Rugged Power MOSFETs File Number 2003 IRF240R, IRF241R IRF242R, IRF243R Avalanche Energy Rated N-Channel:Power MOSFETs 16A and 18A, 200V, 150V fos(On) = 0.182 and 0.220 Features: @ Single pulse avalanche energy rated @ SOA is power-dissipation limited i Nanosecond switching speeds @ Linear transfer characteristics B High input Impedance The IRF240R, IRF241R, IRF242R and IRF243R are ad- vanced power MOSFETs designed, tested, and guaranteed to withstand a specified level of energy in the breakdown avalanche mode of operation. These are n-channel en- hancement-mode silicon-gate power field-effect transis- tors designed for applications such as switching regulators, switching converters, motor drivers, relay drivers, and driv- ers for high-power bipolar switching transistors requiring high speed and low gate-drive power. These types can be operated directly from integrated circuits. The IRF-types are supplied in the JEDEC TO-204AE steel package. Absolute Maximum Ratings TERMINAL DIAGRAM o 92CS-42658 N-CHANNEL ENHANCEMENT MODE TERMINAL DESIGNATION DRAIN SOURCE (FLANGE ) O GATE 92$-3780: JEDEC TO-204AE Parameter IRF240R IRF241R (RF242R IRF243R Units Vos Drain - Source Voltage @ 200 150 200 150 Vv Voca Drain - Gate Voltage (Ras = 20 KQ) @ 200 150 200 150 Vv lp @ Te = 26C Continuous Drain Current 18 18 16 16 A Ip @ Tc = 100C Continuous Drain Current W 1 10 10 A ton Pulsed Drain Current 72 72 64 64 A Ves Gate - Source Voltage +20 Vv Po @ Tc = 25C Max. Power Dissipation 125 (See Fig. 14) Ww Linear Derating Factor 1.0 (See Fig. 14) w/c Eas Single Pulse Avalanche Energy Rating @ 580 mj To Storage Temperature Range ~85 to 150 c Lead Temperature 300 (0.063 in. (1.6mm) from case for 10s) C 6-27Rugged Power MOSFETs IRF240R, IRF241R IRF242R, IRF243R Electrical Characteristics @ Tc = 25C (Unless Otherwise Specified) P Type Min. | Typ. | Max. | Units Test Conditions BVoss_ Drain - Source Breakdown Voltage IRF240R = IRF242R 200 _ _ Vv Ves = OV IRF241R = IRF243R 150 - _ v lob = 250A Vesin Gate Threshold Voltage ALL 2.0 = 4.0 Vv Vos = Vas, ln = 2502 A lass Gate-Source Leakage Forward ALL _ 100 nA Vas = 20V lass Gate-Source Leakage Reverse ALL = = -100 nA Vas = -20V loss Zero Gate Voltage Drain Current = _ 250 HA Vos = Max. Rating, Vas = OV ALL [| |= 71000 [A | Voe = Max. Rating x 0.8, Vas = OV, Te = 125C Iniom On-State Drain Current @ IRF240R| 4g _ _ A JRF241R Vos > Inter X Roston) max, Vas = 10V IRF242R | 4, _ _ A IRF243R Rosien Static Drain-Source On-State IRF240R 0.14 0.18 Q Resistance @ meee Vee = 10V, Ip = 10A IRF243R - 0.20 0.22 2 | Qts Forward Transconductance ALL 6.0 9.0 __| S$) | Vos > loion X Rostonmax, 'p = 10A Cis Input Capacitance ALL = 1275 = pF Vas = OV, Vos = 25V, f= 1.0 MHz Coss Output