2300 MHz to 2900 MHz Balanced Mixer,
LO Buffer and RF Balun
Data Sheet
ADL5363
FEATURES
RF frequency range of 2300 MHz to 2900 MHz
IF frequency range of dc to 450 MHz
Power conversion loss: 7.7 dB
SSB noise figure of 7.6 dB
Input IP3 of 31 dBm
Typical LO drive of 0 dBm
Single-ended, 50RF and LO input ports
High isolation SPDT LO input switch
Single-supply operation: 3.3 V to 5 V
Exposed pad, 5 mm × 5 mm 20-lead LFCSP
1500 V HBM/1250 V FICDM ESD performance
APPLICATIONS
Cellular base station receivers
Transmit observation receivers
Radio link downconverters
GENERAL DESCRIPTION
The ADL5363 uses a highly linear, doubly balanced passive
mixer core along with integrated RF and local oscillator (LO)
balancing circuitry to allow for single-ended operation. The
ADL5363 incorporates an RF balun to provide optimal
performance over a 2300 MHz to 2900 MHz input frequency
range. The balanced passive mixer arrangement provides good
LO-to-RF leakage, typically better than −30 dBm, and excellent
intermodulation performance. The balanced mixer core also
provides extremely high input linearity, allowing the device to
be used in demanding cellular applications where in-band
blocking signals might otherwise result in the degradation of
dynamic performance.
FUNCTIONAL BLOCK DIAGRAM
2
3
1
20 19 18 17 16
67 8 9 10
4
5
14
13
15
12
BIAS
GENERATOR
VPMX
RFIN
RFCT
COMM
COMM
LOI2
VPSW
VGS1
VGS0
LOI1
VCMI IFOPIFON PWDN COMM
VLO3 LGM3 VLO2 LOSW NC
ADL5363
NC = NO CONNECT
11
09914-001
Figure 1.
The ADL5363 provides two switched LO paths that can be used
in TDD applications where it is desirable to rapidly switch between
two local oscillators. LO current can be externally set using a
resistor to minimize dc current commensurate with the desired
level of performance. For low voltage applications, the ADL5363
is capable of operation at voltages down to 3.3 V with
substantially reduced current. For low voltage operation, an
additional logic pin is provided to power down (<200 µA) the
circuit when desired.
The ADL5363 is fabricated using a BiCMOS high performance
IC process. The device is available in a 5 mm × 5 mm, 20-lead
LFCSP and operates over a 40°C to +85°C temperature range.
An evaluation board is also available.
Table 1. Passive Mixers
RF Frequency (MHz)
Single
Mixer
Single Mixer
and IF Amp
Dual Mixer
and IF Amp
500 to 1700 ADL5367 ADL5357 ADL5358
1200 to 2500
ADL5365
ADL5355
ADL5356
2300 to 2900 ADL5363 ADL5353 ADL5354
Rev. A Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©20112015 Analog Devices, Inc. All rights reserved.
Technical Support www.analog.com
ADL5363 Data Sheet
TABLE OF CONTENTS
Features .............................................................................................. 1
Applications ....................................................................................... 1
General Description ......................................................................... 1
Functional Block Diagram .............................................................. 1
Revision History ............................................................................... 2
Specifications ..................................................................................... 3
5 V Performance ........................................................................... 4
3.3 V Performance ........................................................................ 4
Absolute Maximum Ratings ............................................................ 5
ESD Caution .................................................................................. 5
Pin Configuration and Function Descriptions ............................. 6
Typical Performance Characteristics ............................................. 7
5 V Performance ........................................................................... 7
3.3 V Performance ...................................................................... 14
Upconversion .............................................................................. 15
Spurious Performance ............................................................... 16
Circuit Description......................................................................... 17
RF Subsystem .............................................................................. 17
LO Subsystem ............................................................................. 18
Applications Information .............................................................. 19
Basic Connections ...................................................................... 19
IF Port .......................................................................................... 19
Mixer VGS Control DAC .......................................................... 19
Evaluation Board ............................................................................ 20
Outline Dimensions ....................................................................... 23
Ordering Guide .......................................................................... 23
REVISION HISTORY
2/15Rev. 0 to Rev. A
Deleted Figure 37 and Figure 38 ................................................... 13
Deleted Bias Resistor Selection Section ....................................... 19
Changes to Figure 48 ...................................................................... 20
Changes to Table 7 .......................................................................... 21
Updated Outline Dimensions ....................................................... 23
Changes to Ordering Guide .......................................................... 23
7/10Revision 0: Initial Version
Rev. A | Page 2 of 24
Data Sheet ADL5363
SPECIFICATIONS
VS = 5 V, IS = 100 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2738 MHz, LO power = 0 dBm, ZO = 50 Ω, unless otherwise noted.
Table 2.
