April 2002 1
© 2002 Actel Corporation
Advanced v0.6
ProASICPLUSFamily Flash FPGAs
Features and Benefits
High Capacity
150,000 to 1 million System Gates
36k to 198 kbits of Two-Port SRAM
106 to 712 User I/Os
Performance
3.3V, 32-bit PCI (up to 50 MHz)
Internal System Performance up to 350 MHz
External System Performance up to 150 MHz
Reprogrammable Flash Technology
0.22µ 4LM Flash-based CMOS Process
Live at Power Up, Single-Chip Solution
No Configuration Device Required
Retains Programmed Design During Power-Down/
Power-Up Cycles
Secure Programming
The Industrys Most Effective Security Key Prevents Read
Back of Programming Bit Stream
Low Power
Low Impedance Flash Switches
Segmented Hierarchical Routing Structure
Small, Efficient, Configurable (Combinatorial or
Sequential) Logic Cells
High Performance Routing Hierarchy
Ultra Fast Local and Long Line Network
High Speed Very Long Line Network
High Performance, Low Skew, Splitable Global Network
100% Routability and Utilization
I/O
Schmitt Trigger option on Every Input
Mixed 2.5V/3.3V Support with Individually-Selectable
Voltage and Slew Rate
Bidirectional Global I/Os
Compliance with PCI Specification Revision 2.2
Boundary-Scan Test IEEE Std. 1149.1 (JTAG) Compliant
Pin Compatible Packages across ProASICPLUS Family
Unique Clock Conditioning Circuitry
Two Integrated PLLs (1.5 to 240 MHz Input and Output
Ranges)
PLL with Flexible Phase, Multiply/Divide and Delay
Capabilities
Internal and/or External Dynamic PLL Configuration
Two LVPECL Differential Pairs for Clock or Data Inputs
Standard FPGA and ASIC Design Flow
Flexibility with Choice of Industry-Standard Front-End
Tools
Efficient Design through Front-End Timing and Gate
Optimization
ISP Support
In-System Programming (ISP) via JTAG Port
SRAMs and FIFOs
Netlist Generation Ensures Optimal Usage of Embedded
Memory Blocks
Synchronous and Asynchronous Operation of 24 RAM and
FIFO Configurations (Up to 150 MHz)
ProASICPLUS Product Profile
Device APA150 APA300 APA450 APA600 APA750 APA1000
Maximum System Gates 150,000 300,000 450,000 600,000 750,000 1,000,000
Maximum Registers 6,144 8,192 12,288 21,504 32,768 56,320
Embedded RAM Bits 36k 72k 108k 126k 144k 198k
Embedded RAM Blocks (256 X 9) 16 32 48 56 64 88
LVPECL 222222
PLL 222222
Global Networks 444444
Maximum Clocks 32 32 48 56 64 88
Maximum User I/Os 242 304 356 456 642 712
JTAG Yes Yes Yes Yes Yes Yes
PCI Yes Yes Yes Yes Yes Yes
Package (by pin count)
PQFP
PBGA
FBGA
208
456
144, 256
208
456
144, 256
208
456
144, 256
208
456
256, 676
208
456
676, 896
208
456
896, 1152
ProASICPLUS Family Flash FPGAs
2 Advanced v0.6
General Description
The ProASICPLUS family of devices offers enhanced
performance over Actels ProASIC family. It combines the
advantages of ASICs with the benefits of programmable
devices through nonvolatile Flash technology. This enables
engineers to create high-density systems using existing ASIC
or FPGA design flows and tools. In addition, the
ProASICPLUS family offers a unique clock conditioning
circuit based on two on-board phase lock loops (PLLs). The
family offers up to 1 million system gates, supported with up
to 198 kbits of 2-port SRAM and up to 712 user I/Os, all
providing 50 MHz PCI performance.
Advantages to the designer extend beyond performance.
Four levels of routing hierarchy simplify routing, while the
use of Flash technology allows all functionality to be live at
power up, unlike SRAM-based FPGAs. No external Boot
PROM is required to support device programming. While
on-board security mechanisms prevent all access to the
program information, reprogramming can be performed
in-system to support future design iterations and field
upgrades. The devices architecture mitigates the
complexity of ASIC migration at higher user volume. This
makes ProASICPLUS a cost-effective solution for
applications in the networking, communications,
computing, and avionics markets.
The ProASICPLUS family achieves its nonvolatility and
reprogrammability through an advanced Flash-based 0.22m
LVCMOS process with four-layer metal. Standard CMOS
design techniques are used to implement logic and control
functions, including the PLLs and LVPECL inputs. The
result is predictable performance fully compatible with gate
arrays.
The ProASICPLUS architecture provides granularity
comparable to gate arrays. The device core consists of a
Sea-of-TilesTM. Each tile can be configured as a flip-flop,
latch, or 3-input/1-output logic function by programming the
appropriate Flash switches. The combination of fine
granularity, flexible routing resources, and abundant Flash
switches allow 100% utilization and over 95% routability for
highly congested designs. Tiles and larger functions are
interconnected through a 4-level routing hierarchy.
Embedded 2-port SRAM blocks with built-in FIFO/RAM
control logic can have user-defined depth and width. Users
can also select programming for synchronous or
asynchronous operation, as well as parity generations or
checking.
The clock conditioning circuitry is unique. Devices contain
two clock conditioning blocks, each with a PLL core, delay
lines, phase shifts (0×, 90×, 180×, 270×), and clock
multipliers/dividers. In short, this is all the circuitry needed
to provide bidirectional access to the PLL, and operation up
to 240 MHz. The PLL block contains four programmable
frequency dividers which allow the incoming clock signal to
be divided by a wide range of factors from 1 to 64. The clock
conditioning circuit also delays or advances the incoming
reference clock up to 4ns (in increments of 0.25ns). The
PLL can be configured internally or externally during
operation without redesigning or reprogramming the part.
In addition to the PLL, there are two LVPECL differential
input pairs to accommodate high speed clock and data
inputs.
To support customers needs for more comprehensive, lower
cost board-level testing, Actels ProASICPLUS devices are
fully compatible with IEEE Standard 1149.1 for test access
port and boundary-scan test architecture. For more details
on the Flash FPGA implementation please refer to the
Boundary Scan section on page 12.
ProASICPLUS devices are available in a variety of
high-performance plastic packages. Those packages, and the
performance features discussed above, are described in
more detail in the following sections of this document:
Features and Benefits section on page 1
ProASICPLUS Architecture section on page 5
Routing Resources section on page 6
Clock Trees section on page 9
Input/Output Blocks section on page 10
LVPECL Input Pads section on page 11
Boundary Scan section on page 12
User Security section on page 14
Embedded Memory Floorplan section on page 14
Design Environment section on page 17
Package Thermal Characteristics section on page 19
Operating Conditions section on page 22
DC Electrical Specifications (VDDP = 2.5V +/-0.2V)
section on page 23 page 25
AC Specifications (3.3V PCI Revision 2.2 Operation)
section on page 26
Clock Conditioning Circuit section on page 27
Embedded Memory Specifications section on page 35
Package Pin Assignments section on page 55 page 109
For more information concerning In-System Programming
with ProASICPLUS, refer to the application note,
Performing Internal In-System Programming Using
Actel’s ProASICPLUS Devices.
http://www.actel.com/appnotes/PAplusISPAN.pdf
Advanced v0.6 3
ProASICPLUS Family Flash FPGAs
Ordering Information
Product Plan
APA1000 FG
_
Part Number
Speed Grade
Blank =Standard Speed
=TBD1
Package Type
PQ =Plastic Quad Flat Pack
FG =FineBall Grid Array
PB =Plastic Ball Grid Array
1152 ES
Package Lead Count
Application (Ambient Temperature Range)
Blank = Commercial (0 to +70˚ C)
I = Industrial (-40 to +85˚ C)
PP = Pre-production
ES = Engineering Silicon (Room Temperature Only)
150,000 Equivalent System Gates
APA150 =
APA450
APA600
APA750
APA1000
450,000 Equivalent System Gates
600,000 Equivalent System Gates
750,000 Equivalent System Gates
1,000,000 Equivalent System Gates
APA300
300,000 Equivalent System Gates
=
=
=
=
=
Speed Grade Application
Std –1 C I
APA150 Device
208-Pin Plastic Quad Flat Pack (PQFP) P P P P
456-Pin P lastic Ball Grid Array (PBGA) P P P P
144-Pin Fine Ball Grid Array (FBGA) P P P P
256-Pin Fine Ball Grid Array (FBGA) P P P P
APA300 Device
208-Pin Plastic Quad Flat Pack (PQFP) P P P P
456-Pin P lastic Ball Grid Array (PBGA) P P P P
144-Pin Fine Ball Grid Array (FBGA) P P P P
256-Pin Fine Ball Grid Array (FBGA) P P P P
APA450 Device
208-Pin Plastic Quad Flat Pack (PQFP) P P P P
456-Pin P lastic Ball Grid Array (PBGA) P P P P
144-Pin Fine Ball Grid Array (FBGA) P P P P
256-Pin Fine Ball Grid Array (FBGA) P P P P
APA600 Device
208-Pin Plastic Quad Flat Pack (PQFP) P P P P
456-Pin P lastic Ball Grid Array (PBGA) P P P P
256-Pin Fine Ball Grid Array (FBGA) P P P P
676-Pin Fine Ball Grid Array (FBGA) P P P P
APA750 Device
208-Pin Plastic Quad Flat Pack (PQFP) PPP
456-Pin Fine Ball Grid Array (PBGA) PPP
676-Pin Fine Ball Grid Array (FBGA) P P P P
896-Pin P lastic Ball Grid Array (FBGA) P P P P
APA1000 Device
208-Pin Plastic Quad Flat Pack (PQFP) PPP
456-Pin P lastic Ball Grid Array (PBGA) PPP
896-Pin P lastic Ball Grid Array (FBGA) P P P P
1152-Pin Plastic Ball Grid Array (FBGA) P P P P
Applications: C = Commercial Availability: P=Planned
I=Industrial =Limited Availability Contact your Actel Sales representative for the latest availability
information.
ProASICPLUS Family Flash FPGAs
4 Advanced v0.6
Plastic Device Resources
User I/Os
Device PQFP
208-Pin PBGA
456-Pin FBGA
144-Pin FBGA
256-Pin FBGA
676-Pin FBGA
896-Pin FBGA
1152-Pin
APA150 158 242 100 186
APA300 158 290 100 186
APA450 158 344 100 186
APA600 158 356 186 454
APA750 158 356 454 562
APA1000 158 356 642 712
Package Definitions
PQFP = Plastic Quad Flat Pack, PBGA = Plastic Ball Grid Array, FBGA = Fine Ball Grid Array
Advanced v0.6 5
ProASICPLUS Family Flash FPGAs
ProASICPLUS Architecture
The proprietary ProASICPLUS architecture provides
granularity comparable to gate arrays.
The ProASICPLUS device core (Figure 1) consists of a
Sea-of-Tiles. Each tile can be configured as a 3-input logic
function (e.g., NAND gate, D-Flip-Flop, etc.) by
programming the appropriate Flash switch
interconnections (Figure 2 on page 6 and Figure 3 on
page 6). Tiles and larger functions are connected with any
of the four levels of routing hierarchy. Flash cells are
distributed throughout the device to provide nonvolatile,
reconfigurable interconnect programming. Flash switches
are programmed to connect signal lines to the appropriate
logic cell inputs and outputs. Dedicated high-performance
lines are connected as needed for fast, low-skew global
signal distribution throughout the core. Maximum core
utilization is possible for virtually any design.
ProASICPLUS devices also contain embedded two-port
SRAM blocks with built-in FIFO/RAM control logic.
Programming options include synchronous or asynchronous
operation, two-port RAM configurations, user defined depth
and width, and parity generation or checking. Table 3 on
page 14 lists the 24 basic memory configurations.
Flash Switch
Unlike SRAM FPGAs, ProASICPLUS uses a live on
power-up ISP Flash switch as its programming element.
In the ProASICPLUS Flash switch, two transistors share the
floating gate, which stores the programming information.
One is the sensing transistor, which is only used for writing
and verification of the floating gate voltage. The other is the
switching transistor. It can be used in the architecture to
connect/separate routing nets or to configure logic. It is also
used to erase the floating gate (Figure 2 on page 6).
Logic Tile
The logic tile cell (Figure 3 on page 6) has three inputs (any
or all of which can be inverted) and one output (which can
connect to both ultra fast local and efficient long line
routing resources). Any three-input one-output logic
function, except a three input XOR, can be configured as
one tile. The tile can be configured as a latch with clear or
set or as a flip-flop with clear or set. Thus the tiles can
flexibly map logic and sequential gates of a design.
Figure 1 The ProASICPLUS Device Architecture
256x9 Two-Port SRAM
or FIFO Block
Logic Tile
ProASICPLUS Family Flash FPGAs
6 Advanced v0.6
Routing Resources
The routing structure of the ProASICPLUS devices is
designed to provide high performance through a flexible
four-level hierarchy of routing resources: ultra fast local
resources, efficient long line resources, high speed very long
line resources, and high performance global networks.
The ultra fast local resources are dedicated lines that allow
the output of each tile to connect directly to every input of
the eight surrounding tiles (Figure 4 on page 7).
