Preview Products File Number 2277 Avalanche-Energy-Rated N-Channel Power MOSFETs 21 A and 19 A, 500 V loston) = 0.27 Q and 0.35 Q Features: Single pulse avalanche energy rated a SOA is power-dissipation limited a Nanosecond switching speeds a Linear transfer characteristics a High input impedance The IRF460 and IRF462 are advanced power MOSFETs designed, tested, and guaranteed to withstand a specified level of energy in the breakdown avalanche mode of opera- tion. These are n-channel enhancement-mode silicon-gate power field-effect transistors designed for applications such as switching regulators, switching converters, motor drivers, relay drivers, and drivers for high-power bipolar switching transistors requiring high speed and low gate-drive power. These types can be operated directly from integrated circuits. The IRF-types are supplied in the JEDEC TO-204AE metal package. ABSOLUTE MAXIMUM RATINGS IRF460, IRF462 N-CHANNEL ENHANCEMENT MODE o g2cS- 42658 TERMINAL DIAGRAM TERMINAL DESIGNATION DRAIN SOURCE _ (FLANGE } GATE 92CS- 37801 JEDEC TO-204AE Parameter IRF460 tRFA62 Units Ip @ Te = 25C Continuous Drain Current 21 19 A Ip @ Te = 100C Continuous Drain Current 4 42 A lom Pulsed Drain Current 4 76 A Pp @ Tc = 25C Max. Power Dissipation 300 Ww Linear Derating Factor 2.4 wc Ves Gate-to-Source Voltage +20 v Eas Single Pulse Avalanche Energy @ 1200 mJ (See Fig. 14) I AR Avalanche Current 21 A Ty Operating Junction 55 to 150 TstG Storage Temperature Range Lead Temperature 300 (0.063 in. (1.6mm) from case for 10s) C 11-11 Preview Products IRF460, IRF462 ELECTRICAL CHARACTERISTICS At Case Temperature (T,) = 25 C Uniess Otherwise Specified Parameter Type Min. Typ. Max. ; Units Test Conditions BVosg _Drain-to-Source Breakdown Voltage ALL 500 _ ~ v Ves = OV, Ip = 250 nA R Static Drain-to-Source tRF460 - 0.24 0.27 DSton) On-State Resistance @ 2 Ves = 10V, Ip = 124 IRF462 - 0.27 0.35 \pion) ~- On-State Drain Current @ \RF460 | 21 - - A Vos > 'pion) X Fasten) Max. IRF462] 19 ~ ~ Ves = 10V Vesith) Gate Threshold Voitage ALL 2.0 ~ 4.0 Vv Vos = Vas: lp = 250nA Sts Forward Transconductance @ ALL 13 20 _ $@) | Vps = SOV, Ips = 12A Joss Zero Gate Voitage Drain Current ALL = _ 250 yA Vps = Max. Rating, Vgg = OV - _ 1000 Vps = 0.8 x Max. Rating Vos = OV. Ty = 125C loss Gate-to-Source Leakage Forward ALL _ - 100 nA Ves = 20V loss Gate-to-Source Leakage Reverse ALL _ _ 100 nA Ves = -20V Qg _ Total Gate Charge ALL ~ 120 | 190 | nC | Vgg = 10V, Ip = 214 Vos = 0.8 x Max. Rating Qgs Gate-to-Source Charge ALL ~ 18 27 nc See Fig. 16 Ogg Gate-to-Drain (Miller) Charge ALL 62 93 nc (independent of operating temperature) taion) Turn-On Delay Time ALL - 23 35 ns Vop = 250V, Ip = 214, Rg = 4.30 tr Rise Time ALL - 8 120 ns Rp = 128 tdiof - Turn-Off Delay Time ALL ~ 85 130 as See Fig. 15 tr Fall Time ALL = 65 98 ns (Independent of operating temperature) Lp Internal Drain Inductance ALL - 5.0 ~ nH Measured from the drain Modified MOSFET symboi lead, 6mm (0.25 in.) from showing the internal package to center of die. inductances. lg Internal Source Inductance ALL _ 13 - aw Measured from the source lead, 6mm (0.25 