 °C
Storage Temperature Tstg –55 to +125 °C
Caution If the absolute maximum rating of even one of the above parameters is exceeded even
momentarily, the quality of the product may be degraded. Absolute maximum ratings, therefore,
specify the values exceeding which the product may be physically damaged. Be sure to use the
product within the range of the absolute maximum ratings.
Recommended Operating Range (TA = –10 to +75°C, VSS1 = VSS2 = 0 V)
Parameter Symbol MIN. TYP. MAX. Unit
Logic Part Supply V ol tage VDD1 3.0 3.3 3.6 V
Driver Part S upply Volt age VDD2 8.5 9.0 9.5 V
High-Level Input V ol tage VIH 0.7 VDD1 VDD1 V
Low-Level Input Volt age VIL 0 0.3 VDD1 V
γ
-Corrected Vol tage V0 to V70.5 VDD2 VDD2 – 0.2 V
V8 to V15 VSS2 + 0.2 0.5 VDD2 – 0.3 V
Driver Part Output Voltage VOVSS2 + 0.2 VDD2 – 0.2 V
Clock Frequency fCLK 40 MHz
Data Sheet S13719EJ4V0DS00 17
µ
µµ
µ
PD16750
Electrical Characteristics (TA = –10 to +75°C, VDD1 = 3.3 V ±
±±
± 0.3 V, VDD2 = 9.0 V ±
±±
± 0.5 V, VSS1 = VSS2 = 0 V)
Parameter Symbol Condition MIN. TYP. MAX. Unit
Input Leak Current IIL ±0.1 ±1.0
µ
A
High-Level Output V ol tage VOH ST HR (STHL), IOH = 0 mA VDD1 – 0.1 VDD1 V
Low-Level Output Volt age VOL STHR (S T HL), IOL = 0 mA 0 0.1 V
γ
-Corrected S uppl y Current I
γ
V0 to V7 = V8 to V15 V0 pin, V8 pin 225 450 900
µ
A
= 4.0 V V7 pin, V15 pin –900 –450 –225
µ
A
IVOH VX = 7.0 V, VOUT = 6.5 VNote –185 –90
µ
ADriver Output Current
IVOL VX = 1.0 V, VOUT = 1.5 VNote 120 238
µ
A
Output Vol tage Deviation VOVO = 0.2 V to 1.2 V
VO = VDD2 – 1.2 V t o V DD2 – 0.2 V
±30 ±50 mV
VO = 1.2 V to 0.5 VDD2 – 0.3 V
VO = 0.5 VDD2 to VDD2 – 1.2 V
±10 ±20 mV
Output Swing Dif ference
Deviation
VP–P VO = 0.2 V to 0. 8 V
VO = VDD2 – 0.8 V t o V DD2 – 0.2 V
±20 ±40 mV
VO = 0.8 V to 1.2 V
VO = VDD2 – 1.2 V t o V DD2 – 0.8 V
±10 ±20 mV
VO = 1.2 V to 0.5 VDD2 – 0.3 V
VO = 0.5 VDD2 to VDD2 – 1.2 V
±3±10 mV
Output Swing Average
Difference Deviati on
AVOVDD2 = 8.5 V, V0 = 7. 9 V , V3 = 6.22 V,
V7 = 4.0 V, V8 = 4.0 V , V12 = 1.78 V,
V12 = 0.1 V, V1, V2, V4, V5, V6, V9, V10,
V11, V13, V14 : Open, TA = 25°C,
Input data: 80 H
4.433 4.440 4.447 V
Output Vol tage Range VO0.2 VDD2 – 0.2 V
Logic Part Dynamic Current
Consumption
IDD1 VDD1, with no load 0.8 6.0 m A
Driver Part Dynamic Current
Consumption
IDD2 VDD2, with no load 4.5 11.0 m A
Note VX refers to the output voltage of analog output pins S1 to S384.
VOUT refers to the voltage applied to analog output pins S1 to S384.
