Si7057/8/9-A10 D IGITA L I 2 C TEMPERATURE S ENSOR Features High Accuracy Temperature Sensor Low Power Consumption 50 nA, standby current 0.35 C (max), 0 to 70 C Factory-calibrated Si7058: 0.5 C (max), 0 to 70 C 2 I C Interface Si7059: 1.0 C (max), 0 to 70 C Si7057: 2 -40 to +125 C operating range Pin-selectable I C addresses 2x2 mm QFN package Low Voltage Operation (1.8 V) Excellent long term stability 14-bit resolution Applications Mobile smartphones and tablets Consumer electronics HVAC/R White goods Ordering Information: See page 17. Asset and goods tracking Thermostats Micro-environments/data centers Indoor weather stations Pin Assignments Description DNC The Si7057/8/9 I2C Temperature Sensors are monolithic CMOS ICs that integrate temperature sensor elements, an analog-to-digital converter, signal processing, calibration data, and an I2C interface. The temperature sensors are factory-calibrated and the calibration data is stored in the on-chip non-volatile memory. This ensures that the sensors are fully interchangeable, with no calibration or software changes required. The Si7057/8/9 devices are available in a 2x2 mm DFN package and are reflow solderable. The Si7057/8/9 sensors offer an accurate, low-power, factory-calibrated digital solution ideal for measuring temperature in applications ranging from HVAC/R and asset tracking to industrial and consumer platforms. VDD 1 SCL 2 6 3 5 GND 4 SDA ADD Top View Patent Protected. Patents pending Rev. 1.1 4/17 Copyright (c) 2017 by Silicon Laboratories Si7057/8/9-A10 Si7057/8/9-A10 Functional Block Diagram Vdd Si705x 1.25V Ref Temp Sensor Calibration Memory Control Logic ADC I2C Interface GND 2 ADD Rev. 1.1 SDA SCL Si7057/8/9-A10 TABLE O F C ONTENTS Section Page 1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 2. Typical Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 3. Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 5. I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 5.1. Issuing a Measurement Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5.2. Measuring Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5.3. Firmware Revision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5.4. Electronic Serial Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 6. Pin Descriptions: Si7057/8/9 (Top View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 7. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 8. Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 8.1. Package Outline: 2x2 6-pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 9. PCB Land Pattern and Solder Mask Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 10. Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 10.1. Si7057/8/9 Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 10.2. Top Marking Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 11. Additional Reference Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 Rev. 1.1 3 Si7057/8/9-A10 1. Electrical Specifications Unless otherwise specified, all min/max specifications apply over the recommended operating conditions. Table 1. Recommended Operating Conditions Parameter Symbol Power Supply Operating Temperature Test Condition Min Typ Max Unit VDD 1.67 -- 1.98 V TA -40 -- +125 C Table 2. General Specifications 1.67 VDD 1.98 V; TA = -40 to +125 C unless otherwise noted. Parameter Symbol Test Condition Min Typ Max Unit Input Voltage High VIH ADD, SCL, SDA pins 0.7xVDD -- -- V Input Voltage Low VIL ADD, SCL, SDA pins -- -- 0.3xVDD V Input Voltage Range VIN SCL, SDA pins with respect to GND 0.0 -- VDD+2 V ADD pin with respect to GND 0.0 -- VDD+0.3 V IIL ADD, SCL, SDA pins -- -- 1 A Output Voltage Low VOL SDA pin; IOL = 1.5 mA -- -- 0.4 V Current Consumption IDD Normal Mode, Temperature conversion in progress, first step1 -- 245 288 A Normal Mode, Temperature conversion in progress, second step1 -- 106 145 A Standby, -40 to +85 C2 -- 0.05 0.56 A Standby, -40 to +125 C2 -- 0.05 5.2 A Peak IDD during powerup3 -- 4 5.1 mA Peak IDD during I2C operations4 -- 3.5 4 mA After writing to user registers5 -- 11.6 17 A Input Leakage Notes: 1. Total conversion time is first-step time plus second-step time. 2. No conversion or I2C transaction in progress. Typical values measured at 25 C. 3. Occurs once during powerup. Duration is <5 msec. 4. Occurs during I2C commands for Reset, Read/Write User Registers, Read EID, and Read Firmware Version. Duration is <100 s when I2C clock speed is >100 kHz (>200 kHz for 2-byte commands). 