in.) from 6. package to source bonding pad. Cigg Input Capacitance ALL = 4100 = pF Ves = 0V. Vos = 25V Coss Output Capacitance ALL - 480 - pF f = 1.0 MHz Criss Reverse Transfer Capacitance ALL = 84 = pF See Fig. 10 Rihuc Junction-to-Case ALL - _ 0.42 | C/W Rings Case-to-Sink ALL - 0.15 ~ C/W | Mounting surface flat, smooth, and greased Ringa Junction-to-Ambient ALL ~ - 30 C/W | Typical socket mount @ Repetitive Rating; Pulse width limited by @ Pulse width < 300 us; Duty Cycle < 2% maximum junction temperature {see figure 5) Refer to current HEXFET reliability report @ Vpp = SOV Starting Ty = 25C, L = 49 pH, Rg = 250, Peak IL = 214. SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS Parameter Type Min. Typ. Max. Units Test Conditions Ig Continuous Source Current ALL - - 21 A Modified MOSFET symboi showing the integral (Body Diode) Reverse p-n junction rectifier. A isn, Pulsed Source Current ALL ~ - 84 A (Body Diode) $ Vso Diode Forward Voltage ALL _ = 1.8 Vv Ty = 25C, Ig = 214, Veg = OV try Reverse Recovery Time ALL 280 580 1200 ns Ty = 25C, Ip = 2A, didt = 100 Ais Ora Reverse Recovery Charge ALL 3.8 81 18 ze ton Forward Turn-On Time ALL Intrinsic turn-on time is negtigible. Turn-on speed is substantially controlled by Lg + Lp. 11-12 Preview Products IRF460, IRF462 Vos 2 50V SE TEST Ip. ORAIN CURRENT (AMPERES) Tp, ORAIN CURRENT (AMPERES) ov { 4.0V o 2 4 6 8 10 50 1c0 150 200 250 Vos: ORAIN-TO-SOURCE VOLTAGE (VOLTS) Veg: GATE~TO-SOURCE VOLTAGE (VOLTS) Fig. 1 - Typical output characteristics. Fig. 2 - Typical transfer characteristics. OPERATION IN THIS AREA LIMITED BY Fos (ON) iRF460 IRF 462 (RF460 (RF462 Tp. ORAIN CURRENT {AMPERES) Ips ORAIN CURRENT (AMPERES) To =25C Ty=150C SINGLE PULSE 0 4 8 12 16 20 1 5 1 2 5 402 2 5 103 Vpg ORAIN-TO-SOURCE VOLTAGE (VOLTS) Vpg: DRAIN-TO-SOURCE VOLTAGE (VOLTS) 92GS-44230 Fig. 3 - Typical saturation characteristics. Fig. 4 - Maximum safe operating area. 1 1 4 HLT -2 . 10 . | je_t2 NOTES: 1. DUTY FACTOR, D=t,/to 2. PEAK Ty=Pom X Zenuc t+ Te 1073 THERMAL RESPONSE (Zth yc) 1075 1074 1073 1072 0.1 4 10 ty. RECTANGULAR PULSE DURATION (SECONDS) Fig. 5 - Maximum effective transient thermal impedance, junction-to-case vs. pulse duration. 11-13 Preview Products IRF460, IRF462 11-14 40 Vpg 2 SOV SE TEST 32 (STEMENS) =250 24 Ty=25C + cqeqoe 16 T y=150C TRANSCONDUC TANCE SF. 9 8 16 24 32 40 Ip. DRAIN CURRENT (AMPERES) Fig. 6 - Typical transconductance vs. drain current. BVogg. DRAIN-TO-SOURCE BREAKDOWN VOLTAGE (NORMALIZED) 0.7 560 -40 -20 0 20 40 60 80 100 120 140 160 Ty JUNCTION TEMPERATURE ( C) Fig. 8 - Breakdown voltage vs. temperature. 10000 = Cos + Cga- Cys SHORTED eC 8000 . 99 aor = Cys # Cys Cgg / (gg + Cag) c Cag + C & as * gg ws 6000 oa Zz Ogg} Ogg I VG GATE VOLTAGE CHARGE Fig. 16a - Basic gate charge waveform. IRF460, IRF462 (AMPERES) IRF 460 DRAIN CURRENT D 25 S30 75 100 125 1 Tc, CASE TEMPERATURE ( 9c) Fig. 13 - Maximum drain current vs. case temperature. a td(on) atott} Fig. 15b - Switching time waveforms. o +Vps ISOLATED UPPLY) -Vps 'g = ' CURRENT CURRENT SAMPLING SAMPLING RESISTOR RESISTOR Fig. 16b - Gate charge test circuit. 11-15