Parameter Test Conditions/Comments Min Typ Max Unit
RF INPUT INTERFACE
Return Loss Tunable to >20 dB over a limited bandwidth 16 dB
Input Impedance 50
RF Frequency Range 2300 2900 MHz
OUTPUT INTERFACE
Output Impedance Differential impedance, f = 200 MHz 33||-0.3 Ω||pF
IF Frequency Range dc 450 MHz
DC Bias Voltage1 Externally generated 3.3 5.0 5.5 V
LO INTERFACE
LO Power
−6
0
+10
dBm
Return Loss 15 dB
Input Impedance
50
LO Frequency Range
2330
3350
MHz
POWER-DOWN (PWDN) INTERFACE2
PWDN Threshold 1.0 V
Logic 0 Level 0.4 V
Logic 1 Level 1.4 V
PWDN Response Time Device enabled, IF output to 90% of its final level 160 ns
Device disabled, supply current <5 mA 220 ns
PWDN Input Bias Current Device enabled 0.0 µA
Device disabled 70 µA
1 Apply the supply voltage from the external circuit through the choke inductors.
2 The PWDN function is intended for use with VS ≤ 3.6 V only.
Rev. A | Page 3 of 24
ADL5363 Data Sheet
5 V PERFORMANCE
VS = 5 V, IS = 100 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2738 MHz, LO power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless
otherwise noted.
Table 3.
Parameter Test Conditions/Comments Min Typ Max Unit
DYNAMIC PERFORMANCE
Power Conversion Loss Including 1:1 IF port transformer and PCB loss 7.7 dB
SSB Noise Figure 7.6 dB
Input Third-Order Intercept (IIP3) fRF1 = 2534.5 MHz, fRF2 = 2535.5 MHz, fLO = 2738 MHz,
each RF tone at 0 dBm
31 dBm
Input Second-Order Intercept (IIP2) fRF1 = 2535 MHz, fRF2 = 2585 MHz, fLO = 2738 MHz,
each RF tone at 0 dBm
62 dBm
Input 1 dB Compression Point (IP1dB)1 Exceeding 20 dBm RF power results in damage to the device 25 dBm
LO-to-IF Leakage Unfiltered IF output 22 dBm
LO-to-RF Leakage −32 dBm
RF-to-IF Isolation 44 dBc
IF/2 Spurious 10 dBm input power −61 dBc
IF/3 Spurious 10 dBm input power −70 dBc
POWER SUPPLY
Positive Supply Voltage 4.5 5 5.5 V
Quiescent Current VS = 5 V 100 mA
1 Exceeding 20 dBm RF power results in damage to the device.
3.3 V PERFORMANCE
VS = 3.3 V, IS = 60 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2738 MHz, LO power = 0 dBm, R9 = 226 Ω, VGS0 = VGS1 = 0 V, and ZO = 50 Ω,
unless otherwise noted.
Table 4.
Parameter Test Conditions/Comments Min Typ Max Unit
DYNAMIC PERFORMANCE
Power Conversion Loss Including 1:1 IF port transformer and PCB loss 7.4 dB
SSB Noise Figure 6.8 dB
Input Third-Order Intercept (IIP3) fRF1 = 2534.5 MHz, fRF2 = 2535.5 MHz, fLO = 2738 MHz,
each RF tone at 0 dBm
26 dBm
Input Second-Order Intercept (IIP2) fRF1 = 2535 MHz, fRF2 = 2585 MHz, fLO = 2738 MHz,
each RF tone at 0 dBm
56 dBm
POWER SUPPLY
Positive Supply Voltage 3.3 V
Quiescent Current VS = 5 V 60 mA
Rev. A | Page 4 of 24
Data Sheet ADL5363
ABSOLUTE MAXIMUM RATINGS
Table 5.
Parameter Rating
Supply Voltage, VS 5.5 V
RF Input Level 20 dBm
LO Input Level 13 dBm
IFOP, IFON Bias Voltage 6.0 V
VGS0, VGS1, LOSW, PWDN 5.5 V
Internal Power Dissipation 0.5 W
Thermal Resistance, θJA 25°C/W
Temperature
Maximum Junction Temperature 150°C
Operating Temperature Range 40°C to +85°C
Storage Temperature Range −65°C to +150°C
Lead Temperature (Soldering, 60 sec) 260°C
Stresses at or above those listed under Absolute Maximum
Ratings may cause permanent damage to the product. This is a
stress rating only; functional operation of the product at these
or any other conditions above those indicated in the operational
section of this specification is not implied. Operation beyond
the maximum operating conditions for extended periods may
affect product reliability.
ESD CAUTION
Rev. A | Page 5 of 24
ADL5363 Data Sheet
Rev. A | Page 6 of 24
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
PIN 1
INDICATOR
NOTES
1. NC = NO CONNEC T. DO NO T CO NNECT
TO THIS PIN.
2. EXPOSED PAD. MUST BE SOLDERED
TO GROUND.
1VPMX 2RFIN 3RFCT 4COMM 5COMM
13 VGS1
14 VPSW
15 LOI2
12 VGS0
11 LOI1
6
VLO3 7
LGM3 8
VLO2
10
NC 9
LOSW 18 IFON
19 IFOP
20 VCMI
17 PWDN
16 COMM
TOP VIEW
(Not to Scale)
ADL5363
09914-002
Figure 2. Pin Configuration
Table 6. Pin Function Descriptions
Pin No. Mnemonic Description
1 VPMX Positive Supply Voltage.
2 RFIN RF Input. Must be ac-coupled.
3 RFCT RF Balun Center Tap (AC Ground).
4, 5,16 COMM Device Common (DC Ground).
6, 8 VLO3, VLO2 Positive Supply Voltages for LO Amplifier.