Capacitance ALL = 500 = pF See Fig. 10 Cras Reverse Transfer Capacitance ALL = 160 = pF tater) Turn-On Delay Time ALL _ 16 30 ns Voo = 75V, Ip = 10A, Zo = 4.72 t Rise Time ALL 27 60 ns See Fig. 17 tarom Turn-Off Delay Time ALL _ 40 80 ns (MOSFET switching times are essentially lt Fall Time ALL _ 31 60 ns independent of operating temperature.) Qs Total Gate Charge ALL _ 43 60 no Ves = 10V, lo = 22A, Vos = 0.8 Max. Rating. (Gate-Source Plus Gate-Drain) See Fig. 18 for test circuit. (Gate charge is Qe Gate-Source Charge ALL 16 _ nc essentially independent of operating ae SRA lee temperature.) OQoa Gate-Drain ("Miller") Charge ALL = 27 _ nc bo Internal Drain Inductance ALL _ 5.0 _ nH Measured between Modified MOSFET the contact screw on symbol showing the header that is closer to | internal device , source and gate pins inductances and center of die. Lo Ls Internai Source Inductance ALL _ 12.5 - nH Measured from the source pin, 6 mm S Ls (0.25 in.) from header and source $ bonding pad. aca areas Thermal Resistance RnJC_ Junction-to-Case ALL _ = 1.0 | C/W RnCS Case-to-Sink ALL = 0.1 = C/W_| Mounting surface flat, smooth, and greased. RJA _Junction-to-Ambient ALL = = 30 C/W | Free Air Operation Source-Drain Diode Ratings and Characteristics Is Continuous Source Current IRF240R| __ _ 18 A Modified MOSFET symbol D (Body Diode) IRF241R showing the integral IRF242R 16 A reverse P-N junction rectifier. IRF243R ~~ ~~ 6 Ism Pulse Source Current IRF240R} __ _ 72 A (Body Diode) @ IRF241R sacs apese IRF242R iRF243R| ~ | | % A Vsp Diode Forward Voltage @ IRF240R = _ - IRF241R > - 2.0 Vv Te = 25C, Is = 18A, Vas = OV IRF242R = = = IRF243R _ - 1.9 v Te = 25C, Is = 16A, Vas = OV te Reverse Recovery Time ALL =_ 650 _ ns T, = 150C, Ie = 18A, die/dt = 100A/us Qrr Reverse Recovered Charge ALL _ 41 = uc Ts = 150C, le = 18A, dir/dt = 100A/ys ton Forward Turn-on Time ALL Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by Ls + Lo. @ Ty = 25C to 150C. @ Pulse Test: Pulse width < 300us, Duty Cycle = 2%. @ Repetitive Rating: Pulse width limited by max. junction temperature. See Transient Thermal impedance Curve (Fig. 5). Voo = 50V, starting Ty = 25C, L = 2.7 MH, Ros = 502, Ipeak = 18A. See figures 15, 16. 6-28Rugged Power MOSFETs IRF240R, IRF241R IRF242R, IRF243R e s 00 jes PULSE TEST y = 4a PULSE TEST fl 1 1 Vos > 'D{on) * ADS(on) max. Jp, DRAIN CURRENT (AMPERES) a tp, GRAIN CURRENT (AMPERES) 0 10 20 30 rT) 50 Q 2 4 8 10 Vpg. GRAIN.TO-SOURCE VOLTAGE (VOLTS) Vgs, GATE TO-SQURCE VOLTAGE {VOLTS} Fig. 1 Typical Output Characteristics Fig. 2 Typical Transfer Characteristics 100 50 80 ja PULSE TEST 2p LARF240R, a 3 IRF242R, 3R = = = = 2 2 z z = = 5 5 c 5 = & = = = = 3 5S 2 3 3 2 z z = 10 5 5 2 3 Tc = 15C 9.5 F 