May 2009
1
MITSUBISHI <INTELLIGENT POWER MODULES>
PM150CL1A120
FLAT-BASE TYPE
INSULATED PACKAGE
PM150CL1A120
FEATURE
Inverter + Drive & Protection IC
a) Adopting new 5th generation Full-Gate CSTBTTM chip
b) The over-temperature protection which detects the chip sur-
face temperature of CSTBTTM is adopted.
c) Error output signal is possible from all each protection up-
per and lower arm of IPM.
d) Compatible L-series package.
•3φ 150A, 1200V Current-sense and temperature sense
IGBT type inverter
Monolithic gate drive & protection logic
Detection, protection & status indication circuits for, short-
circuit, over-temperature & under-voltage (P-FO available
from upper arm devices)
UL Recognized
APPLICATION
General purpose inverter, servo drives and other motor controls
PACKAGE OUTLINES Dimensions in mm
10.5
6-M5 Nuts
110±0.5
78±0.5
+1
-0.5
135
122.1
6.05
11.7
26 26 40.5
18
11
71.5
66.5
6-2 3-2
10
19 13
LABEL
9 5 1
10 10
3.25
2-φ2.5
4-φ5.5
Mounting Holes 19- 0.5
3-2 3-2
33.6
34.7
24.1
20 20 21.5
18.7
P
WV U
NB
30.15 11
(13)
(Screwing Depth)
13
110
90.1
6.05
4
1. VUPC
2. UFO
3. UP
4. VUP1
5. VVPC
6. VFO
7. VP
8. VVP1
9. VWPC
10. WFO
11. WP
12. VWP1
13. VNC
14. VN1
15. NC
16. UN
17. VN
18. WN
19. Fo
Te rminal code
November2012
MITSUBISHI <INTELLIGENT POWER MODULES>
PM150CL1A120
FLAT-BASE TYPE
INSULATED PACKAGE
May 2009
2
V
N
U
N
W
P
V
WP1
WF
O
V
WPC
V
P
V
VP1
VF
O
V
VPC
U
P
V
UP1
UF
O
V
UPC
NC
NC N W V U P
Fo
1.5k
1.5k 1.5k 1.5k
V
NC
V
N1
W
N
Gnd In Fo Vcc
Gnd Si Out OT
Gnd In Fo Vcc
Gnd Si Out OT
Gnd In Fo Vcc
Gnd Si Out OT
Gnd In Fo Vcc
Gnd Si Out OT
Gnd In Fo Vcc
Gnd Si Out OT
Gnd In Fo Vcc
Gnd Si Out OT
1200
150
300
833
–20 ~ +150
Ratings
VCES
±IC
±ICP
PC
Tj
Collector-Emitter Voltage
Collector Current
Collector Current (Peak)
Collector Dissipation
Junction Temperature
VD = 15V, VCIN = 15V
TC = 25°C(Note-1)
TC = 25°C
TC = 25°C(Note-1)
V
A
A
W
°C
MAXIMUM RATINGS (Tj = 25°C, unless otherwise noted)
INVERTER PART
Symbol Parameter Condition Unit
INTERNAL FUNCTIONS BLOCK DIAGRAM
*: TC measurement point is just under the chip.
VFO
IFO
CONTROL PART
V
mA
20
20
Supply Voltage
Input Voltage
Fault Output Supply Voltage
Fault Output Current
Symbol Parameter Condition Ratings Unit
Applied between : VUP1-VUPC, VVP1-VVPC
VWP1-VWPC, VN1-VNC
Applied between : UP-VUPC, VP-VVPC, WP-VWPC
UN • VN • WN-VNC
Applied between : UFO-VUPC, VFO-VVPC, WFO-VWPC
FO-VNC
Sink current at UFO, VFO, WFO, FO terminals
20
20
VD
VCIN
V
V
November2012
3
MITSUBISHI <INTELLIGENT POWER MODULES>
PM150CL1A120
FLAT-BASE TYPE
INSULATED PACKAGE
November. 2012
TOTAL SYSTEM
Symbol Parameter Conditions Ratings Unit
VCC(PROT) Supply Voltage Protected by
SC
VD =13.5V ~ 16.5V
Inverter Part, Tj =+125°C Start 800 V
VCC(surge) Supply Voltage (Surge) Applied between : P-N, Surge value 1000 V
Tstg Storage Temperature -40 ~ +125 °C
Viso Isolation Voltage 60Hz, Sinusoidal, Charged part to Base plate,
AC 1min, RMS 2500 V
*: TC measurement point is just under the chip.