7 LGM3 LO Amplifier Bias Control.
9 LOSW LO Switch. LOI1 selected for 0 V, and LOI2 selected for 3 V.
10 NC No Connect.
11, 15 LOI1, LOI2 LO Inputs. Must be ac-coupled.
12, 13 VGS0, VGS1 Mixer Gate Bias Controls. 3 V logic. Ground these pins for nominal setting.
14 VPSW Positive Supply Voltage for LO Switch.
17 PWDN Power Down. Connect this pin to ground for normal operation and connect this pin to 3.0 V for disable mode.
18, 19 IFON, IFOP Differential IF Outputs.
20 VCMI No Connect. This pin can be grounded.
EPAD (EP) Exposed pad. Must be soldered to ground.
Data Sheet ADL5363
TYPICAL PERFORMANCE CHARACTERISTICS
5 V PERFORMANCE
VS = 5 V, I S = 100 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2738 MHz, LO power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless
otherwise noted.
105
104
103
102
101
100
99
98
97
96
95
2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.902.85
2.80
2.752.70
SUPPLY CURRE NT (mA)
RF FREQ UE NCY ( GHz)
09914-003
T
A
= –40° C
T
A
= +25°C
T
A
= +85°C
Figure 3. Supply Current vs. RF Frequency
11
10
9
8
6
7
5
2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.902.85
2.802.75
2.70
CONVERSION LOSS (dB)
RF FREQ UE NCY ( GHz)
09914-004
T
A
= +85°C
TA = +25°C TA = –40° C
Figure 4. Power Conversion Loss vs. RF Frequency
40
38
36
34
30
28
26
24
22
32
20
2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.902.852.802.752.70
INPUT I P 3 ( dBm)
RF FREQ UE NCY ( GHz)
09914-005
T
A
= +85°C
T
A
= –40° C
T
A
= +25°C
Figure 5. Input IP3 vs. RF Frequency
90
85
80
75
65
60
55
50
45
70
40
2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.90
2.852.802.75
2.70
INPUT I P 2 ( dBm)
RF FREQ UE NCY ( GHz)
09914-006
T
A
= +85°C
T
A
= –40° C
T
A
= +25°C
Figure 6. Input IP2 vs. RF Frequency
10.0
9.5
8.5
8.0
7.5
7.0
6.5
9.0
5.0
6.0
5.5
2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.902.852.80
2.752.70
SSB NOISE FIGURE (dB)
RF FREQ UE NCY ( GHz)
09914-007
TA = +85°C
TA = –40° C
TA = +25°C
Figure 7. SSB Noise Figure vs. RF Frequency
Rev. A | Page 7 of 24
ADL5363 Data Sheet
VS = 5 V, I S = 100 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2738 MHz, LO power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless
otherwise noted.
140
130
110
100
90
80
70
120
60
–40 –30 –20 –10 010 20 30 80
70
6050
40
SUPPLY CURRE NT (mA)
TEMPERATURE (°C)
09914-008
5.25V
5.00V
4.75V
Figure 8. Supply Current vs. Temperature
9.1
8.8
8.2
7.9
7.6
7.3
6.7
7.0
8.5
6.4
–40 –30 –20 –10 010 20 30 8070
605040
CONVERSION LOSS (dB)
TEMPERATURE (°C)
09914-009
4.75V
5.00V
5.25V
Figure 9. Power Conversion Loss vs. Temperature
39
35
33
31
29
27
37
25
–40 –30 –20 –10 010 20 30 8070605040
INPUT I P 3 ( dBm)
TEMPERATURE (°C)
09914-010
4.75V
5.00V
5.25V
Figure 10. Input IP3 vs. Temperature
74
71
65
62
59
56
53
68
50
–40 –30 –20 –10 010 20 30 80
7060
50
40
INPUT I P 2 ( dBm)
TEMPERATURE (°C)
09914-011
5.25V
4.75V
5.00V
Figure 11. Input IP2 vs. Temperature
10.0
9.5
8.5
8.0
7.5
7.0
6.5
9.0
5.0
6.0
5.5
–40 –30 –20 –10 010 20 30 8070605040
SSB NOISE FIGURE (dB)
TEMPERATURE (°C)
09914-012
4.75V
5.00V
5.25V
Figure 12. SSB Noise Figure vs. Temperature
Rev. A | Page 8 of 24
Data Sheet ADL5363
VS = 5 V, I S = 100 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2738 MHz, LO power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless
otherwise noted.
120
115
105
100
85
90
95
110
8030 80 130 180 230 280 430380330
SUPPLY CURRE NT (mA)
IF FREQUENCY (MHz)
09914-013
T
A
= +85°C
T
A
= –40° C
T
A
= +25°C
Figure 13. Supply Current vs. IF Frequency
8.4
8.2
8.0
7.8
7.2
7.4
7.6
7.030 80 130 180 230 280 430
380330
CONVERSION LOSS (dB)
IF FREQUENCY (MHz)
09914-014
T
A
= +85°C
T
A
= –40° C
T
A
= +25°C
Figure 14. Power Conversion Loss vs. IF Frequency
41
38
35
32
23
26
29
2030 80 130 180 230 280 430380330
INPUT I P 3 ( dBm)
IF FREQUENCY (MHz)
09914-015
T
A
= +85°C
T
A
= –40° C
T
A
= +25°C
Figure 15. Input IP3 vs. IF Frequency
100
90
80
70
50
60
4030 80 130 180 230 280 430380330
INPUT I P 2 ( dBm)
IF FREQUENCY (MHz)
09914-016
T
A
= +85°C
T
A
= +25°C
T
A
= –40° C
Figure 16. Input IP2 vs. IF Frequency
10.0
9.5
9.0
7.5
7.0
6.5
8.0
8.5
6.030 80 130 180 230 280 430
380330
SSB NOISE FIGURE (dB)
IF FREQUENCY (MHz)
09914-017
Figure 17. SSB Noise Figure vs. IF Frequency
Rev. A | Page 9 of 24
ADL5363 Data Sheet
VS = 5 V, I S = 100 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2738 MHz, LO power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless
otherwise noted.