Cautions 1. The STB cycle is defined to be 20
µ
µµ
µ
s at fCLK. = 40 MHz.
2. The TYP. values refer to an all black or all white input pattern. The MAX. value refers to the
measured values in the dot checkerboard input pattern.
3. Refers to the current consumption per driver when cascades are connected under the
assumption of XGA single-sided mounting (8 units).
Data Sheet S13719EJ4V0DS00
18
µ
µµ
µ
PD16750
Switching Characteristics (TA = –10 to +75 °
°°
°C, VDD1 = 3.3 V ±
±±
± 0.3 V, VDD2 = 9.0 V ±
±±
± 0.5 V, VSS1 = VSS2 = 0 V)
Parameter Symbol Condition MIN. TYP. MAX. Unit
Start Pulse Delay Time tPLH1 CL = 15 pF 8 20 ns
tPLH2 36
µ
s
tPLH3 48
µ
s
tPHL2 36
µ
s
Driver Output Delay Ti me
tPHL3
CL = 75 pF, RL = 5 k
48
µ
s
CI1 STHR (STHL) excluded, TA = 25° C 4.8 10 pFInput Capaci tance
CI2 STHR (STHL), T A = 25° C 8.6 15 pF
<Measurement Condition>
OUTPUT
R
L
R
L
R
L
R
L
R
L
= 1 k
C
L
C
L
C
L
C
L
C
L
C
L
= 15 pF
R
L
Data Sheet S13719EJ4V0DS00 19
µ
µµ
µ
PD16750
Timing Requirements (TA = –10 to +75°
°°
°C, VDD1 = 3.3 V ±
±±
± 0.3 V, VSS1 = 0 V, tr = tf = 8.0 ns)
Parameter Symbol Condition MIN. TYP. MAX. Unit
Clock Pulse Width PWCLK 25 ns
Clock Pulse Hi gh Period PWCLK(H) 4ns
Clock Pulse Low Period PWCLK(L) 4ns
Data Setup Time tSETUP1 2ns
Data Hold Ti me tHOLD1 2ns
Start P ul s e Setup Time tSETUP2 2ns
Start Pulse Hold Time tHOLD2 2ns
POL21/22 Set up Ti me tSETUP3 2ns
POL21/22 Hold Time tHOLD3 2ns
Start Pulse Low Period tSPL 1CLK
STB Pulse Width PWSTB 2
µ
s
Data Invalid Period tINV 1CLK
Last Data Timing tLDT 2CLK
CLK-STB Time tCLK-STB CLK STB 6ns
STB-CLK Time tSTB-CLK STB CLK 6ns
Time B et ween STB and Start P ulse tSTB-STH STB STHR(STHL) 2CLK
POL-STB Time tPOL-STB POL or STB –5 ns
STB-POL Time tSTB-POL STB POL or 6ns
Remark Unless otherwi se specified, the input level is defined to be VIH = 0.7 VDD1, VIL = 0.3 VDD1.
Data Sheet S13719EJ4V0DS00
20
µ
µµ
µ
PD16750
9. SWITCHING CHARACTERISTIC WAVEFORM (R,/L= H)
Unless otherwise specified, the input level is defined to be VIH = 0.7 VDD1, VIL = 0.3 VDD1.
PWCLK(L)
CLK
POL
VOUT
STB
Dn0 - Dn7
STHR
(1st Dr.)
STHL
(1st Dr.)