5. IDD after a user register write. Initiating any other subsequent I2C transaction on the same bus (such as a user register read, starting an RH measurement, or traffic directed at other I2C devices) will transition the device to standby mode. 4 Rev. 1.1 Si7057/8/9-A10 Table 2. General Specifications (Continued) 1.67 VDD 1.98 V; TA = -40 to +125 C unless otherwise noted. Parameter Conversion Time1 Powerup Time Symbol Test Condition tCONV tPU Min Typ Max Unit Normal Mode, Temperature conversion first step 3.7 6 ms Fast Mode, Temperature conversion first step 0.9 1.5 ms Normal or Fast Mode, Temperature conversion second step 2.5 4.0 ms From VDD 1.67 V to ready for a conversion, 25 C -- 10 15 ms From VDD 1.67 V to ready for a conversion, full temperature range -- -- 50 ms After issuing a software reset command -- 1.2 2.0 ms Notes: 1. Total conversion time is first-step time plus second-step time. 2. No conversion or I2C transaction in progress. Typical values measured at 25 C. 3. Occurs once during powerup. Duration is <5 msec. 4. Occurs during I2C commands for Reset, Read/Write User Registers, Read EID, and Read Firmware Version. Duration is <100 s when I2C clock speed is >100 kHz (>200 kHz for 2-byte commands). 5. IDD after a user register write. Initiating any other subsequent I2C transaction on the same bus (such as a user register read, starting an RH measurement, or traffic directed at other I2C devices) will transition the device to standby mode. Rev. 1.1 5 Si7057/8/9-A10 Table 3. I2C Interface Specifications1 1.67 VDD 1.98 V; TA = -40 to +125 C unless otherwise noted. Parameter Symbol Test Condition Min Typ Max Unit Hysteresis VHYS High-to-low versus low-to-high transition 0.05 x VDD -- -- V SCLK Frequency2 fSCL -- -- 400 kHz SCL High Time tSKH 0.6 -- -- s SCL Low Time tSKL 1.3 -- -- s Start Hold Time tSTH 0.6 -- -- s Start Setup Time tSTS 0.6 -- -- s Stop Setup Time tSPS 0.6 -- -- s Bus Free Time tBUF 1.3 -- -- s SDA Setup Time tDS 100 -- -- ns SDA Hold Time tDH 100 -- -- ns SDA Valid Time tVD;DAT From SCL low to data valid -- -- 0.9 s tVD;ACK From SCL low to data valid -- -- 0.9 s 50 -- -- ns SDA Acknowledge Valid Time Suppressed Pulse Width3 Between Stop and Start tSP Notes: 1. All values are referenced to VIL and/or VIH. 2. Depending on the conversion command, the Si7057/8/9 may hold the master during the conversion (clock stretch). At above 300 kHz SCL, the Si7057/8/9 may hold the master briefly for user register and device ID transactions. At the highest I2C speed of 400 kHz the stretching will be <50 s. 3. Pulses up to and including 50 ns will be suppressed. tSKH 1/fSCL tSKL tSP SCL tBUF tSTH tDS D7 SDA D6 tDH D5 D0 tSPS R/W ACK Start Bit Stop Bit tVD : ACK tSTS Figure 1. I2C Interface Timing Diagram 6 Rev. 1.1 Si7057/8/9-A10 Table 4. Temperature Sensor 1.67 VDD 1.98 V; TA = -40 to +125 C unless otherwise noted. Parameter Symbol Test Condition Min Typ Max Unit -40 -- +125 C tA =30 C, Si7057 -- 0.2 0.35 C tA =30 C, Si7058 -- 0.25 0.5 C tA =30 C, Si7059 -- 0.5 1.0 C -40 < tA < 125 C -- Normal -- 0.03 -- C RMS Fast -- 0.09 -- C RMS Unmounted device -- 0.7 -- s Si7057/8/9-EB -- 5.1 -- s -- < 0.01 -- Operating Range Accuracy 1 Repeatability/Noise 2 Response Time3 63% Long Term Stability Figure 2 Figure 3 C C/Yr Notes: 1. Normal conversion time. 2. 3-sigma measurement deviation. 