The efficient long line resources provide routing for longer
distances and higher fanout connections. These resources
vary in length (spanning 1, 2, or 4 tiles), run both vertically
and horizontally, and cover the entire ProASICPLUS device
(Figure 5 on page 7). Each tile can drive signals onto the
efficient long line resources, which can, in turn, access
every input of every tile. Active buffers are inserted
automatically by routing software to limit the loading effects
due to distance and fanout.
The high speed very long line resources which span the
entire device with minimal delay, are used to route very long
or very high fanout nets. (Figure 6 on page 8).
The high performance global networks are low skew, high
fanout nets that are accessible from external pins or from
internal logic (Figure 7 on page 9). These nets are typically
used to distribute clocks, resets, and other high fanout nets
requiring a minimum skew. The global networks are
implemented as clock trees, and signals can be introduced
at any junction. These can be employed hierarchically, with
signals accessing every input on all tiles.
Figure 2 Flash Switch
Figure 3 Core Logic Tile
S Col D Col
Switch In
Switch Out
Word
Floating Gate
Sensing Switching
Local Routing
In 1
In 2 (CLK)
In 3 (Reset)
Efficient Long
Line Routing
Advanced v0.6 7
ProASICPLUS Family Flash FPGAs
Figure 4 Ultra Fast Local Resources
Figure 5 Efficient Long Line Resources
L
LL
LL
L
Inputs
Output
Ultra Fast
Local Lines
(connects a tile to the
adjacent tile, I/O buffer,
or memory block)
LL L
LLLLLL
LLLLLL
LL LLLL
LL LLLL
LLLLLL
Logic Cell
Spans 1 Tile
Spans 2 Tiles
Spans 4 Tile
Spans 1 Tile
Spans 2 Tiles
Spans 4 Tile
Logic Tile
ProASICPLUS Family Flash FPGAs
8 Advanced v0.6
Figure 6 High Speed Very Long Line Resources
PAD RING
PAD RING
PAD RING
I/O RING
I/O RING
High Speed Very Long Line Resouces
Advanced v0.6 9
ProASICPLUS Family Flash FPGAs
Clock Resources
The ProASICPLUS family offers powerful and flexible
control of circuit timing through the use of analog circuitry.
Each chip has two clock conditioning blocks, containing a
240 MHz phase lock loop (PLL) core, delay lines, phase
shifter(0°, 90°, 180°, 270°), clock multiplier/dividers and
all the circuitry needed for the selection and
interconnection of inputs to the global network (thus
providing bidirectional access to the PLL). This permits the
PLL block to drive inputs and/or outputs via the two global
lines on each side of the chip (four total lines). This
circuitry is discussed in more detail later in the data sheet.
Clock Trees
One of the main architectural benefits of ProASICPLUS is
the set of power and delay friendly global networks.
ProASICPLUS offers 4 global trees. Each of these trees is
based on a network of spines and ribs that reach all the tiles
in their regions (Figure 7). This flexible clock tree
architecture allows users to map up to 88 different
internal/external clocks in an APA1000 device. Details on
the clock spines and various numbers of the family are given
in Table 1 on page 10.
The flexible use of the ProASICPLUS clock spine allows the
designer to cope with several design requirements. Users
implementing clock resource intensive applications can
easily route external or gated internal clocks using global
routing spines. Users can also drastically reduce delay
penalties and save buffering resources by mapping critical
high-fanout nets to spines. For design hints on using these
features, refer to Actels Efficient Use of ProASIC Clock
Trees application note.
Note: This figure shows routing for only one global path.
Figure 7 High Performance Global Network
PAD RING
PAD RING
PAD RING
I/O RING
I/O RING
Global
Pads
Global
Pads
High Performace
Global Network
Low Skew
Global Networks
Global Spine
Global Ribs
Scope of Spine
ProASICPLUS Family Flash FPGAs
10 Advanced v0.6
Input/Output Blocks
To meet complex system demands, the ProASICPLUS family
offers devices with a large number of user I/O pins, up to 712
on the APA1000. If the I/O pad is powered at 3.3V, each I/O
can be selectively configured at the 2.5V and 3.3V threshold
levels. Table 2 shows the available supply voltage
configurations (the PLL block uses an independent 2.5V
supply). Figure 8 illustrates I/O interfaces with global
networks. All I/Os include ESD protection circuits. Each I/O
has been tested to 2000V to the human body model (per
MIL-STD-883, Method 3015).
Six or seven standard I/O pads are grouped with a GND pad
and either a VDD or VDDP pad. Two reference bias signals
ring the chip. One protects the cascaded output drivers
while the other creates a virtual VDD supply for the I/O
ring.
Table 1 Number of Clock Spines
APA150 APA300 APA450 APA600 APA750 APA1000
Top Spine Height 24 32 32 48 64 80
Tiles in Each Top Spine 768 1,024 1,024 1,536 2,048 2,560
Bottom Spin e Height 24 32 32 48 64 80
Tiles in Each Bottom Spine 768 1,024 1,024 1,536 2,048 2,560
Global Clock Networks (Trees) 4 4 4 4 4 4
Clock Spines/Tree 8 8 12141622
Total Spines 32 32 48 56 64 88
Total Tiles 6,144 8,192 12,288 21,504 32,768 56,320
Table 2 ProASICPLUS Power Supply Voltages
VDDP 2.5V 3.3V
Input Tolerance 2.5V 3.3V, 2.5V
Output Drive 2.5V 3.3V, 2.5V
Notes:
1. VDD is always 2.5V.
2. There is no requirement for power-supply sequencing for
ProASICPLUS devices.
Figure 8 ProASICPLUS Global I/O Scheme with Multiplexed Global Pads
PAD
PAD
PAD
PAD
PAD
Standard I/O Pad Cell
Standard I/O Pad Cell
Standard I/O Pad Cell
Global MUX
Driver
Global MUX
Driver
PECL Input Pad
Cell
I/O Tile
X
I/O Tile
A
I/O Tile
GA
I/O Tile
GB
I/O Tile
B
I/O
GL<A>
GL<B>
PPECL
GL<B>
GL<B>
NPECL
HC<A>
HC<B>
PC<0:4>
P<1,2>
P<0>
PC<0:4>
P<1,2>
P<0>
PC<0:4>
P<1,2>
P<0>
PC<0:4>
P<1,2>
P<0>
PC<0:4>
P<1,2>
P<0>
Advanced v0.6 11
ProASICPLUS Family Flash FPGAs
I/O pads are fully configurable to provide the maximum
flexibility and speed. Each pad can be configured as an
input, an output, a tristate driver, or a bidirectional buffer
(Figure 9). I/O pads configured as inputs have the following
features:
Individually selectable 2.5V or 3.3V threshold levels1
Optional pull-up resistor
I/O pads configured as outputs have the following features:
Individually selectable 2.5V or 3.3V compliant output
signals1
3.3V PCI compliant
Ability to drive LVTTL and LVCMOS levels
Selectable drive strengths
Selectable slew rates
Tristate
I/O pads configured as bidirectional buffers have the
following features:
Individually selectable 2.5V or 3.3V output signals and
threshold levels1
3.3V PCI compliant
Optional pull-up resistor
Optionally configurable as Schmitt Trigger input2
Selectable drive strengths
Selectable slew rates
Tristate
LVPECL Input Pads
In addition to standard I/O pads and power pads,
ProASICPLUS devices have a PECL input pad at each end of
each of the global MUX lines, along with AVDD and AGND
pins to power the PLL block. The PECL input pad cell is
different from the standard I/O cell. It is operated from VDD
only. Since it is exclusively an input, it requires no output
signal, output enable signal or output configuration bits. As
a special high-speed differential input, it also does not
require pull ups.
The PECL pad cell (Figure 10) consists of an input buffer
(containing a low voltage differential amplifier, whose
power is enabled by the PC<0> and CL<1> signals, and a
cascaded buffer), and a signal and its compliment (PPECL
and NPECL). The PECL pad cell compares voltages on the
PPECL pad and the NPECL pad and sends the results to the
global MUX over the P<0> wire. This high speed, low skew
output essentially controls the clock conditioning circuit.
1. If pads are configured for 2.5V operation, they are compliant with 2.5V
level signals as defined by JEDEC JESD 8-5. If pads are configured for 3.3V
operation, they are compliant with the standard as defined by JEDEC JESD
8-A (LVTTL and LVCMOS).
2. The Schmitt Trigger input option can be configured as an input only, not a
bidirectional buffer. This input type may be slower than a standard input
under certain conditions and has typical hysteresis of about ±0.3V.
Figure 9 I/O Block Schematic Representation
3.3V/2.5V
Signal Control
Pull-up
Control
Pad
Y
EN
A
3.3V/2.5V Signal Control
Drive Strength and Slew
Rate Control
Figure 10 High Speed PECL Pad Cell Block Diagram
CL<1>
PPECL
pad
+
ESD
protection
+
clamp
NPECL
pad
+
ESD
protection
+
clamp
input
buffer
P<0>
PC<0>
PPECL
PAD
NPECL
PAD
CORE & GLOBAL MUX
ProASICPLUS Family Flash FPGAs
12 Advanced v0.6
Boundary Scan
ProASICPLUS devices are compatible with IEEE Standard
1149.1, which defines a set of hardware architecture and
mechanisms for cost-effective board-level testing. The basic
ProASICPLUS boundary-scan logic circuit is composed of the
TAP (test access port), TAP controller, test data registers,
and instruction register (Figure 11). This circuit supports
all mandatory IEEE 1149.1 instructions (EXTEST,
SAMPLE/PRELOAD and BYPASS), the optional IDCODE
instructions and private instructions used for device
programming and factory testing.
Each test section is accessed through the TAP, which has
five associated pins: TCK (test clock input), TDI, and TDO
(test data input and output), TMS (test mode selector) and
TRST (test reset input). TMS, TDI and TRST are equipped
with pull-up resistors to ensure proper operation when no
input data is supplied to them. These pins are dedicated for
boundary-scan test usage.
The TAP controller is a four-bit state machine (16 states)
that operates as shown in Figure 12 on page 13. The 1s and
0s represent the values that must be present at TMS at a
rising edge of TCK for the given state transition to occur. IR
and DR indicate that the instruction register or the data
register is operating in that state.
Figure 11 ProASICPLUS JTAG Boundary Scan Test Logic Circuit
Device
Logic
TDI
TCK
TMS
TRST
TDO
I/O I/O I/O I/O I/O
I/O I/O I/O I/O I/O
I/O
I/O
I/O
I/O
Bypass Register
Instruction
Register
TAP
Controller
Test Data
Registers
Advanced v0.6 13
ProASICPLUS Family Flash FPGAs
The TAP controller receives two control inputs (TMS and
TCK) and generates control and clock signals for the rest of
the test logic architecture. On power up, the TAP controller
enters the Test-Logic-Reset state. To guarantee a reset of
the controller from any of the possible states, TMS must
remain high for five TCK cycles. The TRST pin may also be
used to asynchronously place the TAP controller in the
Test-Logic-Reset state.
ProASICPLUS devices support three types of test data
registers: bypass, device identification, and boundary scan.
The bypass register is selected when no other register needs
to be accessed in a device. This speeds up test data transfer
to other devices in a test data path. The 32-bit device
identification register is a shift register with four fields
(LSB, ID number, part number and version). The
boundary-scan register observes and controls the state of
each I/O pin.
Each I/O cell has three boundary-scan register cells, each
with a serial-in, serial-out, parallel-in, and parallel-out pins.
The serial pins are used to serially connect all the
boundary-scan register cells in a device into a boundary
scan register chain which starts at the TDI pin and ends at
the TDO pin. The parallel ports are connected to the
internal core logic tile and the input, output, and control
ports of an I/O buffer to capture and load data into the
register to control or observe the logic state of each I/O.
Figure 12 TAP Controller State Diagram
Test-Logic
Reset
Run-Test/
Idle
Select-DR-
Scan
Capture-DR
Shift-DR
Exit-DR
Pause-DR
Exit2-DR
Update-DR
Select-IR-
Scan
Capture-IR
Shift-IR
Exit-IR
Pause-IR
Exit2-IR
Update-IR
1
11
0
1
0
00
11
00
00
11
00
1
1
11
11
110
0
00
00
ProASICPLUS Family Flash FPGAs
14 Advanced v0.6
User Security
The ProASICPLUS devices have read-protect bits that, once
programmed, block the entire programmed contents from
being read externally. If locked, the user can only reprogram
the device using the security key. This protects it from being
read back and duplicated. Since programmed data is stored
in nonvolatile memory cells (which are actually very small
capacitors), rather than in the wiring, physical
deconstruction cannot be used to compromise data. This
approach is further hampered by the placement of the
memory cells, beneath the four metal layers (whose removal
cannot be accomplished without disturbing the charge in
the capacitor). This is the highest security provided in the
industry. For more information, refer to Actels Design
Security in Nonvolatile Flash and Antifuse FPGAs white
paper.
Embedded Memory Floorplan
The embedded memory is located across the top of the
device (see Figure 1 on page 5) in 256x9 blocks. Depending
upon the device, up to 88 blocks are available to support a
variety of memory configurations. Each block can be
programmed as an independent memory or combined (using
dedicated memory routing resources) to form larger, more
complex memories. A single memory configuration cannot
include blocks from both the top and bottom memory
locations.