PWCLK(H) tr
tSETUP2
INVALID
D
1
-
D
6
tHOLD2
12
12
3646566
513 514
tf
VDD1
VSS1
VDD1
VSS1
VDD1
VSS1
VDD1
VSS1
VDD1
VSS1
VDD1
VSS1
PWCLK
tCLK-STB tSTB-CLK
tSTB-STH
tSETUP1/3
90
%
10
%
tHOLD1/3
tPLH1
tINV
tPOL-STB tSTB-POL
tPLH3
tPLH2
tPHL2
tPHL3
Hi-Z
Target Voltage ± 0.1 VDD2
8-bit accuracy
tLDT PWSTB
D
7
-
D
12
D
1
-
D
6
D
7
-
D
12
D
373
-
D
378
D
379
-
D
384
D
385
-
D
390
INVALID
INVALID VDD1
VSS1
INVALID
tSETUP3 tHOLD3
POL21/22
D
3067
-
D
3072
Data Sheet S13719EJ4V0DS00 21
µ
µµ
µ
PD16750
10. RECOMMENDED MOUNTING CONDITIONS
The following conditions must be met for mounting conditions of the
µ
PD16750.
For more details, refer to the Semiconductor Device Mounting Technology Manual (C10535E).
Please consult with our sales offices in case other mounting process is used, or in case the mounting is done under
different conditions.
µ
PD16750N-xxx : TCP (TAB Package)
Mounting Condition Mounting Method Condition
Thermoc ompression Soldering Heating tool 300 to 350°C, heat i ng f or 2 to 3 seconds : pressure 100g
(per solder)
ACF
(Adhesive
Conductive Fi l m)
Temporary bonding 70 to 100°C : pressure 3 to 8 kg/cm2: time 3 to 5
sec. Real bondi ng 165 t o 180°C: pressure 25 to 45 kg/c m2: time 30 to
40 sec. (When using t he ani s otropy conductive fil m SUMIZA C1003 of
Sumi tomo Bakelite,Ltd).
Caution To find out the detailed conditions for mounting the ACF part, please contact the ACF
manufacturing company. Be sure to avoid using two or more mounting methods at a time.
Data Sheet S13719EJ4V0DS00
22
µ
µµ
µ
PD16750
[MEMO]
Data Sheet S13719EJ4V0DS00 23
µ
µµ
µ
PD16750
NOTES FOR CMOS DEVICES
1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS
Note:
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity
as much as possible, and quickly dissipate it once, when it has occurred. Environmental control
must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using
insulators that easily build static electricity. Semiconductor devices must be stored and transported
in an anti-static container, static shielding bag or conductive material. All test and measurement
tools including work bench and floor should be grounded. The operator should be grounded using
wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need
to be taken for PW boards with semiconductor devices on it.
2 HANDLING OF UNUSED INPUT PINS FOR CMOS
Note:
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided
to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels
of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused
pin should be connected to V
DD
or GND with a resistor, if it is considered to have a possibility of
being an output pin. All handling related to the unused pins must be judged device by device and
related specifications governing the devices.
3 STATUS BEFORE INITIALIZATION OF MOS DEVICES
Note:
Power-on does not necessarily define initial status of MOS device. Production process of MOS
does not define the initial operation status of the device. Immediately after the power source is
turned ON, the devices with reset function have not yet been initialized. Hence, power-on does
not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the
reset signal is received. Reset operation must be executed immediately after power-on for devices
having reset function.
µ
µµ
µ
PD16750
Reference Documents
NEC Semiconductor Device Reliability/Quality Control System(C10983E)
Quality Grades to NEC’s Semiconductor Devices(C11531E)
The information in this document is subject to change without notice. Before using this document, please
confirm that this is the latest version.
No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
rights of third parties by or arising from use of a device described herein or any other liability arising from use
of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
intellectual property rights of NEC Corporation or others.
Descriptions of circuits, software, and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these circuits,
software, and information in the design of the customer's equipment shall be done under the full responsibility
of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third
parties arising from the use of these circuits, software, and information.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety
measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a
customer designated "quality assurance program" for a specific application. The recommended applications of
a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device
before using it in a particular application.
Standard: Computers, office equipment, communications equipment, test and measurement equipment,
audio and visual equipment, home electronic appliances, machine tools, personal electronic
equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)
Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,
they should contact an NEC sales representative in advance.
M7 98. 8