3. Time to reach 63% of final value in response to a step change in temperature. Actual response time will vary dependent on system thermal mass and air-flow. Max Temperature Accuracy Typical Temperature Accuracy Si7058 Si7057 Si7059 Temperature Measurement Error (+/- Temperature Measurement Error (+/- Si7057 1.4 1.3 1.2 1.1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 -40 -30 -20 -10 0 10 20 30 40 50 Temperature ( 60 70 80 90 100 110 120 -40 Figure 2. Typical Temperature Accuracy Si7058 Si7059 1.4 1.3 1.2 1.1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 -30 -20 -10 0 10 20 30 40 50 Temperature ( 60 70 80 90 100 110 120 Figure 3. Max Temperature Accuracy Rev. 1.1 7 Si7057/8/9-A10 Table 5. Thermal Characteristics Parameter Symbol Test Condition QFN-6 Unit Junction to Air Thermal Resistance JA JEDEC 2-Layer Board, No Airflow 173 C/W Junction to Air Thermal Resistance JA JEDEC 2-Layer Board, 1 m/s Airflow 153 C/W Junction to Air Thermal Resistance JA JEDEC 2-Layer Board, 2 m/s Airflow 146 C/W Junction to Case Thermal Resistance JC JEDEC 2-Layer Board 84 C/W Junction to Board Thermal Resistance JB JEDEC 2-Layer Board 114 C/W Table 6. Absolute Maximum Ratings1,2 Parameter Min Typ Max Unit Ambient temperature under bias -55 -- 125 C Storage Temperature -65 -- 150 C Voltage on I/O pins -0.3 -- VDD+2.0 V V Voltage on VDD with Respect to GND -0.3 -- 2.3 V HBM 2 kV CDM 1.25 kV MM 250 V ESD Tolerance Symbol Test Condition Notes: 1. Absolute maximum ratings are stress ratings only, operation at or beyond these conditions is not implied and may shorten the life of the device or alter its performance. 2. Special handling considerations apply; see application note, "AN607: Si70xx Humidity and Temperature Sensor Designer's Guide". 8 Rev. 1.1 Si7057/8/9-A10 2. Typical Application Circuit The primary function of the Si7057/8/9 is to measure temperature. Figure 4 demonstrates the typical application circuit to achieve this function. Pin 6 may be left unconnected or tied to VDD. 1.67 to 1.98V C1 0.1F R1 10K 1 VDD 6 3 DNC SCL ADD SDA Si705x 2 4 R2 10K SCL SDA GND 5 Figure 4. Typical Application Circuit for Temperature Measurement Rev. 1.1 9 Si7057/8/9-A10 3. Bill of Materials Table 7. Typical Application Circuit BOM for Temperature Measurement 10 Reference Description Mfr Part Number Manufacturer R1 Resistor, 10 k, 5%, 1/16W, 0402 CR0402-16W-103JT Venkel R2 Resistor, 10 k, 5%, 1/16W, 0402 CR0402-16W-103JT Venkel C1 Capacitor, 0.1 F, 6.3 V, X7R, 0402 C0402X7R6R3-104MNP Venkel U1 IC, Digital Temperature Sensor Si7057/8/9-A10-IM Silicon Labs Rev. 1.1 Si7057/8/9-A10 4. Functional Description Vdd Si705x 1.25V Ref Temp Sensor Calibration Memory Control Logic ADC I2C Interface GND SDA SCL ADD Figure 5. Si7057/8/9 Block Diagram The Si7057/8/9 are digital temperature sensors that integrate a sensor element, an analog-to-digital converter, signal processing, calibration, polynomial non-linearity correction, and an I2C interface all in a single chip. The Si7057/8/9 are factory-calibrated with the calibration data stored in on-chip non-volatile memory. This ensures that the sensor is fully interchangeable, with no recalibration or changes to software required. The Si7057/8/9 offer low power, high accuracy, calibrated and stable solution ideal for a wide range of temperature applications including medical and instrumentation, high-reliability automotive and industrial systems, and cost-sensitive consumer electronics. Rev. 1.1 11 Si7057/8/9-A10 5. I2C Interface The Si7057/8/9 communicates with the Host controller over a digital I2C interface. The 7-bit base slave address is pin-selectable to be either 0x71 (ADD pin low) or 0x72 (ADD pin high). Table 8. I2C Slave Address Byte Bit A6 A5 A4 A3 A2 A1 A0 R/W Value when ADD Low 1 1 1 0 0 0 1 1/0 Value when ADD High 1 1 1 0 0 1 0 1/0 Master I2C devices communicate with the Si7057/8/9 using a command structure. The commands are listed in the I2C command table. Commands other than those documented below are undefined and should not be sent to the device. Table 9. I2C Command Table 12 Command Hold/No Hold Mode Hex Code Read Electronic ID: Two Separate IDs with checksum -- 0xFA 0x0F Read Electronic ID: Two Separate IDs with checksum -- 0xFC 0xC9 Soft Reset -- 0xFE Temperature Measurement: Normal Mode Hold Mode 0x7C 0xA2 Temperature Measurement: Normal Mode No Hold Mode 0x78 0x66 Temperature Measurement: Fast Mode Hold Mode 0x64 0x58 Temperature Measurement: Fast Mode No Hold Mode 0x60 0x9C Query Device Device will ACK command, No Functional Effect or response 