Embedded Memory Configurations
The embedded memory in the ProASICPLUS family provides
great configuration flexibility. Other programmable vendors
typically use single port memories that can only be
transformed into two-port memories by sacrificing half the
memory. Each ProASICPLUS block is designed and
optimized as a two-port memory (1 read, 1 write). This
provides 198k bits of total memory for two-port and single
port usage in the APA1000 device.
Each memory can be configured as FIFO or SRAM, with
independent selection of synchronous or asynchronous read
and write ports (Table 3). Additional characteristics include
programmable flags as well as parity checking and
generation. Figure 13 on page 15 and Figure 14 on page 16
show the block diagrams of the basic SRAM and FIFO
blocks. These memories are designed to operate at up to
150 MHz when operated individually. Each block contains a
256 word, 9-bit wide (1 read, 1 write) memory. The memory
blocks may be combined in parallel to form wider memories
or stacked to form deeper memories (Figure 15 on page 16).
This provides optimal bit widths of 9 (1 block), 18, 36, and
72, and optimal depths of 256, 512, 768, and 1024. Refer to
the Actels Macro Library Guide for more information.
Figure 16 on page 17 gives an example of optimal memory
usage. Ten blocks with 23,040 bits have been used to
generate three memories of various widths and depths.
Figure 17 on page 17 shows how memory can be used in
parallel to create extra read ports. In this example, using
only 10 of the 88 available blocks of the APA1000 yields an
effective 6,912 bits of multiple port memories. The Actel
ACTgen software facilitates building wider and deeper
memories for optimal memory usage.
Table 3 Basic Memory Configurations
Type Write Access Read Access Parity Library Cell Name
RAM Asynchronous Asynchronous Checked RAM256x9AA
RAM Asynchronous Asynchronous Generated RAM256x9AAP
RAM Asynchronous Synchronous Transparent Checked RAM256x9AST
RAM Asynchronous Synchronous Transparent Generated RAM256x9ASTP
RAM Asynchronous Synchronous Pipelined Checked RAM256x9ASR
RAM Asynchronous Synchronous Pipelined Generated RAM256x9ASRP
RAM Synchronous Asynchronous Checked RAM256x9SA
RAM Synchronous Asynchronous Generated RAM256xSAP
RAM Synchronous Synchronous Transparent Checked RAM256x9SST
RAM Synchronous Synchronous Transparent Generated RAM256x9SSTP
RAM Synchronous Synchronous Pipelined Checked RAM256x9SSR
RAM Synchronous Synchronous Pipelined Generated RAM256x9SSRP
FIFO Asynchronous Asynchronous Checked FIFO256x9AA
FIFO Asynchronous Asynchronous Generated FIFO256x9AAP
FIFO Asynchronous Synchronous Transparent Checked FIFO256x9AST
FIFO Asynchronous Synchronous Transparent Generated FIFO256x9ASTP
Advanced v0.6 15
ProASICPLUS Family Flash FPGAs
FIFO Asynchronous Synchronous Pipelined Checked FIFO256x9ASR
FIFO Asynchronous Synchronous Pipelined Generated FIFO256x9ASRP
FIFO Synchronous Asynchronous Checked FIFO256x9SA
FIFO Synchronous Asynchronous Generated FIFO256x9SAP
FIFO Synchronous Synchronous Transparent Checked FIFO256x9SST
FIFO Synchronous Synchronous Transparent Generated FIFO256x9SSTP
FIFO Synchronous Synchronous Pipelined Checked FIFO256x9SSR
FIFO Synchronous Synchronous Pipelined Generated FIFO256x9SSRP
Note: For memory block interface signal definitions, see Table 4 on page 35
Figure 13 Example SRAM Block Diagrams
Table 3 Basic Memory Configurations (Continued)
Type Write Access Read Access Parity Library Cell Name
SRAM
(256 X 9)
Sync Write &
Sync Read
Ports
DI <0:8> DO <0:8>
RADDR <0:7>
WADDR <0:7>
WRB RDB
WBLKB RBLKB
WCLKS RCLKS
RPE
PARODD
SRAM
(256 X 9)
Async Write
&
Async Read
Ports
DI <0:8> DO <0:8>
RADDR <0:7>WADDR <0:7>
WRB
WBLKB
RDB
RBLKB
PARODD
WPE
RPE
WPE
SRAM
(256 X 9)
Sync Write
&
Async Read
Ports
DI <0:8> DO <0:8>
WADDR <0:7>
WRB RDB
WBLKB RBLKB
WCLKS
RPE
PARODD
WPE
RADDR <0:7>
PARODD
SRAM
(256 X 9)
Async Write
&
Sync Read
Ports
DI <0:8> DO <0:8>
RADDR <0:7>WADDR <0:7>
WRB RDB
WBLKB RBLKB
RCLKS
RPE
WPE
ProASICPLUS Family Flash FPGAs
16 Advanced v0.6
Note: For memory block FIFO signal definitions, see Table 5 on page 46.
Figure 14 Basic FIFO Block Diagrams
Figure 15 APA1000 Memory Block Architecture
FIFO
(256 X 9)
Sync Write &
Sync Read
Ports
LEVEL<0:7> DO <0:8>
DI<0:8>
WRB
RDB
WBLKB
RBLKB
RPE
PARODD
WPE
LGDEP<0:2>
FULL
EMPTY
EQTH
GEQTH
WCLKS
RCLKS
FIFO
(256 X 9)
Sync Write &
Async Read
Ports
DI <0:8> DO <0:8>
LEVEL <0:7>
WRB
RDB
WBLKB
RBLKB
RPE
PARODD
WPE
LGDEP<0:2>
FULL
EMPTY
EQTH
GEQTH
WCLKS
FIFO
(256 X 9)
Async Write &
Async.Read
Ports
DI <0:8> DO <0:8>
LEVEL <0:7>
WRB
RDB
WBLKB
RBLKB
RPE
PARODD
WPE
LGDEP<0:2>
FULL
EMPTY
EQTH
GEQTH
FIFO
(256 X 9)
Async Write &
Sync Read
Ports
DI <0:8> DO <0:8>
LEVEL <0:7>
WRB
RDB
WBLKB
RBLKB
RPE
PARODD
WPE
LGDEP<0:2>
FULL
EMPTY
EQTH
GEQTH
RCLKS
RESET
RESET
Word
Depth
Word Width
88 blocks
256
9
256
9
256
9
256
9
256
9
256
9
256
9
256
9
256
9
Advanced v0.6 17
ProASICPLUS Family Flash FPGAs
Design Environment
ProASICPLUS devices are supported by Actels Designer
Series, as well as third party CAE tools. Unlike some FPGA
vendors, no special HDL design techniques are needed
when using the standard VHDL or Verilog HDL descriptions.
As a result, designers may utilize technology independent of
HDL code for ProASICPLUS devices. This feature and the
ASIC-like design flow ensure a seamless transition to an
ASIC implementation, if desired (Figure 18 on page 18).
ACTgen, included in Actels Designer Series, can be used to
automatically generate memories based on user inputs. The
design engineer can select the depth and width, usage of
parity generation or check, and synchronous or
asynchronous functionality of the ports. For a synchronous
read port, the user can choose whether the output is
pipelined or transparent. Designer allows any bit width up
to 252. However, when an intermediate bit width, such as 16
bits, is chosen, the remaining two bits are not accessible for
other memories. Actels Designer also enables optimal
memory stacking in 256 word increments. However, any
word depth may be combined for up to 22,528 words.
ACTgen also allows the user to generate distributed
memory.
Figure 16 Example Showing Memories with Different Widths and Depths
Figure 17 Multiport Memory Usage
Word
Depth
Word Width
1,024 words x 9 bits, 1 read, 1 write
512 words x 18 bits, 1 read, 1 write
256 words x 18 bits, 1 read, 1 write
Total Memory Blocks Used = 10
Total Memory Bits = 23,040
256
256
256
256
9
256
256
99
256
99
256
9
256
9
1,024 words x 9 bits, 4 read, 1 write
256 words x 9 bits, 2 read, 1 write
Total Memory Blocks Used = 10
Total Memory Bits = 6,912
Word
Depth
Word Width
Write Port Write Port
Read Ports
99
Read Ports
ProASICPLUS Family Flash FPGAs
18 Advanced v0.6
Place and route is also performed by Actels Designer
software. Available for UNIX workstations and PC platforms,
Designer accepts standard netlists in Verilog, VHDL, and
EDIF formats, performs place and route of the design into
the selected device, and provides postlayout delay
information for back-annotation simulation and static
timing analysis.
ACTgen provides all the software needed for configuration
of the PLL clock conditioning circuit. While the PLL has no
placement mobility, ACTgen allows users to use placement
and routing floorplan constraints hierarchically, in order to
more easily and efficiently explore floorplan alternatives.
This allows the power of the PLL circuitry to be utilized with
minimal top level timing loop iterations.
Actels Designer can also generate the BSDL
(boundary-scan description language) files required for
documenting the IEEE 1149.1 components which can be
used by automatic test equipment software.
Actels Designer also contains the necessary information for
the placing, routing, and configuration of the clock
conditioning circuit.
Once the design is finalized, the programming bitstream is
downloaded into the device programmer for programming
the ProASICPLUS part. ProASICPLUS devices can be
programmed with the Silicon Sculptor II and Flash Pro
programmers. Additionally, in-system programming is
available. For details on ProASICPLUS programming, refer to
the application note, Performing Internal In-System
Programming Using Actels ProASICPLUS Devices.
Figure 18 Design Flow
Design Creation/Verification
Design Implementation
Synthesis Tool
High-Level
Design
(Verilog or VHDL)
Designer
(P&R Tool)
P&R User
Constraints
Synthesis
Library
Programming
Silicon
Sculptor II
Flash
Pro
Timing
Libraries
Simulation
Library
SDF
Timing
File
Forward
Constraints
Programming
Data
Timing
Analyzer
Timing and Simulation
Backannotation
Simulation
Library
Structural
Netlist
ACTgen
Verilog or VHDL Simulator
Verilog or VHDL Simulator
Advanced v0.6 19
ProASICPLUS Family Flash FPGAs
Package Thermal Characteristics
The ProASICPLUS family is available in several package
types with a range of pin counts. Actel has selected
packages based on high pin count, reliability factors, and
superior thermal characteristics.
Thermal resistance defines the ability of a package to
conduct heat away from the silicon, through the package, to
the surrounding air. Junction-to-ambient thermal
resistance is measured in degrees Celsius/Watt and is
represented as Theta ja (Θja). The lower thermal resistance,
the more efficiently a package will dissipate heat.
A packages maximum allowed power (P) is a function of
maximum junction temperature (TJ), maximum ambient
operating temperature (TA), and junction-to-ambient
thermal resistance Θja. Maximum junction temperature is
the maximum allowable temperature on the active surface
of the IC and is 110° C. P is defined as:
Θja is a function of the rate (in linear feet per minute - lfpm)
of airflow in contact with the package. When the estimated
power consumption exceeds the maximum allowed power,
other means of cooling, such as increasing the airflow rate,
must be used.
PTJTA
Θja
-----------------
=
Package Type Pin Count Θjc Θja Still Air Θja 300 ft./min Units
Plastic Quad Flat Pack (PQFP) 208 8 30 23 °C/W
PQFP with Heatspreader 208 3.8 20 17 °C/W
Fine Ball Grid Array (FBGA) 144 3.8 38.8 26.7 °C/W
Fine Ball Gri d Arra y (FBGA) 256 3.0 30 25 °C/W
Plastic Ball Grid Array (PBGA) 456 3 18 14.5 °C/W
Fine Ball Grid Array (FBGA) 676 3.2 15 11.5 °C/W
Fine Ball Grid Array (FBGA) 896 2.0 10.9 7.9 °C/W
Fine Ball Grid Array (FBGA) 1152 2.0 11.2 7.0 °C/W
ProASICPLUS Family Flash FPGAs
20 Advanced v0.6
Calculating Power Dissipation
ProASICPLUS device power is calculated with both a static
and an active component. The active component is a
function of both the number of tiles utilized and the system
speed. Power dissipation can be calculated using the
following formula:
Ptotal = Pdc + Pac
where:
Pclock, the clock component of power dissipation, is given by
Pclock = (P1 + P2 * s) * Fs
where:
Pstorage, the storage-tile component of AC power dissipation,
is given by
Pstorage = P5 * ms * Fs
where:
Plogic, the logic-tile component of AC power dissipation, is
given by
Plogic = P3 * mc * Fs
where:
Pios, the I/O component of AC power dissipation, is given by
Pios = (P4 + Cload * Vddp^2) * p * Fp
where:
Finally, Pmemory, the memory component of AC power
consumption, is given by
Pmemory = P6 * Nmem * Fmem
where:
Pdc = 10 mW
Pac =P
clock + Pstorage + Plogic + Pios + Pmemory
P1 = 2500 uW/MHz is the basic power consumption of
the clock tree normalized per MHz of the clock.