12
10
11
8
9
7
6
5
4–6 –4 –2 0246810
CONVERSION LOSS (dB)
LO POWER (dBm)
09914-018
TA = –40° C
TA = +25°C
TA = +85°C
Figure 18. Power Conversion Loss vs. LO Power
36
34
32
30
28
26
24
22
20–6 –4 –2 0246810
INPUT I P 3 ( dBm)
LO POWER (dBm)
09914-019
TA = –40° C
TA = +25°C
TA = +85°C
Figure 19. Input IP3 vs. LO Power
80
70
60
50
40
30
20
10
0–6 –4 –2 0246810
INPUT I P 2 ( dBm)
LO POWER (dBm)
09914-020
TA = –40° C
TA = +25°C
TA = +85°C
Figure 20. Input IP2 vs. LO Power
–30
–35
–40
–45
–50
–55
–60
–65
–70
–75
2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.902.85
2.80
2.752.70
IF /2 SP URIOUS ( dBc)
RF FREQ UE NCY ( GHz)
09914-021
TA = –40° C
TA = +85°C
TA = +25°C
Figure 21. IF/2 Spurious vs. RF Frequency
–20
–30
–40
–50
–60
–70
–80
–90
2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.90
2.852.80
2.752.70
IF /3 SP URIOUS ( dBc)
RF FREQ UE NCY ( GHz)
09914-022
TA = –40° C
T
A
= +85°C
T
A
= +25°C
Figure 22. IF/3 Spurious vs. RF Frequency
Rev. A | Page 10 of 24
Data Sheet ADL5363
Rev. A | Page 11 of 24
VS = 5 V, IS = 100 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2738 MHz, LO power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless
otherwise noted.
PERCENTAGE (%)
ISUPPLY (mA)
12011010080 90
100
80
60
40
20
0
09914-023
MEAN: 101.06
SD: 0.0008%
Figure 23. Supply Current Distribution
PERCENTAGE (%)
CONVERSION LOSS DISTRIBUTION (dB)
7.27.6 7.47.88.2 8.0
100
80
60
40
20
0
09914-024
MEAN: 7.7
SD: 0.104%
Figure 24.Conversion Loss Distribution
PERCENTAGE (%)
INPUT IP3 (dBm)
3930 33 362721 24
100
80
60
40
20
0
09914-025
MEAN: 31.13
SD: 0.286%
Figure 25. Input IP3 Distribution
50
0
50
0
30 430
RESISTANCE ()
CAPACITANCE (pF)
IF FREQUENCY (MHz)
09914-026
–4
–3
–2
–1
0
1
2
3
4
5
10
15
20
25
30
35
40
45
80 130 180 230 280 330 380
RESISTANCE ()
CAPACITANCE (pF)
Figure 26. IF Output Impedance (R Parallel, C Equivalent)
0
–2
–4
–6
–10
–12
–14
–16
–18
–8
–20
2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.902.852.802.752.70
RF RETURN LOSS (dB)
RF FREQUENCY (GHz)
09914-027
Figure 27. RF Port Return Loss, Fixed IF
0
–45
2.50 3.10
LO RETURN LOSS (dB)
LO FREQUENCY (GHz)
09914-028
–42
–39
–36
–33
–30
–27
–24
–21
–18
–15
–12
–9
–6
–3
2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90 2.95 3.00 3.05
SELECTED
UNSELECTED
Figure 28. LO Return Loss, Selected and Unselected
ADL5363 Data Sheet
VS = 5 V, I S = 100 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2738 MHz, LO power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless
otherwise noted.