0x80 0x5D Query Device Response 0x00 0x47 0x2B 0xEF 0xC8 Read Firmware Revision -- 0x84 0xF1 Rev. 1.1 Si7057/8/9-A10 5.1. Issuing a Measurement Command The measurement commands instruct the Si7057/8/9 to perform temperature measurements. The procedure to issue any one of these commands is identical. While the measurement is in progress, the option of either clock stretching (Hold Master Mode) or Not Acknowledging read requests (No Hold Master Mode) is available to indicate to the master that the measurement is in progress; the chosen command code determines which mode is used. A checksum byte is returned from the slave for use in checking for transmission errors. The checksum byte will follow the least significant measurement byte. The checksum byte is calculated using a CRC generator polynomial of x8 + x5 + x4 + 1, with an initialization of 0xFC. Table 10. I2C Bit Descriptions Name Symbol Description START S SDA goes low while SCL high. STOP P SDA goes high while SCL high. Repeated START Sr SDA goes low while SCL high. It is allowable to generate a STOP before the repeated start. SDA can transition to high before or after SCL goes high in preparation for generating the START. READ R Read bit = 1 WRITE W Write bit = 0 All other bits -- SDA value must remain high or low during the entire time SCL is high (this is the set up and hold time in Figure 1). In the I2C sequence diagrams in the following sections, bits produced by the master and slave are color coded as shown: Sequence to Perform a Measurement and Read Back Result (Hold Mode) Slave Address S R A W Command Byte 1 A Clock Stretch During Measurement Temp MSB Command Byte 2 A A Temp LSB A Sr Slave Address Checksum* A NA P *Note: Reading the checksum is optional. If the checksum is not needed, then NA and STOP after the Temp LSB. Sequence to Perform a Measurement and Read Back Result (No Hold Mode) Slave Address S R NA1 W Sr Slave Address Command Byte 1 A R A Command Byte 2 A Temp MSB A Temp LSB A A Sr Slave Address Checksum2 NA P Notes: 1. Device will NACK the slave address byte until conversion is complete. 2. Reading the checksum is optional. If the checksum is not needed then NA and STOP after the Temp LSB. Rev. 1.1 13 Si7057/8/9-A10 The Si7057/8/9 devices are software-compatible with Si7034 relative humidity and temperature sensor. If an ACK is sent to the Si7057/8/9 after the temp checksum, two more data bytes can be read from the Si7057/8/9 along with a second checksum value. The data contained within these two data bytes is undefined, but the 2nd checksum value will be correct for the data that is contained within the two additional data bytes. 5.2. Measuring Temperature The results of the temperature measurement may be converted to temperature in degrees Celsius (C) using the following expression: Temp_CodeT = - 45 + 175 --------------------------------16 2 Where: Temperature (C) is the measured temperature value in C Temp_Code is the 16-bit word returned by the Si7057/8/9 5.3. Firmware Revision The internal firmware revision can be read with the following I2C transaction: S Slave Address A W R 0x84 A A FWREV 0xF1 A NA The values in this field are encoded as follows: 0x10 = Firmware version 1.0 14 Rev. 1.1 A P Sr Slave Address Si7057/8/9-A10 5.4. Electronic Serial Number The Si7057/8/9 provides a serial number individualized for each device that can be read via the I2C serial interface. Two I2C commands are required to access the device memory and retrieve the complete serial number. The command sequence, and format of the serial number response is described in the figure below: Master Slave First access: S Slave Address W ACK 0xFA ACK 0X0F ACK S Slave Address R ACK SNA_3 ACK CRC ACK SNA_2 ACK CRC ACK SNA_1 ACK CRC ACK SNA_0 ACK CRC NACK S Slave Address W ACK 0xFC ACK 0XC9 ACK S Slave Address R ACK SNB_3 ACK SNB_2 ACK CRC ACK SNB_1 ACK SNB_0 ACK CRC NACK P 2nd Access: P The format of the complete serial number is 64-bits in length, divided into 8 data bytes. The complete serial number sequence is shown below: SNA_3 SNA_2 SNA_1 SNA_0 SNB_3 SNB_2 SNB_1 SNB_0 The SNB3 field contains the device