P2 = 1.0 uW/MHz is the extra power consumption of
the clock tree per storage tile also normalized
per MHz of the clock
s = the number of storage tiles clocked by this clock
Fs = the clock frequency
P5 = 1.0 uW/MHz is the average power consumption of a
storage-tile normalized per MHz of its output
frequency
ms = the number of storage tiles switching during each
Fs cycle
Fs = the clock frequency
P3 = 3.0 uW/MHz, is the average power consumption
of a logic-tile normalized per MHz of its output
frequency
mc = the number of logic tiles switching during each
Fs cycle
Fs = the clock frequency
P4 = 60.0 uW/MHz is the average power consumption
of an output pad normalized per MHz of its
output frequency (internal power-load is not
included)
Cload = the output load
p = the number of outputs
Fp = the average output frequency
P6 = 100.0 uW/MHz is the average power
consumption of a memory block normalized per
MHz of the clock
Nmem = the number of RAM/FIFO blocks
(1 block = 256 words * 9 bits)
Fmem = the clock frequency of the memory
Advanced v0.6 21
ProASICPLUS Family Flash FPGAs
The following is an APA750 example using a shift register
design with 13,440 storage tiles and 0 logic tiles. This design
has one clock at 10 MHz, and 24 outputs toggling at 5 MHz.
We then calculate the various components as follows:
Pclock
=> Pclock = (P1 + P2 * s) * Fs = 159.4 mW
Pstorage
=> Pstorage = P5 * ms * Fs = 134.4 mW
Plogic
=> Plogic = 0 mW
Pios
Fp = 5 MHz
=> Pios = (P4 + Cload * Vddp^2) * p * Fp = 54.1 mW
Pmemory
=> Pmemory = 0 mW
Pac
=> 347.9 mW
Ptotal
Pdc + Pac = 357.9mW
Fs = 10 MHz
s = 13,440
ms = 13,440 (in a shift register 100% of storage-tiles are
toggling at each clock cycle and Fs = 10 MHz)
mc = 0 (no logic tile in this shift-register)
Cload =40 pF
Vddp = 3.3 V
p=24
Nmem = 0 (no RAM/FIFO in this shift-register)
Power Consumption of an APA Device
0
100
200
300
400
500
600
700
800
900
1000
Frequency (MHz)
Power Consumption (mW)
20 30 40 50 60 70 80 90 100 120
SRAM
ProASIC
110 instances of 16-bit binary counters
ProASICPLUS Family Flash FPGAs
22 Advanced v0.6
Operating Conditions
Absolute Maximum Ratings
Parameter Condition Minimum Maximum Units
Supply Voltage (VDD)–0.3 3.0 V
Supply Voltage I/O Ring (VDDP)0.3 4.0 V
DC Input V ol t ag e 0.3 VDDP + 0. 3 V
PCI DC Input Voltage 0.5 VDDP + 0.5 V
DC Input Clamp Curre nt VIN < 0 or VIN> VDDP 10 +10 mA
PECL Input Voltage 0 2.5 V
Programming and Storage Temperature Limits
Product Grade Programming Cycles Program Retention
Storage Temperature
Min. Max.
Commercial 100 20 years 55°C110°C
Industrial 100 20 years 55°C110°C
Supply Voltages
Mode VDD VDDP VPP VPN
Single Voltage 2.5V 2.5V 0 VPP 16.5V 13.8V VPN 0V
Mixed Volt age 2.5V 3.3V 0 VPP 16.5V 13.8V VPN 0V
Recommended Operating Conditions
Parameter Symbol Limits
Commercial
DC Supply Voltage (2.5V I/Os) VDD & VDDP 2.3V to 2.7V
DC Supply Voltage (Mixed 2.5V, 3.3V I/Os) VDDP
VDD
3.0V to 3.6V
2.3V to 2.7V
Operating Ambient Temperature Range TA0°C to 70°C
Maximum Operating Junction Temperature TJ110°C
Maximum Clock Frequency fCLOCK 240 MHz
Maximum RAM Frequency fRAM 150 MHz
Industrial
DC Supply Voltage (2.5V I/Os) VDD & VDDP 2.3V to 2.7V
DC Supply Voltage (2.5V, 3.3V I/Os) VDDP
VDD
3.0V to 3.6V
2.3V to 2.7V
Operating Ambient Temperature Range TA40°C to 85°C
Maximum Operating Junction Temperature TJ110°C
Maximum Clock Frequency fCLOCK 240 MHz
Maximum RAM Frequency fRAM 150 MHz
Advanced v0.6 23
ProASICPLUS Family Flash FPGAs
DC Electrical Specifications (VDDP = 2.5V +/-0.2V)
Symbol Parameter Conditions Min. Typ. Max. Units
VOH
Output High Voltage
High Drive (OB25LPH)
Low Drive (OB25LPL)
IOH = 6 mA
IOH = 12 mA
IOH = 24 mA
IOH = 4 mA
IOH = 6 mA
IOH = 10 mA
2.1
2.0
1.7
2.1
2.0
1.7
V
VOL
Output Low Voltage
High Drive (OB25LPH)
Low Drive (OB25LPL)
IOL = 8 mA
IOL = 15 mA
IOL = 24 mA
IOL = 4 mA
IOL = 8 mA
IOL = 15 mA
0.2
0.4
0.7
0.2
0.4
0.7
V
VIH Input High Voltage 1.7 VDDP + 0.3 V
VIL Input Low Voltage 0.3 0.7 V
RWEAKPULLUP Weak Pull-up Resistance
(OTB25LPU) VIN 1.25 10 30 k
IIN Input Current
Input Current
with pull up (VIN = VSS)
without pull up
(VIN = VSS or VDD)250
10 80
10 µA
µA
IDDQ Quiescent Supply Current
(standby) VIN = VSS2 or VDD 5.0 10 mA
IOZ 3-State Output Leakage Current VOH = VSS or VDD 10 10 µA
IOSH
Output Short Circuit Current High
High Drive (OB25LPH)
Low Drive (OB25LPL) VIN = VSS
VIN = VSS
120
100 mA
IOSL
Output Short Circuit Current Low
High Drive (OB25LPH)
Low Drive (OB25LPL) VIN = VDDP
VIN = VDDP
100
30 mA
CI/O I/O Pad Capacitance 10 pF
CCLK Clock Input Pad Capacitance 10 pF
Notes:
1. All process conditions. Junction Temperature: 40 to +110°C.
2. No pull-up resistor.
ProASICPLUS Family Flash FPGAs
24 Advanced v0.6
DC Electrical Specifications (VDDP = 3.3V +/-0.3V and VDD 2.5+/-0.2V)
Symbol Parameter Conditions Min. Typ. Max. Units
VOH
Output High Voltage
3.3V I/O, High Drive (OB33P)
3.3V I/O, Low Drive (OB33L)
IOH = 15 mA
IOH = 30 mA
IOH = 7 mA
IOH = 14 mA
0.9VDDP
2.4
0.9VDDP
2.4
V
Output High Voltage
2.5V I/O, High Drive (OB25H)
2.5V I/O, Low Drive (OB25L)
IOH = 0.1 mA
IOH = 0.5 mA
IOH = 4 mA
IOH = 0.1 mA
IOH = 0.5 mA
IOH = 2.5 mA
2.1
2.0
1.7
2.1
2.0
1.7
V
VOL
Output Low Voltage
3.3V I/O, High Drive (OB33P)
3.3V I/O, Low Drive (OB33L)
IOL = 15 mA
IOL = 20 mA
IOL = 7 mA
IOL = 10 mA
0.1VDDP
0.4
0.1VDDP
0.4
V
Output Low Voltage
2.5V I/O, High Drive (OB25H)
2.5V I/O, Low Drive (OB25L)
IOL = 7 mA
IOL = 14 mA
IOL = 28 mA
IOL = 5 mA
IOL = 10 mA
IOL = 15 mA
0.2
0.4
0.7
0.2
0.4
0.7
V
VIH
Input High Voltage
3.3V LVTTL/LVCMOS
2.5V Mode 2
1.7 VDDP + 0.3
VDDP + 0.3 V
VIL
Input Low Voltage
3.3V LVTTL/LVCMOS
2.5V Mode 0.3
0.3 0.8
0.7 V
RWEAKPULLUP Weak Pull-up Resistance
(OTB33U) VIN 1.5 15k 25k k
RWEAKPULLUP Weak Pull-up Resistance
(OTB25U) VIN 1.5 10k 20k k
IIN
Input Current with pull up (VIN = VSS)
without pull up
(VIN = VSS or VDD)
300
-10 80
10 µA
µA
IDDQ Quiescent Supply Current
(standby) VIN = VSS2 or VDD 5.0 10 mA
IOZ 3-State Output Leakage Current VOH = VSS or VDD -10 10 µA
IOSH
Output Short Circuit Current High
3.3V High Drive (OB33P)
3.3V Low Drive (OB33L)
2.5V High Drive (OB25H)
2.5V Low Drive (OB25L)
VIN = VSS
VIN = VSS
VIN = VSS
VIN = VSS
200
100
20
10
mA
Notes:
1. All process conditions. Junction Temperature: 40 to +110°C.
2. No pull-up resistor.
Advanced v0.6 25
ProASICPLUS Family Flash FPGAs
IOSL
Output Short Circuit Current Low
3.3V High Drive
3.3V Low Drive
2.5V High Drive
2.5V Low Drive
VIN = VDD
VIN = VDD
VIN = VDD
VIN = VDD
2 00
100
2 00
100
mA
CI/O I/O Pad Capacitance 10 pF
CCLK Clock Input Pad Capacitance 10 pF
DC Specifications (3.3V PCI Operation)
Symbol Parameter Condition Min. Max. Units
VDD Supply Voltage for Core 2.3 2.7 V
VDDP Supply Voltage for I/O Ring 3.0 3.6 V
VIH Input Hi gh Voltage 0.5VDPP VDPP + 0. 5 V
VIL Input Low Voltage 0.5 0.3VDDP V
IIPU Input Pull-up Voltage10.7VDDP V
IIL Input Leakage Current20 < VIN < VCCI 10 +10 µA
VOH Output High Voltage IOUT = 500 µA 0.9VDPP V
VOL Output Low Voltage IOUT = 1500 µA 0.1VDPP V
CIN Input Pin Capacitance310 pF
CCLK CLK Pin Cap acit ance 5 12 pF
Notes:
1. This specification is guaranteed by design. It is the minimum voltage to which pull-up resistors are calculated to pull a floated network.
Applications sensitive to static power utilization should assure that the input buffer is conducting minimum current at this input voltage.
2. Input leakage currents include hi-Z output leakage for all bidirectional buffers with tristate outputs.
3. Absolute maximum pin capacitance for a PCI input is 10 pF (except for CLK).
DC Electrical Specifications (VDDP = 3.3V +/-0.3V and VDD 2.5+/-0.2V) (Continued)
Symbol Parameter Conditions Min. Typ. Max. Units
Notes:
1. All process conditions. Junction Temperature: 40 to +110°C.
2. No pull-up resistor.
ProASICPLUS Family Flash FPGAs
26 Advanced v0.6
AC Specifications (3.3V PCI Revision 2.2 Operation)
Symbol Parameter Condition Min. Max. Units
IOH(AC)
Switching Current High 0 < VOUT 0.3VCCI * 12VCCI mA
0.3VCCI VOUT < 0.9VCCI *(17.1 + (VDDP VOUT)) mA
0.7VCCI < VOUT < VCCI *
(Test Point) VOUT = 0.7VCC * 32VCCI mA
IOL(AC)
Switching Current Low
VCCI > VOUT 0.6VCCI *16V
DDP mA
0.6VCCI > VOUT > 0.1VCCI 1(26.7V
OUT)mA
0.18VCCI > VOUT > 0 *
See pa ge
21, equa-
tion B of
PCI rev . 2.2
spec
(Test Point) VOUT = 0.18VCC * 38VCCI mA
ICL Low Clamp Current 3 < VIN 125 + (VIN + 1)/0.015 mA
ICH High Clamp Current VCCI + 4 > VIN VCCI + 1 25 + (VIN VDDP 1)/0.015 mA
slewROutput Rise Slew Rate 0.2VCCI to 0.6VCCI load * 1 4 V/ns
slewFOutput Fall Slew Rate 0.6VCCI to 0.2VCCI load * 1 4 V/ns
Note: * Refer to the PCI Specification document rev. 2.2.
output
buffer
1/2 in. max.
10 pF
1k
pin
1k
pin
buffer
output
10 pF
Advanced v0.6 27
ProASICPLUS Family Flash FPGAs
Timing Control and Characteristics
Clock Conditioning Circuit
ProASICPLUS devices provide designers with very flexible
clocking capabilities. Each side of the chip contains a clock
conditioning circuit based upon a 240 MHz phase-locked
loop (PLL) block (Figure 19 on page 28). Two global
multiplexed lines extend along each side of the chip to
provide bidirectional access to the PLL on that side
(neither MUX can be connected to the opposite sides PLL).
Each global line has optional PECL input pads (described
below). The global lines may be driven by either the PECL
global input pad or the outputs from the PLL block or both.
Each can be driven by a different output from the PLL.