THERMAL RESISTANCE
Limits
Symbol Parameter Conditions Min. Typ. Max. Unit
Rth(j-c)Q Inverter, IGBT (per 1 element) (Note.1) - - 0.15
Rth(j-c)F
Thermal Resistance
Inverter, FWDi (per 1 element) (Note.1) - - 0.23
Rth(c-f) Contact Thermal Resistance
Case to fin, (per 1 module)
Thermal grease applied (Note.1) - -
0.023
°C/W
Note.1: If you use this value, Rth(f-a) should be measured just under the chips.
PM150CL1A120 PM150CL1A120 350G
* ”350G” is printed on the label
ELECTRICAL CHARACTERISTICS (Tj = 25°C, unless otherwise noted)
INVERTER PART
Limits
Symbol Parameter Conditions
Min. Typ. Max. Unit
Tj=25°C - 1.65 2.15
VCE(sat) Collector-Emitter Saturation
Voltage
VD=15V, IC=150A
VCIN=0V, Pulsed (Fig. 1) Tj=125°C - 1.85 2.35
V
VEC FwDi Forward Voltage -IC=150A, VD=15V, VCIN= 15V (Fig. 2) - 2.3 3.3
V
ton 0.3 0.8 2.0
trr - 0.3 0.8
tc(on) - 0.4 1.0
toff - 1.2 2.8
tc(off)
Switching Time
VD=15V, VCIN=0V15V
VCC=600V, IC=150A
Tj=125°C
Inductive Load (Fig. 3,4)
- 0.4 1.2
s
Tj=25°C - - 1
ICES Collector-Emitter Cut-off
Current VCE=VCES, VD=15V , VCIN=15V (Fig. 5) Tj=125°C - - 10
mA
Top View Top View
November2012
MITSUBISHI <INTELLIGENT POWER MODULES>
PM150CL1A120
FLAT-BASE TYPE
INSULATED PACKAGE
May 2009
4
–20 Tj 125°C
VD = 15V, VCIN = 15V (Note-2)
VD = 15V (Note-2)
Vth(ON)
Vth(OFF)
SC
toff(SC)
OT
OT(hys)
UV
UVr
IFO(H)
IFO(L)
tFO
Trip level
Hysteresis
Trip level
Reset level
–20 Tj 125°C, VD = 15V (Fig. 3,6)
VD = 15V (Fig. 3,6)
VD = 15V, VCIN = 15V
Applied between : UP-VUPC, VP-VVPC, WP-VWPC
UN • VN • WN-VNC
ID
°C
V
mA
ms
12
4
1.8
2.3
12.5
0.01
15
mA
Circuit Current
Input ON Threshold Voltage
Input OFF Threshold Voltage
Short Circuit Trip Level
Short Circuit Current Delay
Time
Over Temperature Protection
Supply Circuit Under-Voltage
Protection
Fault Output Current
Minimum Fault Output Pulse
Width
CONTROL PART
1.2
1.7
300
135
11.5
1.0
Parameter
Symbol Condition Max.
Min. Typ. Unit
Limits
6
2
1.5
2.0
0.2
20
12.0
12.5
10
1.8
(Note-2) Fault output is given only when the internal SC, OT & UV protections schemes of either upper or lower arm device operate to
protect it.