identification to distinguish between the different Silicon Labs temperature devices. The value of this field maps to the following devices according to this table: 0x00 or 0xFF engineering samples 0x39 = Si7057 0x40 = Si7058 0x41 = Si7059 Rev. 1.1 15 Si7057/8/9-A10 6. Pin Descriptions: Si7057/8/9 (Top View) DNC VDD 1 SCL 2 6 3 5 GND 4 SDA ADD Pin Name Pin # VDD 1 Power. This pin is connected to the power supply on the circuit board. SCL 2 I2C clock ADD 3 Tie this pin low for I2C address 0x71, or tie this pin high for address 0x72. SDA 4 I2C data GND 5 Ground. This pin is connected to ground on the circuit board. DNC 6 Leave unconnected, or tie to VDD. 16 Pin Description Rev. 1.1 Si7057/8/9-A10 7. Ordering Guide Table 11. Device Ordering Guide Part Number Description Max. Accuracy Pkg Packing Format Si7057-A10-IM Digital temperature sensor 0.35 C QFN 6 Cut Tape Si7057-A10-IMR Digital temperature sensor 0.35 C QFN 6 Tape and Reel Si7058-A10-IM Digital temperature sensor 0.5 C QFN 6 Cut Tape Si7058-A10-IMR Digital temperature sensor 0.5 C QFN 6 Tape and Reel Si7059-A10-IM Digital temperature sensor 1.0 C QFN 6 Cut Tape Si7059-A10-IMR Digital temperature sensor 1.0 C QFN 6 Tape and Reel Rev. 1.1 17 Si7057/8/9-A10 8. Package Outline 8.1. Package Outline: 2x2 6-pin QFN Figure 6 illustrates the package details for the Si7057/8/9. Figure 6. Si7057/8/9 Package Drawing Table 12. Package Dimensions Dimension Min Nom Max A 0.70 0.75 0.80 b 0.30 0.35 0.40 D 2.00 BSC E 2.00 BSC e 1.00 BSC D2 0.60 0.70 0.80 E2 1.50 1.60 1.70 g 0.20 0.25 0.30 L 0.30 0.35 0.40 aaa 0.10 bbb 0.10 ccc 0.08 ddd 0.10 Notes: 1. All dimensions shown are in millimeters (mm). 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 18 Rev. 1.1 Si7057/8/9-A10 9. PCB Land Pattern and Solder Mask Design Figure 7. PCB Land Pattern Dimensions Table 13. PCB Land Pattern Dimensions Symbol mm C1 2.00 E1 1.00 E2 0.90 X1 0.40 Y1 0.75 Z 0.80 Notes: General 1. All dimensions shown are in millimeters (mm). 2. This Land Pattern Design is based on the IPC-7351 guidelines. 3. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm. Solder Mask Design 4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 m minimum, all the way around the pad. Stencil Design 5. A stainless steel, laser-cut and electropolished stencil with trapezoidal walls should be used to assure good solder paste release. 6. The stencil thickness should be 0.125 mm (5 mils). 7. The ratio of stencil aperture to land pad size should be 1:1 for all pads. Card Assembly 8. A No-Clean, Type-3 solder paste is recommended. 9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. Rev. 1.1 19 Si7057/8/9-A10 10. Top Marking 10.1. Si7057/8/9 Top Marking 10.2. Top Marking Explanation 20 Mark Method: Laser Font Size: 0.40 mm Line 1 Marking: 705 = Device Code Line 2 Marking: TTTT = Manufacturing Trace Code Digits 1-4 Line 3 Marking: Circle = 0.35 mm Diameter Rev. 1.1 Si7057/8/9-A10 11. Additional Reference Resources AN607: Si70xx Humidity and Temperature Sensor Designer's Guide AN1026: Si70xx Temperature Sensor Designer's Guide Rev. 1.1 21 Si7057/8/9-A10 DOCUMENT CHANGE LIST Revision 0.9 to Revision 1.0 Clarified Features list on page 1. Revision 1.0 to Revision 1.1 April 18, 2017 Changed Si7057 max inaccuracy spec to 0.35 C (was 0.2 C). Updated Figure 2 and Figure 3. 22 Rev. 1.1 Smart. Connected. Energy-Friendly. Products Quality www.silabs.com/products www.silabs.com/quality Support and Community community.silabs.com Disclaimer Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Trademark Information Silicon Laboratories Inc.(R) , Silicon Laboratories(R), Silicon Labs(R), SiLabs(R) and the Silicon Labs logo(R), Bluegiga(R), Bluegiga Logo(R), Clockbuilder(R), CMEMS(R), DSPLL(R), EFM(R), EFM32(R), EFR, Ember(R), Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember(R), EZLink(R), EZRadio(R), EZRadioPRO(R), Gecko(R), ISOmodem(R), Precision32(R), ProSLIC(R), Simplicity Studio(R), SiPHY(R), Telegesis, the Telegesis Logo(R), USBXpress(R) and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders. Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA http://www.silabs.com