The 2 signals available to drive the global networks are as
follows:
Global A:
Output from Global MUX A
Conditioned version of PLL output (fOUT)
Delayed or advanced
0°, 90°, 180°, and 270° phase shift (with optional
time advance)
Divided version of either of the above
Delayed version of either of the above (0.25ns, 0.50ns, or
4.00ns delay).3
Global B:
Output from Global MUX B
Delayed or advanced version of fOUT
Divided version of either of the above
Delayed version of either of the above (0.25ns, 0.50ns, or
4.00ns delay).3
Each PLL block contains four programmable dividers as
shown in Figure 20 on page 28. The first (n) provides all
integer divisors from 1 to 16. The second and third (u and v)
permit the signal applied to the global network to be further
divided by factors of 2, 3 or 4. The fourth divider (m, located
in the direct feedback path) is controlled by 6 bits, allowing
the incoming clock signal to be multiplied by integer factors
from 1 to 64. The implementations m/(n*u) and m/(n*v)
enable the user to define a wide range of multipliers and
divisors factors.
The clock conditioning circuit can advance or delay the
clock up to 4ns (in increments of 0.25ns) relative to the
positive edge of the incoming reference clock. The system
also allows for the selection of output frequency clock
phases of 0°, 90°, 180°, and 270°. A lock signal is
provided to indicate that the PLL has locked to the
incoming signal, and a standby signal switches the PLL
block off when it is not locked to a signal. That allows
pre-selected signals to be passed directly through, at least
to the corresponding rib drivers.
Prior to the application of signals to the rib drivers, they
pass through programmable delay units, one per global
network. These units permit the delaying of global signals
relative to other signals to assist in the control of input
set-up times. Not all possible combinations of input and
output mode can be used. The degrees of freedom available
in the bidirectional global pad system and in the clock
conditioning circuit have been restricted. This avoids
unnecessary and unwieldy design kit and software work.
The PLL can be configured internally during design (via
Flash-configuration bits set in the programming bitstream)
or externally during operation. This is done through a
simple, dynamically accessible asynchronous interface a
dedicated register file, which allows user signals to initiate
parameter changes, such as PLL divide/multiply ratios.
For information on the clock conditioning circuit, refer to
the, Using ProASICPLUS Clock Conditioning Circuits
application note.
3. This mode is available through the delay feature of the Global MUX driver.
ProASICPLUS Family Flash FPGAs
28 Advanced v0.6
Figure 19 PLL Block Top-Level View
Figure 20 PLL Block Detailed Block Diagram
External Feedback Signal
AVDD AGND VDD GND
Output A
Output B
To/From
Mask Programmable
Delay
Dynamic
Configuration Bits
Flash
Configuration Bits
84 24
Dynamic Configuration Bit Inputs
Stand-by mode of Core
Data In
Shift Clock
Shift Enable
Update
NVM/Register Mode
(Other three bits used for flash configuration)
Dynamic Configuration Bit Outputs
Lock Detect
Data Out
GND ( Spare 1)
GND (Spare 2)
PLL Block
+
-
Clock from Core
LVPECL
Global MUX A OUT
Global MUX B OUT
÷n
÷m÷u
÷v
D
D
D
D
PLL Core
External Feedback
Global MUX A OUT
Global MUX B OUT
Output A
Output B
90˚
180˚
270˚
Advanced v0.6 29
ProASICPLUS Family Flash FPGAs
Logic Tile Timing Characteristics
Timing characteristics for ProASICPLUS devices fall into
three categories: family dependent, device dependent, and
design dependent. The input and output buffer
characteristics are common to all ProASICPLUS family
members. Internal routing delays are device dependent.
Design dependency means that actual delays are not
determined until after placement and routing of the users
design are complete. Delay values may then be determined
by using the Timer utility or performing simulation with
post-layout delays.
Critical Nets and Typical Nets
Propagation delays are expressed only for typical nets,
which are used for initial design performance evaluation.
Critical net delays can then be applied to the most timing
critical paths. Critical nets are determined by net property
assignment prior to placement and routing. Up to 6 percent
of the nets in a design may be designated as critical, while
90% of the nets in a design are typical. Refer to the Actel
Designer Users Guide for details on using constraints.
High Speed Very Long Lines
Some nets in the design are very long lines, which are
special routing resources that span multiple rows, columns
or modules. This increases capacitance and resistance,
resulting in longer net delays for macros connected to long
tracks. Typically, up to 6 percent of nets in a fully utilized
device require very long lines. Very long lines contribute
from 4ns to 8.4ns routing delay. This additional delay is
represented statistically in higher fanout routing delays.
Timing Derating
Since ProASICPLUS devices are manufactured with a CMOS
process, device performance will vary with temperature,
voltage, and process. Minimum timing parameters reflect
maximum operating voltage, minimum operating
temperature, and optimal process variations. Maximum
timing parameters reflect minimum operating voltage,
maximum operating temperature, and worst-case process
variations (within process specifications).
ProASICPLUS Family Flash FPGAs
30 Advanced v0.6
Tristate Buffer Delays
Tristate Buffer Delays
(Worst-Case Commercial Conditions, VDDP = 3.0V, VDD = 2.3V, 35 pF load, TJ = 70°C)
Macro Type Description Max
tDLH Max
tDHL Max
tENZH Max
tENZL Units
OTB33PH 3.3V, PCI Output Current, High Slew Rate 2.4 2.2 4.4 3.7 ns
OTB33PN 3.3V, PCI Output Current, Nominal Slew Rate 2.9 2.7 5.0 5.5 ns
OTB33PL 3.3V, PCI Output Current, Low Slew Rate 3.5 3.4 5.5 6.9 ns
OTB33LH 3.3V, Low Output Current, High Slew Rate 3.4 3.8 6.2 6.1 ns
OTB33LN 3.3V, Low Output Current, Nomina l Slew Rate 4 .3 4.5 7.0 9.3 ns
OTB33LL 3.3V, Low Output Current, Low Slew Rate 4.9 6.3 7.8 12.3 ns
OTB25HH 2.5V, High Output Current, High Slew Rate 2.7 2.2 7.2 3.5 ns
OTB25HN 2.5V, High Output Current, Nominal Slew Rate 3.5 3.2 7.5 5.1 ns
OTB25HL 2.5V, High Output Current, Low Slew Rate 4.2 3.6 8.5 6.4 ns
OTB25LH 2.5V, Low Output Current, High Slew Rate 3.9 4.9 10.8 5.4 ns
OTB25LN 2.5V, Low Output Current, Nomina l Slew Rate 5 .7 4.6 11.5 8.4 ns
OTB25LL 2.5V, Low Output Current, Low Slew Rate 7.1 6.0 12.4 11.1 ns
OTB25LPHH 2.5V, Low Power, High Output Current, High Slew Rate 6.0 1.9 5.3 4.6 ns
OTB25LPHN 2.5V, Low Power, High Output Current, Nominal Slew Rate 5.9 2.8 6.2 7.7 ns
OTB25LPHL 2.5V, Low Power, High Output Current, Low Slew Rate 5.9 4.3 7.1 9.7 ns
OTB25LPLH 2.5V, Low Power, Low Output Current, High Slew Rate 9.2 2.7 7.7 8.1 ns
OTB25LPL N 2.5V, Low Power, Low Output Current, Nomina l Slew Rate 9.2 3.8 8.9 12.8 ns
OTB25LPLL 2 .5V, Low Power, Low Output Current, Low Slew Rate 9.2 5.4 10.2 17.4 ns
Notes:
1. tDLH = Data-to-Pad HIGH
2. tDHL = Data-to-Pad LOW
3. tENZH = Enable-to-Pad, Z to HIGH
4. tENZL = Enable-to-Pad, Z to LOW
PAD
A
OTBx
A50%
PAD
VOL
VOH
50%
tDLH
50%
50%
tDHL
EN 50%
PAD VOL
50%
tENZL
50%
10%
EN 50%
PAD
GND
VOH
50%
tENZH
50%
90%
VCC
EN
Advanced v0.6 31
ProASICPLUS Family Flash FPGAs
Output Buffer Delays
Output Buffer Delays
PAD
A
OBx
A50%
PAD
VOL
VOH
50%
tDLH
50%
50%
tDHL
(Worst-Case Commercial Conditions, VDDP = 3.0V, VDD = 2.3V, 35 pF load, TJ = 70°C)
Macro Type Description Max
tDLH Max
tDHL Max
tENZH Max
tENZL Units
OTB33PH 3.3V, PCI Output Current, High Slew Rate 2.4 2.2 2.6 2.7 ns
OTB33PN 3.3V, PCI Output Current, Nominal Slew Rate 2.9 2.7 3.1 3.3 ns
OTB33PL 3.3V, PCI Output Current, Low Slew Rate 3.5 3.4 3.7 3.9 ns
OTB33LH 3.3V, Low Output Current, High Slew Rate 3.4 3.8 3.6 4.3 ns
OTB33LN 3.3V, Low Output Current, Nomina l Slew Rate 4.3 4.5 4.5 5.1 ns
OTB33LL 3.3V, Low Output Current, Low Slew Rate 4.9 6.3 5.1 6.8 ns
OTB25HH 2.5V, High Output Current, High Slew Rate 2.7 2.2 2.9 2.8 ns
OTB25HN 2.5V, High Output Current, Nominal Slew Rate 3.5 3.2 3.7 3.8 ns
OTB25HL 2.5V, High Output Current, Low Slew Rate 4.2 3.6 4.4 4.1 ns
OTB25LH 2.5V, Low Output Current, High Slew Rate 3.9 4.9 4.1 5.4 ns
OTB25LN 2.5V, Low Output Current, Nomina l Slew Rate 5.7 4.6 5.9 5.2 ns
OTB25LL 2.5V, Low Output Current, Low Slew Rate 7.1 6.0 7.4 6.5 ns
OTB25LPHH 2.5V, Low Power, High Output Current, High Slew Rate 6.0 1.9 6.2 2 .4 ns
OTB25LPHN 2.5V, Low Power, High Output Current, Nominal Slew Rate 5.9 2.8 6.1 3.4 ns
OTB25LPHL 2.5V, Low Power, High Output Current, Low Slew Rate 5.9 4.3 6.1 4.9 ns
OTB25LPLH 2.5V, Low Power, Low Output Current, High Slew Rate 9.2 2.7 9.4 3.2 ns
OTB25LPL N 2.5V, Low Power, Low Output Current, Nomina l Slew Rate 9.2 3.8 9.4 4.3 ns
OTB25LPLL 2 .5V, Low Power, Low Output Current, Low Slew Rate 9.2 5.4 9.4 5 .9 ns
Notes:
1. tDLH = Data-to-Pad HIGH
2. tDHL = Data-to-Pad LOW
3. tENZH = Enable-to-Pad, Z to HIGH
4. tENZL = Enable-to-Pad, Z to LOW
ProASICPLUS Family Flash FPGAs
32 Advanced v0.6
Input Buffer Delays
Input Buffer Delays
Global Input Buffer Delays
Predicted Global Routing Delay*
Global Routing Skew
(Worst-Case Commercial Conditions, VDDP = 3.0V, VDD = 2.3V, TJ = 70°C, fCLOCK = 250 MHz)
Macro Type Description Max.
tINYH Max.
tINYL Units
IB25 2.5V, CMOS Input Levels, No Pull-up Resistor 0.5 0.8 ns
IB25 2.5V, CMOS Input Levels, No Pull-up Resistor 0.8 0.8 ns
IB25LP 2.5V, CMOS Input Levels, Low Power 1.1 0.7 ns
IB25LPS 2.5V, CMOS Input Levels, Low Power 0.9 0.9 ns
IB33 3.3V, CMOS Input Levels, No Pull-up Resistor 0.9 0.6 ns
IB33S 3.3V, CMOS Input Levels, No Pull-up Resistor 1.2 0.5 ns
Notes:
1. tINYH = Input Pad-to-Y HIGH
2. tINYL = Input Pad-to-Y LOW
(Worst-Case Commercial Conditions, VDDP = 3.0V, VDD = 2.3V, TJ = 70°, fCLOCK = 250 MHz)
Macro Type Description Max.
tINYH Max.
tINYL Units
GL25 2.5V, CMOS Input Levels 1.9 1.6 ns
GL25S 2.5V, CMOS Input Levels 1.8 1.8 ns
GL25LP 2.5V, CMOS Input Levels 1.7 2.2 ns
GL25LPS 2.5V, CMOS Input Levels 1.9 1.9 ns
GL33 3.3V, CMOS Input Levels 1.9 1.6 ns
GL33S 3.3V, CMOS Input Levels 2.2 1.5 ns
(Worst-Case Commercial Conditions, VDDP = 3.0V, VDD = 2.3V, TJ = 70°C, fCLOCK = 250 MHz)
Parameter Description Max. Units
tRCKH Input Low to High (fully loaded row32 inputs) 1.2 ns
tRCKL Input High to Low (fully loaded row32 inputs) 1.1 ns
tRCKH Input Low to High (minimally loaded row1 input) 0.9 ns
tRCKL Input High to Low (minimally loaded row1 input) 0.9 ns
* The timing delay difference between tile locations is less than 15ps.