V
µs
VN1-VNC
V*P1-V*PC
A
3.5
3.5
Mounting part screw : M5
Main terminal part screw : M5
Symbol Parameter
Mounting torque
Weight
Condition Unit
N • m
N • m
g
Limits
Min. Typ. Max.
2.5
2.5
3.0
3.0
800
MECHANICAL RATINGS AND CHARACTERISTICS
RECOMMENDED CONDITIONS FOR USE
Recommended value Unit
Condition
Symbol Parameter
V
Applied across P-N terminals
Applied between : VUP1-VUPC, VVP1-VVPC
VWP1-VWPC, VN1-VNC (Note-3)
Applied between : UP-VUPC, VP-VVPC, WP-VWPC
UN • VN • WN-VNC
Using Application Circuit of Fig. 8
Supply Voltage
Control Supply Voltage
Input ON Voltage
Input OFF Voltage
PWM Input Frequency
800
15.0 ±1.5
0.8
9.0
20
VCC
VCIN(ON)
VCIN(OFF)
fPWM
VDV
V
kHz
(Note-3) With ripple satisfying the following conditions: dv/dt swing ±5V/µs, Variation 2V peak to peak
tdead Arm Shoot-through Blocking
Time For IPM’s each input signals (Fig. 7) 2.5 µs
±
5V/µs
2V
GND
15V
Detect Temperature of IGBT chip
November2012
MITSUBISHI <INTELLIGENT POWER MODULES>
PM150CL1A120
FLAT-BASE TYPE
INSULATED PACKAGE
May 2009
5
PRECAUTIONS FOR TESTING
1. Before applying any control supply voltage (VD), the input terminals should be pulled up by resistors, etc. to their corre-
sponding supply voltage and each input signal should be kept off state.
After this, the specified ON and OFF level setting for each input signal should be done.
2. When performing “SC” tests, the turn-off surge voltage spike at the corresponding protection operation should not be al-
lowed to rise above VCES rating of the device.
(These test should not be done by using a curve tracer or its equivalent.)
P, (U,V,W)
U,V,W, (N) U,V,W, (N)
VD (all)
IN
Fo
IN
Fo
VD (all)
VCIN
(0V)
Ic
V V
P, (U,V,W)
VCIN
(15V)
Ic
Fig. 7 Dead time measurement point example
Fig. 1 VCE(sat) Test Fig. 2 VEC, (VFM) Test
0V 1.5V 1.5V
1.5V
2V
2V
2V
0V
t
t
tdeadtdeadtdead
1.5V: Input on threshold voltage Vth(on) typical value, 2V: Input off threshold voltage Vth(off) typical value
IPM’ input signal VCIN
(Upper Arm)
IPM’ input signal VCIN
(Lower Arm)
10%
90%
trr
Irr
trtd(on)
tc(on) tc(off)
td(off)
VCIN
Ic
VCE
10%
10% 10%
90%
tf
(ton = td(on) + tr) (toff = td(off) + tf)
Fo
P
N
N
CS
CS
U,V,W
Vcc
Vcc
Ic
Ic
VD (all)
VD (all)
P
U,V,W
VCIN
VCIN
VCIN
(15V)
VCIN
(15V)
Fo
Fig. 3 Switching Time and SC Test Circuit Fig. 4 Switching Time Test Waveform
a) Lower Arm Switching
Signal input
(Upper Arm)
Signal input
(Lower Arm)
Signal input
(Upper Arm)
Signal input
(Lower Arm)
b) Upper Arm Switching
VCIN
Fig. 5 ICES Test
Fig. 6 SC Test Waveform
SC Trip
Short Circuit Current
toff(SC)
VD (all) U,V,W, (N)
P, (U,V,W) A
Pulse VCE
VCIN
(15V) Ic
Fo
IN
Fo
Constant Current
Fo
Fo
November2012
MITSUBISHI <INTELLIGENT POWER MODULES>
PM150CL1A120
FLAT-BASE TYPE
INSULATED PACKAGE
May 2009
6
NOTES FOR STABLE AND SAFE OPERATION ;
Design the PCB pattern to minimize wiring length between opto-coupler and IPM’s input terminal, and also to minimize the
stray capacity between the input and output wirings of opto-coupler.