60
57
54
51
48
45
42
39
36
33
30
2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.902.852.802.752.70
LO SWITCH ISOLATION (dB)
RF FREQ UE NCY ( GHz)
09914-029
T
A
= +85°C T
A
= –40° C
T
A
= +25°C
Figure 29. LO Switch Isolation vs. RF Frequency
–30
–35
–40
–45
–55
–50
–60
2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.902.852.802.752.70
RF-TO-IF ISOLATION (dBc)
RF FREQ UE NCY ( GHz)
09914-030
TA = –40° C
TA = +85°C
TA = +25°C
Figure 30. RF-to-IF Isolation vs. RF Frequency
–5
–10
–15
–20
–25
–30
–35
–40
2.50 2.55 2.60 2.65 2.70 2.75 2.80 3.103.00 3.052.952.902.85
LO-TO-IF LEAKAGE (dBm)
LO FREQUENCY ( GHz)
09914-031
TA = +85°C
TA = –40° C TA = +25°C
Figure 31. LO-to-IF Leakage vs. LO Frequency
0
–5
–10
–15
–20
–25
–30
–35
–40
–45
2.50 2.55 2.60 2.65 2.70 2.75 2.80 3.10
3.00 3.05
2.95
2.902.85
LO-TO-IF LEAKAGE (dBm)
LO FREQUENCY ( GHz)
09914-032
TA = +85°C
TA = –40° C
TA = +25°C
Figure 32. LO-to-RF Leakage vs. LO Frequency
0
–5
–10
–15
–20
–25
–30
–60
–55
–50
–45
–40
–35
2xLO LE AKAGE ( dBm)
09914-033
2xLO TO RF
2xLO TO IF
2.50 3.10
LO FRE QUENCY ( GHz)
2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90 2.95 3.00 3.05
Figure 33. 2LO Leakage vs. LO Frequency
–52
–55
–58
–61
–76
–67
–70
–73
–64
2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90 2.95 3.00 3.05 3.10
3xLO LEAKAGE ( dBm)
LO FREQUENCY ( GHz)
09914-034
3xLO TO RF
3xLO TO IF
Figure 34. 3LO Leakage vs. LO Frequency
Rev. A | Page 12 of 24
Data Sheet ADL5363
VS = 5 V, I S = 100 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2738 MHz, LO power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless
otherwise noted.
12
11
10
9
8
7
6
5
4
3
2
2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.902.852.802.752.70
CONVE RS IO N GAIN ( dB)
RF FREQ UE NCY ( GHz)
09914-035
23
3
7
5
9
11
13
15
17
19
21
SSB NOISE FIGURE (dB)
VGS = 0, 0
VGS = 0, 1
VGS = 1, 0
VGS = 1, 1 GAIN
NOISE FIGURE
Figure 35. Power Conversion Loss and SSB Noise Figure vs. RF Frequency
40
38
36
34
30
28
26
24
22
32
20
2.30 2.35 2.40 2.45 2.50 2.55 2.602.65 2.90
2.85
2.802.75
2.70
INPUT IP3 (dBm)
RFFREQUENCY (GHz)
09914-036
VGS= 0, 0
VGS=0,1
VGS =1, 0
VGS=1,1
Figure 36. Input IP3 vs. RF Frequency
Rev. A | Page 13 of 24
ADL5363 Data Sheet
3.3 V PERFORMANCE
VS = 3.3 V, IS = 60 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2738 MHz, LO power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless
otherwise noted.
67
65
63
61
57
59
56
2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.902.852.802.752.70
SUPPLY CURRE NT (mA)
RF FREQ UE NCY ( GHz)
09914-039
TA = +25°C TA = –40° C
TA = +85°C
Figure 37. Supply Current vs. RF Frequency at 3.3 V
9.0
8.5
8.0
7.5
7.0
6.5
5.0
5.5
6.0
2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.902.852.802.752.70
CONVERSION LOSS (dB)
RF FREQ UE NCY ( GHz)
09914-040
T
A
= +85°C
T
A
= –40° C
T
A
= +25°C
Figure 38. Power Conversion Loss vs. RF Frequency at 3.3 V
34
31
28
25
22
19
10
13
16
2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.902.852.802.752.70
INPUT I P 3 ( dBm)
RF FREQ UE NCY ( GHz)
09914-041
TA = +85°C
TA = –40° C
TA = +25°C
Figure 39. Input IP3 vs. RF Frequency at 3.3 V
100
90
80
70
60
50
20
30
40
2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.902.852.80
2.752.70
INPUT I P 2 ( dBm)
RF FREQ UE NCY ( GHz)
09914-042
T
A
= –40° C
T
A
= +85°C
T
A
= +25°C
Figure 40. Input IP2 vs. RF Frequency at 3.3 V
9.0
8.5
8.0
7.0
7.5
4.0
4.5
5.0
5.5
6.0
6.5
2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.902.85
2.802.752.70
SSB NOISE FIGURE (dB)
FREQUENCY ( GHz)
09914-043
TA = –40° C
TA = +85°C
TA = +25°C
Figure 41. SSB Noise Figure vs. RF Frequency at 3.3 V
Rev. A | Page 14 of 24
Data Sheet ADL5363
UPCONVERSION
VS = 5 V, I S = 100 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2738 MHz, LO power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless
otherwise noted.
13
12
11
10
9
8
7
6
5
4
3
2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.902.852.802.752.70
CONVERSION LOSS (dB)
RF FREQ UE NCY ( GHz)
09914-044
TA = +85°C
TA = –40° C
TA = +25°C
Figure 42. Power Conversion Loss vs. RF Frequency, VS = 5 V, Upconversion
30
29
28
27
26
25
24
23
22
21
20
2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.902.852.802.75
2.70
INPUT I P 3 ( dBm)
RF FREQ UE NCY ( GHz)
09914-045
T
A
= +25°C
T
A
= +85°C
T
A
= –40° C
Figure 43. Input IP3 vs. RF Frequency, VS = 5 V, Upconversion
9.0
8.5
8.0
7.5
7.0
6.5
5.5
6.0
5.0
4.5
4.0
2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.902.852.802.752.70
CONVERSION LOSS (dB)
RF FREQ UE NCY ( GHz)
09914-046
T
A
= +25°C
T
A
= –40° C
T
A
= +85°C
Figure 44. Power Conversion Loss vs. RF Frequency at 3.3 V, Upconversion
35
33
31
29
27
25
21
23
19
17
15
2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.902.852.80
2.752.70
INPUT I P 3 ( dBm)
RF FREQ UE NCY ( GHz)
09914-047
T
A
= –40° C
T
A
= +85°C
T
A
= +25°C
Figure 45. Input IP3 vs. RF Frequency at 3.3 V, Upconversion
Rev. A | Page 15 of 24
ADL5363 Data Sheet
SPURIOUS PERFORMANCE
(N × fRF) − (M × fLO) spur measurements were made using the standard evaluation board. Mixer spurious products are measured in dBc
from the IF output power level. Data was measured only for frequencies less than 6 GHz. Typical noise floor of the measurement system
= −100 dBm.