PAD YPAD VCC 0V
50%
Y
GND
VCC
50%
tINYH
50%
50%
tINYL
IBx
(Worst-Case Commercial Conditions, VDDP = 3.0V, VDD = 2.3V, TJ = 70°C, fCLOCK = 250 MHz)
Parameter Description Max. Units
tRCKSWH Maximum Skew Low to High 0.3 ns
tRCKSHH Maximum Skew High to Low 0.3 ns
Advanced v0.6 33
ProASICPLUS Family Flash FPGAs
Module Delays
Sample Macrocell Library Listing
(Worst-Case Commercial Conditions, VDD = 2.3V, TJ = 70º C)
Cell Name Description Maximum
Intrinsic Delay Minimum
Setup/Hold Units
NAND2 2-Input NAND 0.4 ns
AND2 2-Input AND 0.4 ns
NOR3 3-Input NOR 0.4 ns
MUX2L 2-1 Mux with Active Low Select 0.4 ns
OA21 2-Input OR into a 2-Input AND 0.4 ns
XOR2 2-Input Exclusive OR 0.3 ns
LDL Active Low Latch (LH/HL) D: 0.3/0.2 tsetup 0.5
thold 0.2 ns
DFFL Negative Edge-Triggered D-type Flip-Flop (LH/HL) CLK-Q:
0.4/0.4 tsetup 0.4
thold 0.2 ns
Note: Assumes fanout of two.
A
B
CY
A
B
50%
Y
50%
50% 50%
50% 50%
tDALH
C50% 50%
50%
50%50%
tDBLH
tDAHL tDBHL
tDCHL
tDCLH
50%
ProASICPLUS Family Flash FPGAs
34 Advanced v0.6
Slew Rates Measured at C = 10pF, Nominal Power Supplies and 25°C
Type Trig. Lev. Rising Edge Slew Rate Falling Edge Slew Rate
pS V/nS pS V/nS
OB33PH 20%-60% 397 3.33 390 -3.38
OB33PN 20%-60% 463 2.85 450 -2.93
OB33PL 20%-60% 567 2.33 527 -2.51
OB33LH 20%-60% 467 2.83 700 -1.89
OB33LN 20%-60% 620 2.13 767 -1.72
OB33LL 20%-60% 813 1.62 1100 -1.20
OB25HH 20%-60% 750 1.33 310 -3.23
OB25HN 20%-60% 850 1.18 390 -2.56
OB25HL 20%-60% 1310 0.76 510 -1.96
OB25LH 20%-60% 793 1.26 430 -2.33
OB25LN 20%-60% 870 1.15 730 -1.37
OB25LL 20%-60% 1287 0.78 1037 -0.96
OB25LPHH 20%-60% 470 2.13 433 -2.31
OB25LPHN 20%-60% 533 1.81 527 -1.90
OB25LPHL 20%-60% 770 1.30 753 -1.33
OB25LPLH 20%-60% 597 1.68 707 -1.42
OB25LPLN 20%-60% 873 1.15 760 -1.32
OB25LPLL 20%-60% 1153 0.87 1563 -0.54
Advanced v0.6 35
ProASICPLUS Family Flash FPGAs
Embedded Memory Specifications
This section discusses ProASICPLUS SRAM/FIFO embedded
memory and its interface signals, including timing diagrams
that show the relationships of signals as they pertain to
single embedded memory blocks (Table 4). Table 3 on
page 14 shows basic RAM and FIFO configurations.
Simultaneous Read and Write to the same location must be
done with care. On such accesses the DI bus is output to
the DO bus.
Enclosed Timing Diagrams—SRAM Mode:
Synchronous RAM Read, Access Timed Output Strobe
(Synchronous Transparent)
Synchronous RAM Read, Pipeline Mode Outputs
(Synchronous Pipelined)
Asynchronous RAM Write
Asynchronous RAM Read, Address Controlled, RDB=0
Asynchronous RAM Read, RDB Controlled
Synchronous RAM Write
Embedded Memory Specifications
Note: The difference between synchronous transparent
and pipeline modes is the timing of all the output
signals from the memory. In transparent mode,
the outputs will change within the same clock
cycle to reflect the data requested by the currently
valid access to the memory. If clock cycles are
short (high clock speed), the data requires most of
the clock cycle to change to valid values (stable
signals). Processing of this data in the same clock
cycle is thus nearly impossible. Most designers
add registers at all outputs of the memory to push
the data processing into the next clock cycle. An
entire clock cycle can then be used to process the
data. To simplify use of this memory setup,
suitable registers have been implemented as part
of the memory primitive and are available to the
user in the synchronous pipeline mode. In this
mode, the output signals will change shortly after
the second rising edge, following the initiation of
the read access.
Table 4 Memory Block SRAM Interface Signals
SRAM Signal Bits In/Out Description
WCLKS 1 IN Write clock used on synchronization on write side
RCLKS 1 IN Read clock used on synchronization on read side
RADDR<0:7> 8 IN Read address
RBLKB 1 IN Negative true read block select
RDB 1 IN Negative true read pulse
WADDR<0:7> 8 IN Write address
WBLKB 1 IN Negative true write block select
DI<0:8> 9 IN Input data bits <0:8>, <8> can be used for parity in
WRB 1 IN Negative true write pulse
DO<0:8> 9 OUT Output data bits <0:8>, <8> can be used for parity out
RPE 1 OUT Read parity error
WPE 1 OUT Write parity error
PARODD 1 IN Selects odd parity generation/detect when high, even when low
Note: Not all signals shown are used in all modes.
ProASICPLUS Family Flash FPGAs
36 Advanced v0.6
Synchronous RAM Read, Access Timed Output Strobe (Synchronous Transparent)
Note: The plot shows the normal operation status.
TJ = 0°C to 110°C; VDD = 2.3V to 2.7V
Symbol txxx Description Min. Max. Units Notes
CCYC Cycle time 7.5 ns
CMH C lock high phase 3.0 ns
CML Clock low phase 3.0 ns
OCA New DO access from RCLKS 7.5 ns
OCH Old DO valid from RCLKS 3.0 ns
RACH RADDR hold from RCLKS 0.5 ns
RACS RADDR setup to RCLKS 1.0 ns
RDCH RDB hold from RCLKS 0.5 ns
RDCS RDB setup to RCLKS 1.0 ns
RPCA New RPE acce ss from RCLKS 9.5 ns
RPCH Old RPE valid from RCLKS 3.0 ns
RADDR
RPE
DO
RCLKS
RBD, RBLKB
New Valid Data Out
Cycle Start
Old Data Out
New Valid
Address
tRACS
tRDCS
tRDCH
tRACH
tOCH
tRPCH
tCMH
tOCA
tRPCA
tCCYC
tCML
Advanced v0.6 37
ProASICPLUS Family Flash FPGAs
Synchronous RAM Read, Pipeline Mode Outputs (Synchronous Pipelined)
Note: The plot shows the normal operation status.
TJ = 0°C to 110°C; VDD = 2.3V to 2.7V
Symbol txxx Description Min. Max. Units Notes
CCYC Cycle time 7.5 ns
CMH C lock high phase 3.0 ns
CML Clock low phase 3.0 ns
OCA New DO access from RCLKS 2.0 ns
OCH Old DO valid from RCLKS 0.75 ns
RACH RADDR hold from RCLKS 0.5 ns
RACS RADDR setup to RCLKS 1.0 ns
RDCH RDB hold from RCLKS 0.5 ns
RDCS RDB setup to RCLKS 1.0 ns
RPCA New RPE acce ss from RCLKS 4.0 ns
RPCH Old RPE valid from RCLKS 1.0 ns
RCLKS
RPE
DO New Valid Data Out
Cycle Start
New RPE Out
RADDR New Valid
Address
RDB, RBLKB
tRACS tOCA
tRPCH
tOCH
tRPCA
tCML
tCMH
tCCYC
tRACH
tRDCH
tRDCS
Old Data Out
Old RPE Out
ProASICPLUS Family Flash FPGAs
38 Advanced v0.6
Asynchronous RAM Write
Note: The plot shows the normal operation status.
TJ = 0°C to 110°C; VDD = 2.3V to 2.7V
Symbol txxx Description Min. Max. Units Notes
A WRH WADDR hold from WB 1.0 ns
AW RS WADDR setup to WB 0.5 ns
DWRH DI hold from WB 1.5 ns
DWRS DI setup to WB 0.5 ns PARGEN is in active
DWRS DI setup to WB 2.5 ns PARGEN is active
WPDA WPE access from DI 3.0 ns WPE is invalid while
PARGEN is active
WPDH WPE hold from DI 1.0 ns
WRCYC Cycle time 7.5 ns
WRMH WB high phase 3.0 ns Inactive
WRML WB low phase 3.0 ns Active
WRB, WBLKB
WADDR
WPE
DI
tAWRS
tWPDA
tAWRH
tDWRS
tWRML tWRMH
tWRCYC
tWPDH
tDWRH
Advanced v0.6 39
ProASICPLUS Family Flash FPGAs
Asynchronous RAM Read, Address Controlled, RDB=0
Note: The plot shows the normal operation status.
TJ = 0°C to 110°C; VDD = 2.3V to 2.7V
Symbol txxx Description Min. Max. Units Notes
ACYC Read cycle time 7.5 ns
OAA New DO access from RADDR stable 7.5 ns
OAH Old DO hold from RADDR stable 3.0 ns
RPAA New RPE access from RADDR stable 10.0 ns
RPAH Old RPE hold from RADDR stable 3.0 ns
RPE
DO
RADDR
tOAH
tRPAH
tOAA
tRPAA
tACYC
ProASICPLUS Family Flash FPGAs
40 Advanced v0.6
Asynchronous RAM Read, RDB Controlled
Note: The plot shows the normal operation status.
TJ = 0°C to 110°C; VDD = 2.3V to 2.7V
Symbol txxx Description Min. Max. Units Notes
ORDA New DO access from RB 7.5 ns
ORDH Old DO valid from RB 3.0 ns
RDCYC Read cycle time 7.5 ns
RDMH RB high phase 3.0 ns Inactive setup to new cycle
RDML RB low phase 3.0 ns Active
RPRDA New RPE access from RB 9.5 ns
RPRDH Old RPE valid from RB 3.0 ns
RB=(RDB+RBLKB)
RPE
DO
tORDH
tORDA
tRPRDA
tRDML
tRDCYC
tRDMH
tRPRDH
Advanced v0.6 41
ProASICPLUS Family Flash FPGAs
Synchronous RAM Write
Note: The plot shows the normal operation status.
TJ = 0°C to 110°C; VDD = 2.3V to 2.7V
Symbol txxx Description Min. Max. Units Notes
CCYC Cycle time 7.5 ns
CMH C lock high phase 3.0 ns
CML Clock low phase 3.0 ns
DCH DI hold from WCLKS 0.5 ns
DCS DI setup to WCLKS 1.0 ns
WACH WADDR hold from WCLKS 0.5 ns
WDCS WA DDR setup to WCLKS 1.0 ns
WPCA New WPE access from WCLKS 3.0 ns WPE is invalid while
PARGEN is active
WPCH Old WPE valid from WCLKS 0.5 ns
WRCH,
WBCH WRB & WBLKB hold from WCLKS 0.5 ns
WRCS,
WBCS WRB & WBLKB setup t o WCLKS 1.0 ns
Note: On simultaneous read and write accesses to the same location DI is output to DO.
WCLKS
WPE
WADDR, DI
WRB, WBLKB
Cycle Start
tWRCH, tWBCH
tWRCS, tWBCS
tDCS, tWDCS
tWPCH
tDCH, tWACH
tWPCA
tCMH tCML
tCCYC
ProASICPLUS Family Flash FPGAs
42 Advanced v0.6
Synchronous Write and Read to the Same Location
Note: The plot shows the normal operation status.
TJ = 0°C to 110°C; VDD = 2.3V to 2.7V
Symbol txxx Description Min. Max. Units Notes
CCYC Cycle time 7.5 ns
CMH Clock high phase 3.0 ns
CML Clock low phase 3.0 ns
WCLKRCLKS WCLKS to RCLKS setup time 0.1 ns
WCLKRCLKH WCLKS to RCLKS hold time 7.0 ns
OCH Old DO valid from RCLKS 3.0 ns OCA/OCH displayed for
Access Timed Output
OCA New DO valid from RCLKS 7.5 ns
Notes:
1. This behavior is valid for Access Timed Output and Pipelined Mode Output. The table shows the timings of an Access Timed Output.
2. During synchronous write and synchronous read access to the same location, the new write data will be read out if the active write clock
edge occurs before or at the same time as the active read clock edge. The negative setup time insures this behavior for WCLKS and RCLKS
driven by the same design signal.
3. If WCLKS changes after the hold time, the data will be read.
4. A setup or hold time violation will result in unknown output data.
* New data is read if WCLKS occurs before setup time.
The data stored is read if WCLKS occurs after hold time.
RCLKS
DO
WCLKS
tWCLKRCLKH
New Data*
Last Cycle Data
tWCLKRCLKS
tOCH
tOCA
Advanced v0.6 43
ProASICPLUS Family Flash FPGAs
Asynchronous Write and Synchronous Read to the Same Location
Note: The plot shows the normal operation status.