Connect low impedance capacitor between the Vcc and GND terminal of each fast switching opto-coupler.
Fast switching opto-couplers: tPLH, tPHL 0.8µs, Use High CMR type.
Slow switching opto-coupler: CTR > 100%
Use 4 isolated control power supplies (VD). Also, care should be taken to minimize the instantaneous voltage charge of the
power supply.
Make inductance of DC bus line as small as possible, and minimize surge voltage using snubber capacitor between P and N
terminal.
Use line noise filter capacitor (ex. 4.7nF) between each input AC line and ground to reject common-mode noise from AC line
and improve noise immunity of the system.
: Interface which is the same as the U-phase
Fig. 8 Application Example Circuit
OUT
Si
OT
OT
OT
OT
OT
OT
GNDGND
In
Vcc
U
V
W
N
NC
NC
P
M
IF
+
OUT
Si
GNDGND
In
Vcc
OUT
Si
GNDGND
In
Vcc
Fo
OUT
Si
GNDGND
In
Fo
Vcc
OUT
Si
GNDGND
In
Fo
Vcc
OUT
Si
GND
GND
In
Fo
Vcc
VWP1
WFo
WP
VWPC
UN
VN
VN1
WN
VNC
1.5k
Fo
VVP1
VP
VVPC
0.1µ
1k
0.1µ
0.1µ
20k
20k
20k
10µ
10µ
10µ
20k 10µ
0.1µ
VUP1
UP
VUPC
IF
IF
IF
5V
V
D
VD
VD
VD
1.5k
Fo
VFo
1.5k
Fo
UFo
1.5k
November2012
MITSUBISHI <INTELLIGENT POWER MODULES>
PM150CL1A120
FLAT-BASE TYPE
INSULATED PACKAGE
May 2009
7
PERFORMANCE CURVES
10
0
10
1
23 57
10
2
23 57
10
3
23 57
00
20
40
60
80
100
120
140
160
180
0.5 1.0 1.5 2.0
00.5 1.0 1.5 2.0 2.5
00
0.4
0.8
1.2
1.6
2.0
0.2
0.6
1.0
1.4
1.8
50 100 150 200
10
–1
10
0
2
3
4
5
7
10
1
2
3
4
5
7
10
–1
10
0
2
3
4
5
7
10
1
2
3
4
5
7
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
12 13 14 15 16 17 18
Tj = 25°C
13V
VD = 17V VD = 15V
Tj = 25°C
Tj = 125°C
VD = 15V
Tj = 25°C
Tj = 125°C
IC = 150A
Tj = 25°C
Tj = 125°C
ton
toff
VCC = 600V
VD = 15V
Tj = 25°C
Tj = 125°C
Inductive load
VCC = 600V
VD = 15V
Tj = 25°C
Tj = 125°C
Inductive load
tc(on)
tc(off)
OUTPUT CHARACTERISTICS
(TYPICAL)
COLLECTOR CURRENT I
C
(A)
COLLECTOR-EMITTER VOLTAGE V
CE
(V)
COLLECTOR-EMITTER
SATURATION VOLTAGE V
CE(sat)
(V)
COLLECTOR-EMITTER SATURATION
VOLTAGE (VS. Ic) CHARACTERISTICS
(TYPICAL)
COLLECTOR CURRENT I
C
(A)
COLLECTOR-EMITTER SATURATION
VOLTAGE (VS. VD) CHARACTERISTICS
(TYPICAL)
COLLECTOR-EMITTER
SATURATION VOLTAGE VCE(sat)
(V)
CONTROL POWER SUPPLY VOLTAGE V
D
(V)
COLLECTOR RECOVERY CURRENT –I
C
(A)