5 V Performance
VS = 5 V, IS = 100 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2738 MHz, LO power = 0 dBm, RF power = 0 dBm, VGS0 = VGS1 = 0 V, and
ZO = 50 Ω, unless otherwise noted.
M
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
N
0 10.9 28.3 44.5
1 42.2 0.0 49.3 31.2 49.8
2 75.8 76.5 64.6 78.4 78.5 94.7
3 <−100 83.0 <−100 73.5 90.9 89.8 <−100
4 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100
5 <−100 <−100 <−100 <−100 <−100 <−100 <−100
6 <−100 <−100 <−100 <−100 <−100 <−100 <−100
7 <−100 <−100 <−100 <−100 <−100 <−100 <−100
8
<−100 <−100 <−100 <−100 <−100 <−100 <−100
9 <−100 <−100 <−100 <−100 <−100 <−100 <−100
10 <−100 <−100 <−100 <−100 <−100 <−100 <−100
11 <−100 <−100 <−100 <−100 <−100 <−100 <−100
12 <−100 <−100 <−100 <−100 <−100 <−100
13 <−100 <−100 <−100 <−100
14
<−100 <−100 <−100
15 <−100 <−100
3.3 V Performance
VS = 3.3 V, IS = 56 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2738 MHz, LO power = 0 dBm, RF power = 0 dBm, R9 = 226 Ω, VGS0 = VGS1 =
0 V, an d Z O = 50 Ω, unless otherwise noted.
M
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
N
0
−16.9 −35.1 −61.4
1 −41.9 0.0 49.1 −30.4 −52.6
2 −72.3 −80.3 −62.7 −68.5 −71.9 <−100
3
−94.6 −71.6 <−100 −61.2 −92.7 −75.1
<−100
4 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100
5 <−100 <−100 <−100 <−100 <−100 <−100 <−100
6 <−100 <−100 <−100 <−100 <−100 <−100 <−100
7
<−100 <−100 <−100 <−100 <−100 <−100 <−100
8 <−100 <−100 <−100 <−100 <−100 <−100 <−100
9 <−100 <−100 <−100 <−100 <−100 <−100 <−100
10 <−100 <−100 <−100 <−100 <−100 <−100 <−100
11 <−100 <−100 <−100 <−100 <−100 <−100 <−100
12 <−100 <−100 <−100 <−100 <−100 <−100
13 <−100 <−100 <−100 <−100
14 <−100 <−100 <−100
15 <−100
Rev. A | Page 16 of 24
Data Sheet ADL5363
CIRCUIT DESCRIPTION
The ADL5363 consists of two primary components: the radio
frequency (RF) subsystem and the local oscillator (LO) subsystem.
The combination of design, process, and packaging technology
allows the functions of these subsystems to be integrated
into a single die, using mature packaging and interconnection
technologies to provide a high performance, low cost design
with excellent electrical, mechanical, and thermal properties.
In addition, the need for external components is minimized,
optimizing cost and size.
The RF subsystem consists of an integrated, low loss RF balun,
passive MOSFET mixer, sum termination network.
The LO subsystem consists of an SPDT-terminated FET switch
and a three-stage limiting LO amplifier. The purpose of the LO
subsystem is to provide a large, fixed amplitude, balanced signal
to drive the mixer independent of the level of the LO input.
A block diagram of the device is shown in Figure 46.
2
3
1
20 19 18 17 16
67 8 9 10
4
5
14
13
15
12
BIAS
GENERATOR
VPMX
RFIN
RFCT
COMM
COMM
LOI2
VPSW
VGS1
VGS0
LOI1
VCMI IFOPIFON PWDN COMM
VLO3 LGM3 VLO2 LOSW NC
ADL5363
NC = NO CONNECT
11
09914-051
Figure 46. Simplified Schematic
RF SUBSYSTEM
The single-ended, 50 RF input is internally transformed to a
balanced signal using a low loss (<1 dB) unbalanced-to-balanced
(balun) transformer. This transformer is made possible by an
extremely low loss metal stack, which provides both excellent
balance and dc isolation for the RF port. Although the port can
be dc connected, it is recommended that a blocking capacitor be
used to avoid running excessive dc current through the part.
The RF balun can easily support an RF input frequency range
of 2300 MHz to 2900 MHz.
The resulting balanced RF signal is applied to a passive mixer
that commutates the RF input with the output of the LO subsystem.
The passive mixer is essentially a balanced, low loss switch that
adds minimum noise to the frequency translation. The only
noise contribution from the mixer is due to the resistive loss
of the switches, which is in the order of a few ohms.