TJ = 0°C to 110°C; VDD = 2.3V to 2.7V
Symbol txxx Description Min. Max. Units Notes
CCYC Cycle time 7.5 ns
CMH Clock high phase 3.0 ns
CML Clock low phase 3.0 ns
WBRCLKS WB to R CLKS setup time 0.1 ns
WBRCLKH WB to RCLKS hold time 7.0 ns
OCH Old DO valid from RCLKS 3.0 ns OCA/OCH displayed for
Access Timed Output
OCA New DO valid from RCLKS 7.5 ns
DWRRCLKS DI to RCLKS setup time 0 ns
DWRH DI to WB hold time 1.5 ns
Notes:
1. This behavior is valid for Access Timed Output and Pipelined Mode Output. The table shows the timings of an Access Timed Output.
2. In asynchronous write and synchronous read access to the same location, the new write data will be read out if the active write signal edge
occurs before or at the same time as the active read clock edge. If WB changes to low after hold time, the data will be read.
3. A setup or hold time violation will result in unknown output data.
* New data is read if WB occurs before setup time.
The stored data is read if WB occurs after hold time.
WB = {WRB + WBLKB}
RCLKS
DO
tWCLKRCLKH
New Data*
Last Cycle Data
tWCLKRCLKS
tOCH
tOCA
DI
tDWRRCLKS tDWRH
ProASICPLUS Family Flash FPGAs
44 Advanced v0.6
Asynchronous Write and Read to the Same Location
Note: The plot shows the normal operation status.
TJ = 0°C to 110°C; VDD = 2.3V to 2.7V
Symbol txxx Description Min. Max. Units Notes
ORDA New DO access from RB 7.5 ns
ORDH Old DO valid from RB 3.0 ns
OWRA New DO access fro m WB 3.0 ns
OWRH Old DO valid from WB 0.5 ns
RAWRS RB or RADDR from WB 5.0 ns
RAWRH RB or RADDR from WB 5.0 ns
Notes:
1. During an asynchronous read cycle, each write operation (synchronous or asynchronous) to the same location will automatically trigger
a read operation which updates the read data.
2. Violation or RAWRS will disturb access to the OLD data.
3. Violation of RAWRH will disturb access to the NEWER data.
RB, RADDR
OLD NEWERNEW
tORDA
tORDH
tOWRH
tRAWRH
WB = {WRB+WBLKB}
DO
tOWRA
tRAWRS
Advanced v0.6 45
ProASICPLUS Family Flash FPGAs
Synchronous Write and Asynchronous Read to the Same Location
Note: The plot shows the normal operation status.
TJ = 0°C to 110°C; VDD = 2.3V to 2.7V
Symbol txxx Description Min. Max. Units Notes
ORDA New DO access from RB 7.5 ns
ORDH Old DO valid from RB 3.0 ns
OWRA New DO access from WCLKS 3.0 ns
OWRH Old DO valid from WCLKS 0.5 ns
RAWCLKS RB or RAD DR from WCLKS 5.0 ns
RAWCLKH RB or RADDR from WCLKS 5.0 ns
Notes:
1. During an asynchronous read cycle, each write operation (synchronous or asynchronous) to the same location will automatically trigger
a read operation which updates the read data.
2. Violation of RAWCLKS will disturb access to OLD data.
3. Violation of RAWCLKH will disturb access to NEWER data.
RB, RADDR
OLD NEW NEWER
tORDA
tORDH
tRAWCLKS
tRAWCLKH
WCLKS
DO
tOWRH
tOWRA
ProASICPLUS Family Flash FPGAs
46 Advanced v0.6
Asynchronous FIFO Full and Empty Transitions
The asynchronous FIFO accepts writes and reads while not
full or not empty. When the FIFO is full, all writes are
inhibited. Conversely, when the FIFO is empty, all reads are
inhibited. A problem is created if the FIFO is written during
the transition out of full to not full or read during the
transition out of empty to not empty. The exact time at
which the write (read) operation changes from inhibited to
accepted after the read (write) signal which causes the
transition from full (empty) to not full (empty) is
indeterminate. This indeterminate period starts 1 ns after
the RB (WB) transition, which deactivates full (not empty)
and ends 3 ns after the RB (WB) transition for slow cycles.
For fast cycles, the indeterminate period ends 3 ns (7.5 ns
RDL (WRL)) after the RB (WB) transition, whichever is
later (Table 5).
The timing diagram for write is shown in Figure 21 on
page 47. The timing diagram for read is shown in Figure 22
on page 47. For basic RAM configurations, see Table 3 on
page 14.
Enclosed Timing Diagrams FIFO Mode:
Asynchronous FIFO Read
Asynchronous FIFO Write
Synchronous FIFO Read, Access Timed Output
Strobe (Synchronous Transparent)
Synchronous FIFO Read, Pipeline Mode Outputs
(Synchronous Pipelined)
Synchronous FIFO Write
FIFO Reset
Table 5 Memory Block FIFO Interface Signals
FIFO Signal Bits In/Out Description
WCLKS 1 IN Write clock used for synchronization on write side
RCLKS 1 IN Read clock used for synchronization on read side
LEVEL <0:7> 8 IN D irect configuration implements static flag logic
RBLKB 1 IN Negative true read block select
RDB 1 IN Negative true read pulse
RESET 1 IN Negative true reset for FIFO pointers
WBLKB 1 IN Negative true write block select
DI<0:8> 9 IN Input data bits <0:8>, <8> will be generated if PARGEN is true
WRB 1 IN Negative true write pulse
FULL, E MPTY 2 OUT FIFO flags. FULL prevents write and EMPTY prevents read
EQTH, GEQTH 2 OUT EQTH is true when the FIFO holds the number of words specified by the
LEVEL signal. GEQTH is true when the FIFO holds (LEVEL) words or more
DO<0:8> 9 OUT Output data bits <0:8>
RPE 1 OUT Read parity error
WPE 1 OUT Write parity error
LGDEP <0:2> 3 IN Configures DEPTH of the FIFO to 2 (LGDEP+1)
PARODD 1 IN Selects odd parity generation/detect when high, even when low
Advanced v0.6 47
ProASICPLUS Family Flash FPGAs
Figure 21 Write Timing Diagram
Figure 22 Read Timing Diagram
Write acceptedWrite inhibited
FULL
RB
Write
cycle
1ns
3ns
WB
Read acceptedRead inhibited
EMPTY
WB
Read
cycle
1ns
3ns
RB
ProASICPLUS Family Flash FPGAs
48 Advanced v0.6
Asynchronous FIFO Read
TJ = 0°C to 110°C; VDD = 2.3V to 2.7V
Note: The plot shows the normal operation status.
Symbol txxx Description Min. Max. Units Notes
ERDH,
FRDH,
THRDH
Old EMP TY, FULL, E QTH, & GETH valid
hold time from RB 0.5 ns Empty/full/thresh are invalid
from the end of hold until the
new access is complete
ERDA New EMPTY access from RB 3.01ns
FRDA FULL access from RB 3.01ns
ORDA New DO access from RB 7.5 ns
ORDH Old DO valid from RB 3.0 ns
RDCYC Read cycle time 7.5 ns
RDWRS WB , clearing EMPTY, setup to
RB
3.02ns Enabling the read operation
1.0 ns Inhibiting the read operation
RDH RB high phase 3.0 ns Inactive
RDL RB low phase 3.0 ns Active
RPRDA New RPE access from RB 9.5 ns
RPRDH Old RPE valid from RB 4.0 ns
THRDA EQTH or GETH access from RB4.5 ns
Notes:
1. At fast cycles, ERDA & FRDA = MAX (7.5 ns RDL), 3.0 ns
2. At fast cycles, RDWRS (for enabling read) = MAX (7.5 ns WRL), 3.0 ns
RB=(RDB+RBLKB)
RPE
RDATA
EMPTY
EQTH, GETH
FULL
(Empty inhibits read)
Cycle Start
WB
tRDWRS tERDH, tFRDH
tERDA, tFRDA
tTHRDH
tORDH
tRPRDH
tORDA tTHRDA
Advanced v0.6 49
ProASICPLUS Family Flash FPGAs
Asynchronous FIFO Write
TJ = 0°C to 110°C; VDD = 2.3V to 2.7V
Note: The plot shows the normal operation status.
Symbol txxx Description Min. Max. Units Notes
DWRH DI hold from WB 1.5 ns
DWRS DI setup to WB 0. 5 ns PARGEN is inactive
DWRS DI setup to WB 2.5 ns PARGEN is active
EWRH,
FWRH,
THWRH
Old EMP TY, FULL, E QTH, & GETH valid
hold time after WB 0.5 ns Empty/full/thresh are invalid
from the end of hold until the
new access is complete
EWRA EMPTY access from WB 3.01ns
FWRA New FULL access from WB 3.01ns
THWRA EQTH or GETH access from WB 4.5 ns
WPDA WPE access from DI 3.0 ns WPE is invalid while
PARGEN is active
WPDH WPE hold from DI 1.0 ns
WRCYC Cycle time 7.5 ns
WRRDS RB , clearing FULL, setup to
WB
3.02ns Enabling the write operation
1.0 Inhibiting the write operation
WRH WB high phase 3.0 ns Inactive
WRL WB low phase 3.0 ns Active
Notes:
1. At fast cycles, EWRA, FWRA = MAX (7.5 ns WRL), 3.0 ns
2. At fast cycles, WRRDS (for enabling write) = MAX (7.5 ns RDL), 3.0 ns
WPE
WDATA (Full inhibits write)
WB=(WRB+WBLKB)
EMPTY
EQTH, GETH
FULL
Cycle Start
RB
tWRRDS tDWRH
tWPDH
tWPDA
tDWRS
tEWRH, tFWRH
tEWRA, tFWRA
tTHWRH
tTHWRA
tWRH
tWRL
tWRCYC
ProASICPLUS Family Flash FPGAs
50 Advanced v0.6
Synchronous FIFO Read, Access Timed Output Strobe (Synchronous Transparent)
TJ = 0°C to 110°C; VDD = 2.3V to 2.7V
Note: The plot shows the normal operation status.
Symbol txxx Description Min. Max. Units Notes
CCYC Cycle time 7.5 ns
CMH C lock high phase 3.0 ns
CML Clock low phase 3.0 ns
ECBA New EMPTY access from RCLKS 3.01ns
FCBA FULL access from RCLKS 3.01ns
ECBH,
FCBH,
THCBH
Old EMP TY, FULL, E QTH, & GETH valid
hold time from RCLKS 1.0 ns Empty/full/thresh are invalid
from the end of hold until the
new access is complete
OCA New DO access from RCLKS 7.5 ns
OCH Old DO valid from RCLKS 3.0 ns
RDCH RDB hold from RCLKS 0.5 ns
RDCS RDB setup to RCLKS 1.0 ns
RPCA New RPE acce ss from RCLKS 9.5 ns
RPCH Old RPE valid from RCLKS 3.0 ns
HCBA EQTH or GETH access from RCLKS 4.5 ns
Note:
1. At fast cycles, ECBA & FCBA = MAX (7.5 ns CMH), 3.0 ns
RCLK
RPE
RDATA
EMPTY
EQTH, GETH
FULL
Old Data Out New Valid Data Out (Empty Inhibits Read)
RDB
Cycle Start
tRDCH
tOCH
tRPCH
tRDCS
tECBH, tFCBH
tECBA, tFCBA
tOCA
tRPCA
tCMH tCML
tCCYC
tTHCBH
tHCBA
Advanced v0.6 51
ProASICPLUS Family Flash FPGAs
Synchronous FIFO Read, Pipeline Mode Outputs (Synchronous Pipelined)
TJ = 0°C to 110°C; VDD = 2.3V to 2.7V
Note: The plot shows the normal operation status.
Sym bol txxx Description Min. Max. Units Notes
CCYC Cycle time 7.5 ns
CMH Clock high phase 3.0 ns
CML Clock low phase 3.0 ns
ECBA New EMPTY access fr om RCLKS 3.01ns
FCBA FULL access from RCLKS 3.01ns
ECBH, FCBH,
THCBH Old EMPTY, FULL, EQTH, & GETH valid
hold time from RCLKS 1.0 ns Empty/full/thresh are invalid
from the end of hold until the
new access is complete
OCA New DO access from RCLKS 2.0 ns
OCH Old DO valid from RCLKS 0.75 ns
RDCH RDB hold from RCLKS 0.5 ns
RDCS RDB setup to RCLKS 1.0 ns
RPCA New RPE access from RC LKS 4.0 ns
RPCH Old RPE valid from RCLKS 1.0 ns
HCBA EQTH or GETH access from RCLKS 4.5 ns
Note:
1. At fast cycles, ECBA & FCBA = MAX (7.5 ns CMS), 3.0 ns
RCLK
RPE
RDATA
EMPTY
EQTH, GETH
FULL
Old Data Out New Valid Data Out
RDB
Cycle Start
Old RPE Out New RPE Out
tECBH, tFCBH
tRDCH
tRDCS
tOCA
tECBA, tFCBA
tTHCBH
tHCBA
tCMH tCML
tCCYC
tRPCH
tOCH
tRPCA
ProASICPLUS Family Flash FPGAs
52 Advanced v0.6
Synchronous FIFO Write
Note: The plot shows the normal operation status.