EMITTER-COLLECTOR VOLTAGE V
EC
(V)
DIODE FORWARD CHARACTERISTICS
(TYPICAL)
SWITCHING TIME ton, toff (µs)
SWITCHING TIME (ton, toff) CHARACTERISTICS
(TYPICAL)
COLLECTOR CURRENT I
C
(A)
SWITCHING TIME (tc(on), tc(off)) CHARACTERISTICS
(TYPICAL)
SWITCHING TIME tc(on), tc(off) (µs)
COLLECTOR CURRENT I
C
(A)
15V
10
1
10
0
10
2
5
7
10
3
2
3
5
7
2
3
5
7
2
3
10
0
10
1
23 57
10
2
23 57
10
3
23 57
November2012
MITSUBISHI <INTELLIGENT POWER MODULES>
PM150CL1A120
FLAT-BASE TYPE
INSULATED PACKAGE
May 2009
8
0
2.0
4.0
6.0
8.0
10.0
12.0
14.0
16.0
18.0
20.0
050 100 150 200 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
0
20.0
40.0
60.0
80.0
100.0
10.0
30.0
50.0
70.0
90.0
040 80 120 16020 60 100 140 180200
0
2.5
5.0
7.5
10.0
12.5
15.0
050 100 150 200
E
on
E
off
V
CC
= 600V
V
D
= 15V
T
j
= 25°C
T
j
= 125°C
Inductive load
V
CC
= 600V
V
D
= 15V
T
j
= 25°C
T
j
= 125°C
Inductive load
t
rr
I
rr
V
CC
= 600V
V
D
= 15V
T
j
= 25°C
T
j
= 125°C
Inductive load
COLLECTOR CURRENT I
C
(A)
SWITCHING LOSS CHARACTERISTICS
(TYPICAL)
SWITCHING LOSS E
on
, E
off
(mJ/pulse)
COLLECTOR REVERSE CURRENT –I
C
(A)
SWITCHING RECOVERY LOSS CHARACTERISTICS
(TYPICAL)
SWITCHING LOSS E
rr
(mJ/pulse)
DIODE REVERSE RECOVERY CHARACTERISTICS
(TYPICAL)
COLLECTOR REVERSE CURRENT –I
C
(A)
REVERSE RECOVERY TIME t
rr
(µs)
REVERSE RECOVERY CURRENT l
rr
(A)
00
20.0
40.0
60.0
80.0
100.0
120.0
140.0
5 10 15 20 25
N-side
P-side
V
D
= 15V
T
j
= 25°C
T
j
= 125°C
f
c
(kHz)
I
D
VS. f
c
CHARACTERISTICS
(TYPICAL)
I
D
(mA)
0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0 V
D
= 15V
–50 0 50 100 150
SC TRIP LEVEL VS. T
j
CHARACTERISTICS
(TYPICAL)
T
j
(°C)
SC
0
2
4
6
8
10
12
14
16
18
20
–50 0 50 100 150
UV
t
UVr
T
j
(°C)
UV TRIP LEVEL VS. T
j
CHARACTERISTICS
(TYPICAL)
UV
t
/UV
r
November2012
MITSUBISHI <INTELLIGENT POWER MODULES>
PM150CL1A120
FLAT-BASE TYPE
INSULATED PACKAGE
May 2009
9
23 57
10
–3
23 5723 57
10
–4
23 57
10
1
23 57
10
0
10
–1
23 57
10
–2
10
–5
10
–2
10
–3
10
–1
5
7
10
0
2
3
5
7
2
3
5
7
2
3
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(TYPICAL)
NORMALIZED TRANSIENT
THERMAL IMPEDANCE Z
th(j-c)
t(sec)
Single Pulse
IGBT part;
Per unit base
= R
th(j-c)
Q = 0.15°C/W
FWDi part;
Per unit base
= R
th(j-c)
F = 0.23°C/W
November2012