As the mixer is inherently broadband and bidirectional, it
is necessary to properly terminate all the idler (M × N product)
frequencies generated by the mixing process. Terminating the
mixer avoids the generation of unwanted intermodulation
products and reduces the level of unwanted signals at the IF
output. This termination is accomplished by the addition of a
sum network between the IF output and the mixer.
The IP3 performance can be optimized by adjusting the supply
current with an external resistor. Figure 37 and 38 illustrate how
the bias resistor affects the performance with a 5 V supply.
Additionally, dc current can be saved by increasing either or
both resistors. It is permissible to reduce the dc supply voltage
to as low as 3.3 V, further reducing the dissipated power of the
part. (Note that no performance enhancement is obtained by
reducing the value of these resistors and excessive dc power
dissipation may result.)
Rev. A | Page 17 of 24
ADL5363 Data Sheet
LO SUBSYSTEM
The ADL5363 has two LO inputs permitting multiple synthesizers
to be rapidly switched with extremely short switching times
(<40 ns) for frequency agile applications. The two inputs are
applied to a high isolation SPDT switch that provides a constant
input impedance, regardless of whether the port is selected, to
avoid pulling the LO sources. This multiple section switch also
ensures high isolation to the off input, minimizing any leakage
from the unwanted LO input that may result in undesired IF
responses.
The single-ended LO input is converted to a fixed amplitude
differential signal using a multistage, limiting LO amplifier.
This results in consistent performance over a range of LO input
power. Optimum performance is achieved from −6 dBm to
+10 dBm, but the circuit continues to function at considerably
lower levels of LO input power.
The performance of this amplifier is critical in achieving a
high intercept passive mixer without degrading the noise floor
of the system. This is a critical requirement in an interferer rich
environment, such as cellular infrastructure, where blocking
interferers can limit mixer performance. The bandwidth of the
intermodulation performance is somewhat influenced by the
current in the LO amplifier chain. For dc current sensitive
applications, it is permissible to reduce the current in the
LO amplifier by raising the value of the external bias control
resistor. For dc current critical applications, the LO chain
can operate with a supply voltage as low as 3.3 V, resulting in
substantial dc power savings.
In addition, when operating with supply voltages below 3.6 V,
the ADL5363 has a power-down mode that permits the dc
current to drop to <200 µA.
All of the logic inputs are designed to work with any logic family
that provides a Logic 0 input level of less than 0.4 V and a Logic 1
input level that exceeds 1.4 V. All logic inputs are high impedance
up to Logic 1 levels of 3.3 V. At levels exceeding 3.3 V, protection
circuitry permits operation up to 5.5 V, although a small bias
current is drawn.
All pins, including the RF pins, are ESD protected and have
been tested up to a level of 1500 V HBM and 1250 V CDM.
Rev. A | Page 18 of 24
Data Sheet ADL5363
APPLICATIONS INFORMATION
BASIC CONNECTIONS
The ADL5363 mixer is designed to downconvert radio frequen-
cies (RF) primarily between 2300 MHz and 2900 MHz to lower
intermediate frequencies (IF) between 30 MHz and 450 MHz.
Figure 47 depicts the basic connections of the mixer. To prevent
nonzero dc voltages from damaging the RF balun or LO input
circuit, ac-couple the RF and LO input ports. The RFIN
matching network consists of a series 1.5 pF capacitor and a
shunt 12 nH inductor to provide the optimized RF input return
loss for the desired frequency band.
IF PORT
The real part of the output impedance is approximately 50 Ω, as
seen in Figure 26, which matches many commonly used SAW
filters without the need for a transformer. This results in a
voltage conversion loss that is approximately the same as the
power conversion loss, as shown in Table 3.
MIXER VGS CONTROL DAC
The ADL5363 features two logic control pins, VGS0 (Pin 12) and
VGS1 (Pin 13), that allow programmability for internal gate-to-
source voltages for optimizing mixer performance over desired
frequency bands. The evaluation board defaults both VGS0 and
VGS1 to ground.
2
3
1
19 18 17 16
6 7 8 9 10
14
15
12
11
BIAS
GENERATOR
LO2_IN
RF-IN +5V
+5V
+5V
+5V
LO1_IN
10kΩ
R1
0Ω
C24
560pF
10kΩ
10pF10pF
10pF
1.5pF
10pF
10µH
0.01µF
4.7µF
RBIAS L O
22pF
10pF
22pF
ADL5363
20
13
5
4
09914-052
T1
IF1_OUT
C25
560pF
12nH
Figure 47. Typical Application Circuit
Rev. A | Page 19 of 24
ADL5363 Data Sheet
Rev. A | Page 20 of 24
EVALUATION BOARD
An evaluation board is available for the family of double balanced mixers. The standard evaluation board schematic is shown in Figure 48.
The evaluation board is fabricated using Rogers® RO3003 material. Table 7 describes the various configuration options of the evaluation
board. Evaluation board layout is shown in Figure 49 to Figure 52.