1y = 1509C MAX Ric 10 Cow INGLE PI , 0.2 F SINGLE Pulse + IRE241A, 3A f IRF240R, 2A 0. a 1 2 3 4 5 192 5 10 26 50 100 2c 506 Vps. DRAIN-TO-SOURCE VOLTAGE (VOLTS) Vos, DRAIN-TO SOURCE VOLTAGE (VOLTS) Fig. 3 Typical Saturation Characteristics Fig. 4 Maximum Safe Operating Area o o aw a * 2 a SINGLE PULSE (TRANSIENT 1. puTY Factor.p= { THERMAL IMPEDANCE} R 2 2 a 2. PER UNIT BASE = Ryn yc = 100EG C/W 2 8 3. Tym - Te = Pom Ztnselt) Zmnscitl/ Runge. NORMALIZED EFFECTIVE TRANSIENT THEAMAL IMPEDANCE (PER UNIT 2 eS on s o toe 2 5 3 2 5 22 5 wt 2 5 10 2 5 10 ty, SQUARE WAVE PULSE DURATION (SECONDS) Fig. 5 Maxi Effective Transi: Thermal | d. , Juncti to-Case Vs. Pulse DurationRugged Power MOSFETs IRF240R, IRF241R IRF242R, IRF243R 6-30 9.0 a nu ~ Ot, TRANSCONDUCTANCE (SIEMENS) a 2 a #9 PULSE TEST Vas > Hotont * Rosion) max. o 8 16 ro) 32 4G |p, GRAIN CURRENT {AMPERES} Fig. 6 Typical Transconductance Vs. Drain Current 1.25 z = & R am OVnss, DRAIN-TO-SOURCE BREAKOOWN VOLTAGE (NORMALIZED) O78 40 0 40 80 120 180 Ty, JUNCTION TEMPERATURE (C) Fig. 8 Breakdown Voltage Vs. Temperature 400 a 6 10 16 620 Vig, OAAIN-TO-SQUACE VOLTAGE (VOLTS) Fig. 10 Typical Capacitance Vs, Drain-to-Source Voltage x 3 3 wn Ty = 15000 Ty = 2500 lpg. REVERSE DRAIN CURRENT (AMPERES) ws Q a4 oe V2 1 20 Vgp, SOURCE-TO-DRAIN VOLTAGE (VOLTS) Fig. 7 Typical Source-Drain Diode Forward Voltage = ~ x 2 in o Rosion). ORAIN-TO-SOURCE ON-STATE RESISTANCE (NORMALIZED) 0 Q 40 #0 120 160 Ty, JUNCTION TEMPERATURE (C} Fig. 9 Normalized On-Rasistance Vs. Temperature . } | ian Vine = 100V, IRF240R, 2429 ed Ip 22 FOR TEST CIRCUIT \t Ves. GATE-TO- SOURCE VOLTAGE (VOLTS) s Q,, TOTAL GATE CHARGE (nC) Fig. 11 Typical Gate Charge Vs. Gate-to-Source VoltageOS Vgs* 10V 03 02 e Le Veg = 20V = q Roston) MEASURED WITH CURRENT PULSE OF T { f- 2.0 us GURATION. INITIAL Ty = 25C. (HEATING EFFECT OF 2.0 us PULSE tS MINIMAL} 4 4 1 1 i i a4 Rosion). ORAIN TO-SOURCE ON RESISTANCE (OHMS) l 0 20 40 60 tg, DRAIN CURRENT (AMPERES) Fig. 12 Typical On-Resistance Vs. Drain Current 80 100 Pp, POWER DISSIPATION (WATTS) 0 20 40 60 ip. DRAIN CURRENT (AMPERES) Rugged Power MOSFETs IRF240R, IRF241R IRF242R, IRF243R 20 tRF240R, IRF242A, 243R, 0 25 50 18 100 Tc, CASE TEMPERATURE (4C} 125 150 Fig. 13 Maximum Drain Current Vs. Case Temperature 100 120 140 Tr. CASE TEMPERATURE {C} Fig. 14 Power Vs. Temperature Derating Curve VARY tp TO OBTAIN REQUIRED PEAK I + -Yop 92CS- 42659 Fig. 15 Unciamped Energy Test Circuit ADJUST Ry TO OBTAIN SPECIFIED Ip Fig. 17 Switching Time Test Circuit 92CS- 42660 Fig. 16 Uncilamped Energy Waveforms o os (ISOLATED SUPPLY} CURRENT REGULATOR SAME TYPE aS OUT tT lav y BATTERY LH 9 CURRENT SHUNT 'g CURRENY = SHUNT Fig. 18 Gate Charge Test Circuit 6-31