0
9914-053
C22
1nF
C20
10pF
C2
10µF
C21
10pF
C1
1.5pF
C10
22pF
C12
22pF
VGS1
LO2_IN
LO1_IN
RF-IN
R22
10k
VPOS
PWR_UP
R23
15k
VPOS
VPOS
VPOS
LOSEL
VGS0
C5
0.01µF
C4
10pF
C6
10pF
C8
10pF
R9
1.7kR4
10k
R21
10k
R14
0L3
0
VPMX
RFIN
RFCT
COMM
COMM
VGS1
VPSW
LOI2
VGS0
LOI1
IFON
IFOP
VCMI
PWDN
COMM
VLO3
LGM3
VLO2
NC
LOSW
ADL5363
R1
0
C24
560pF
T1
IF1_OUT
C25
560pF
Z1
12nH
Figure 48. Evaluation Board Schematic
Data Sheet ADL5363
Table 7. Evaluation Board Configuration
Components Function Description Default Conditions
C2, C6, C8,
C20, C21
Power supply
decoupling
Power Supply Decoupling. Nominal supply decoupling
consists of a 10 µF capacitor to ground in parallel with a
10 pF capacitor to ground positioned as close to the device
as possible.
C2 = 10 µF (size 0603),
C6, C8, C20, C21 = 10 pF (size 0402)
C1, C4, C5, Z1 RF input interface RF Input Interface. The input channels are ac-coupled
through C1. C4 and C5 provide bypassing for the center taps
of the RF input baluns.
C1 = 1.5 pF (size 0402),
C4 = 10 pF (size 0402),
C5 = 0.01 µF (size 0402)
Z1= 12 nH (size 0402)
T1, R1, C24, C25 IF output interface IF Output Interface. T1 is a 1:1 impedance transformer used
to provide a single-ended IF output interface. Remove R1
for balanced output operation. C24 and C25 are used to
block the dc bias at the IF ports.
T1 = TC1-1-13M+ (Mini-Circuits),
R1 = 0 Ω (size 0402),
C24, C25 = 560 pF (size 0402)
C10, C12, R4
LO interface
LO Interface. C10 and C12 provide ac coupling for the
LO1_IN and LO2_IN local oscillator inputs. LOSEL selects
the appropriate LO input for both mixer cores. R4 provides
a pull-down to ensure that LO1_IN is enabled when the
LOSEL test point is logic low. LO2_IN is enabled when
LOSEL is pulled to logic high.
C10, C12 = 22 pF (size 0402),
R4 = 10 kΩ (size 0402)
R21 PWDN interface PWDN Interface. R21 pulls the PWDN logic low and enables
the device. The PWR_UP test point allows the PWDN
interface to be exercised using the an external logic
generator. Grounding the PWDN pin for nominal operation
is allowed. Using the PWDN pin when supply voltages
exceed 3.3 V is not allowed.
R21 = 10 kΩ (size 0402)
C22, L3, R9, R14,
R22, R23, VGS0,
VGS1
Bias control Bias Control. R22 and R23 form a voltage divider to provide
3 V for logic control, bypassed to ground through C22.
VGS0 and VGS1 jumpers provide programmability at the
VGS0 and VGS1 pins. It is recommended to pull these two
pins to ground for nominal operation. R9 sets the bias
point for the internal LO buffers.
C22 = 1 nF (size 0402),
L3 = 0 Ω (size 0603),
R9 = 1.7 kΩ (size 0402),
R14 = 0 Ω (size 0402),
R22 = 10 kΩ (size 0402),
R23 = 15 kΩ (size 0402),
VGS0 = VGS1 = 3-pin shunt
Rev. A | Page 21 of 24
ADL5363 Data Sheet
09914-152
Figure 49. Evaluation Board Top Layer
09914-153
Figure 50. Evaluation Board Ground Plane, Internal Layer 1
09914-154
Figure 51. Evaluation Board Power Plane, Internal Layer 2
09914-155
Figure 52. Evaluation Board Bottom Layer
Rev. A | Page 22 of 24
Data Sheet ADL5363
Rev. A | Page 23 of 24
OUTLINE DIMENSIONS
COMPLIANT
TO
JEDEC S TANDARDS M O-220-W HHC.
111908-A
0.65
BSC
0.70
0.60
0.40
0.35
0.28
0.23
BOTTOM VIEWTOP VIEW
EXPOSED
PAD
PIN 1
INDICATOR
5.10
5.00 SQ
4.90
SEATING
PLANE
0.80
0.75
0.70 0.05 MAX
0.02 NOM
0.20 REF
0.25 MI N
COPLANARITY
0.08
PIN 1
INDI
C
ATOR
3.25
3.10 SQ
2.95
FOR PROPER CONNECT ION OF
THE EXPOSED PAD, REFER TO
THE P IN CO NFI GURAT IO N A ND
FUNCT IO N DES CRI P TIONS
SECT ION OF THIS DATA SHE ET.
1
20
6
10
11
1516
5
Figure 53. 20-Lead Lead Frame Chip Scale Package [LFCSP_WQ]
5 mm × 5 mm Body, Very Very Thin Quad
(CP-20-9)
Dimensions shown in millimeters
ORDERING GUIDE
Model1 Temperature Range Package Description
Package
Option
Ordering
Quantity
ADL5363ACPZ-R7 −40°C to +85°C 20-Lead Lead Frame Chip Scale Package [LFCSP_WQ] 7” Tape and Reel CP-20-9 1,500
ADL5363-EVALZ Evaluation Board 1
1 Z = RoHS Compliant Part.
ADL5363 Data Sheet
NOTES
©20112015 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D09914-0-2/15(A)
Rev. A | Page 24 of 24