TJ = 0°C to 110°C; VDD = 2.3V to 2.7V
Sym bol txxx Description Min. Max. Units Notes
CCYC Cycle time 7.5 ns
CMH Clock high phase 3.0 ns
CML Clock low phase 3.0 ns
DCH DI hold from WCLKS 0.5 ns
DCS DI setup to WCLKS 1.0 ns
FCBA New FULL access from WCLKS 3.01ns
ECBA EMPTY access from WCLKS 3.01ns
ECBH,
FCBH,
THCBH
Old EMPTY, FULL, EQTH, & GETH valid
hold time from WCLKS 1.0 ns Empty/full/thresh are invalid
from the end of hold until the
new access is complete
HCBA EQTH or GETH access from WCLKS 4.5 ns
WPCA New WPE access from WCLKS 3.0 ns WPE is invalid while
PARGEN is active
WPCH Old WPE valid from WCLKS 0.5 ns
WRCH,
WBCH WRB & WBLKB hold from WCLKS 0.5 ns
WRCS,
WBCS W RB & WBLKB setup to WCLKS 1.0 ns
Note:
1. At fast cycles, ECBA & FCBA = MAX (7.5 ns CMH), 3.0 ns
WCLKS
WPE
DI
EMPTY
EQTH, GETH
FULL
(Full Inhibits Write)
WRB, WBLKB
Cycle Start
tWRCH, tWBCH tECBH, tFCBH
tECBA, tFCBA
tHCBA
tWRCS, tWBCS
tDCS
tWPCA
tCMH tCML
tCCYC
tWPCH
tDCH
tHCBH
Advanced v0.6 53
ProASICPLUS Family Flash FPGAs
FIFO Reset
Note: The plot shows the normal operation status.
TJ = 0°C to 110°C; VDD = 2.3V to 2.7V
Symbol txxx Description Min. Max. Units Notes
CBRSH WCLKS or RCLKS hold from RESETB 1.5 ns Synchronous mode only
CBRSS WCLKS or RCLKS setup to RESETB 1.5 ns Synchronous mode only
ERSA New EMPTY access from RESETB 3.0 ns
FRSA FULL access from RESETB 3.0 ns
RSL RE S ETB low phase 7.5 ns
THRSA EQTH or GETH access from RESETB 4.5 ns
WBRSH WB hold from RESETB 1.5 ns Asynchronous mode onl y
WBRSS WB setup to RESETB 1.5 ns Asynchronous mode only
*WB = WRB + WBLRB
RESETB
EMPTY
EQTH, GETH
FULL
WB*
Cycle Start
Cycle Start
WCLKS, RCLKS
tERSA, tFRSA
tTHRSA
tCBRSS
tWBRSS
tCBRSH
tWBRSH
tRSL
ProASICPLUS Family Flash FPGAs
54 Advanced v0.6
Pin Description
I/O User Input/Output
The I/O pin functions as an input, output, tristate, or
bidirectional buffer. Input and output signal levels are
compatible with standard LVTTL and LVCMOS
specifications. Unused I/O pins are configured as inputs
with pull-up resistors.
NC No Connect
To maintain compatibility with other Actel ProASIC
products it is recommended that this pin not be connected
to the circuitry on the board.
GL Global Input Pin
Low skew input pin for clock or other global signals. Input
only. This pin can be configured with a pull-up resistor.
GND Ground
Common ground supply voltage.
VDD Logic Array Power Supply Pin
2.5V supply voltage.
VDDP I/O Pad Power Supply Pin
2.5V or 3.3V supply voltage.
VPP Programming Supply Pin
This pin may be connected to any voltage between GND and
16.5V during normal operation, or it can be left
unconnected. For information on using this pin during
programming, see the Performing Internal In-System
Programming Using Actels ProASICPLUS Devices
application note.
VPN Programming Supply Pin
This pin may be connected to any voltage between GND and
13.8V during normal operation, or it can be left
unconnected. For information on using this pin during
programming, see the Performing Internal In-System
Programming Using Actels ProASICPLUS Devices
application note.
TMS Test Mode Select
The TMS pin controls the use of boundary-scan circuitry.
TCK Test Clock
Clock input pin for boundary scan.
TDI Test Data In
Serial input for boundary scan.
TDO Test Data Out
Serial output for boundary scan.
TRST Test Reset Input
Asynchronous, active low input pin for resetting
boundary-scan circuitry.
RCK Running Clock
A free running clock is needed during programming if the
programmer cannot guarantee that TCK will be
uninterrupted.
NPECL PECL Negative Input
Provides high speed clock or data signals to the PLL block.
If unused, leave the pin unconnected.
PPECL PECL Positive input
Provides high speed clock or data signals to the PLL block.
If unused, leave the pin unconnected.
AVDD PLL Power Supply
AGND PLL Power Ground
Advanced v0.6 55
ProASICPLUS Family Flash FPGAs
Package Pin Assignments
208-Pin PQFP
208-Pin PQFP
1
208
ProASICPLUS Family Flash FPGAs
56 Advanced v0.6
208-Pin PQFP
Pin
Number APA150
Function APA300
Function APA450
Function APA600
Function APA750
Function APA1000
Function
1 GND GND GND GND GND GND
2 I/O I/O I/O I/O I/O I/O
3 I/O I/O I/O I/O I/O I/O
4 I/O I/O I/O I/O I/O I/O
5 I/O I/O I/O I/O I/O I/O
6 I/O I/O I/O I/O I/O I/O
7 I/O I/O I/O I/O I/O I/O
8 I/O I/O I/O I/O I/O I/O
9 I/O I/O I/O I/O I/O I/O
10 I/O I/O I/O I/O I/O I/O
11 I/O I/O I/O I/O I/O I/O
12 I/O I/O I/O I/O I/O I/O
13 I/O I/O I/O I/O I/O I/O
14 I/O I/O I/O I/O I/O I/O
15 I/O I/O I/O I/O I/O I/O
16 VDD VDD VDD VDD VDD VDD
17 GND GND GND GND GND GND
18 I/O I/O I/O I/O I/O I/O
19 I/O I/O I/O I/O I/O I/O
20 I/O I/O I/O I/O I/O I/O
21 I/O I/O I/O I/O I/O I/O
22 VDDP VDDP VDDP VDDP VDDP VDDP
23 I/O I/O I/O I/O I/O I/O
24 GL GL GL GL GL GL
25 AGND AGND AGND AGND AGND AGND
26 NPECL NPECL NPECL NPECL NPECL NPECL
27 AVDD AVDD AVDD AVDD AVDD AVDD
28 PPECL PPECL PPECL PPECL PPECL PPECL
29 GND GND GND GND GND GND
30 GL GL GL GL GL GL
31 I/O I/O I/O I/O I/O I/O
32 I/O I/O I/O I/O I/O I/O
33 I/O I/O I/O I/O I/O I/O
34 I/O I/O I/O I/O I/O I/O
35 I/O I/O I/O I/O I/O I/O
36 VDD VDD VDD VDD VDD VDD
37 I/O I/O I/O I/O I/O I/O
38 I/O I/O I/O I/O I/O I/O
39 I/O I/O I/O I/O I/O I/O
Advanced v0.6 57
ProASICPLUS Family Flash FPGAs
40 VDDP VDDP VDDP VDDP VDDP VDDP
41 GND GND GND GND GND GND
42 I/O I/O I/O I/O I/O I/O
43 I/O I/O I/O I/O I/O I/O
44 I/O I/O I/O I/O I/O I/O
45 I/O I/O I/O I/O I/O I/O
46 I/O I/O I/O I/O I/O I/O
47 I/O I/O I/O I/O I/O I/O
48 I/O I/O I/O I/O I/O I/O
49 I/O I/O I/O I/O I/O I/O
50 I/O I/O I/O I/O I/O I/O
51 I/O I/O I/O I/O I/O I/O
52 GND GND GND GND GND GND
53 VDDP VDDP VDDP VDDP VDDP VDDP
54 I/O I/O I/O I/O I/O I/O
55 I/O I/O I/O I/O I/O I/O
56 I/O I/O I/O I/O I/O I/O
57 I/O I/O I/O I/O I/O I/O
58 I/O I/O I/O I/O I/O I/O
59 I/O I/O I/O I/O I/O I/O
60 I/O I/O I/O I/O I/O I/O
61 I/O I/O I/O I/O I/O I/O
62 I/O I/O I/O I/O I/O I/O
63 I/O I/O I/O I/O I/O I/O
64 I/O I/O I/O I/O I/O I/O
65 GND GND GND GND GND GND
66 I/O I/O I/O I/O I/O I/O
67 I/O I/O I/O I/O I/O I/O
68 I/O I/O I/O I/O I/O I/O
69 I/O I/O I/O I/O I/O I/O
70 I/O I/O I/O I/O I/O I/O
71 VDD VDD VDD VDD VDD VDD
72 VDDP VDDP VDDP VDDP VDDP VDDP
73 I/O I/O I/O I/O I/O I/O
74 I/O I/O I/O I/O I/O I/O
75 I/O I/O I/O I/O I/O I/O
76 I/O I/O I/O I/O I/O I/O
77 I/O I/O I/O I/O I/O I/O
78 I/O I/O I/O I/O I/O I/O
208-Pin PQFP (Continued)
Pin
Number APA150
Function APA300
Function APA450
Function APA600
Function APA750
Function APA1000
Function
ProASICPLUS Family Flash FPGAs
58 Advanced v0.6
79 I/O I/O I/O I/O I/O I/O
80 I/O I/O I/O I/O I/O I/O
81 GND GND GND GND GND GND
82 I/O I/O I/O I/O I/O I/O
83 I/O I/O I/O I/O I/O I/O
84 I/O I/O I/O I/O I/O I/O
85 I/O I/O I/O I/O I/O I/O
86 I/O I/O I/O I/O I/O I/O
87 I/O I/O I/O I/O I/O I/O
88 VDD VDD VDD VDD VDD VDD
89 VDDP VDDP VDDP VDDP VDDP VDDP
90 I/O I/O I/O I/O I/O I/O
91 I/O I/O I/O I/O I/O I/O
92 I/O I/O I/O I/O I/O I/O
93 I/O I/O I/O I/O I/O I/O
94 I/O I/O I/O I/O I/O I/O
95 I/O I/O I/O I/O I/O I/O
96 I/O I/O I/O I/O I/O I/O
97 GND GND GND GND GND GND
98 I/O I/O I/O I/O I/O I/O
99 I/O I/O I/O I/O I/O I/O
100 I/O I/O I/O I/O I/O I/O
101 TCK TCK TCK TCK TCK TCK
102 TDI TDI TDI TDI TDI TDI
103 TMS TMS TMS TMS TMS TMS
104 VDDP VDDP VDDP VDDP VDDP VDDP
105 GND GND GND GND GND GND
106 VPP VPP VPP VPP VPP VPP
107 VPN VPN VPN VPN VPN VPN
108 TDOTDOTDOTDOTDOTDO
109 TRST TRST TRST TRST TRST TRST
110 RCK RCK RCK RCK RCK RCK
111 I/O I/O I/O I/O I/O I/O
112 I/O I/O I/O I/O I/O I/O
113 I/O I/O I/O I/O I/O I/O
114 I/O I/O I/O I/O I/O I/O
115 I/O I/O I/O I/O I/O I/O
116 I/O I/O I/O I/O I/O I/O
117 I/O I/O I/O I/O I/O I/O
208-Pin PQFP (Continued)
Pin
Number APA150
Function APA300
Function APA450
Function APA600
Function APA750
Function APA1000
Function
Advanced v0.6 59
ProASICPLUS Family Flash FPGAs
118 I/O I/O I/O I/O I/O I/O
119 I/O I/O I/O I/O I/O I/O
120 I/O I/O I/O I/O I/O I/O
121 I/O I/O I/O I/O I/O I/O
122 GND GND GND GND GND GND
123 VDDP VDDP VDDP VDDP VDDP VDDP
124 I/O I/O I/O I/O I/O I/O
125 I/O I/O I/O I/O I/O I/O
126 VDD VDD VDD VDD VDD VDD
127 I/O I/O I/O I/O I/O I/O
128 GL GL GL GL GL GL
129 PPECL PPECL PPECL PPECL PPECL PPECL
130 GND GND GND GND GND GND
131 AVDD AVDD AVDD AVDD AVDD AVDD
132 NPECL NPECL NPECL NPECL NPECL NPECL
133 AGND AGND AGND AGND AGND AGND
134 GL GL GL GL GL GL
135 I/O I/O I/O I/O I/O I/O
136 I/O I/O I/O I/O I/O I/O
137 I/O I/O I/O I/O I/O I/O
138 VDDP VDDP VDDP VDDP VDDP VDDP
139 I/O I/O I/O I/O I/O I/O
140 I/O I/O I/O I/O I/O I/O
141 GND GND GND GND GND GND
142 VDD VDD VDD VDD VDD VDD
143 I/O I/O I/O I/O I/O I/O
144 I/O I/O I/O I/O I/O I/O
145 I/O I/O I/O I/O I/O I/O
146 I/O I/O I/O I/O I/O I/O
147 I/O I/O I/O I/O I/O I/O
148 I/O I/O I/O I/O I/O I/O
149 I/O I/O I/O I/O I/O I/O
150 I/O I/O I/O I/O I/O I/O
151 I/O I/O I/O I/O I/O I/O
152 I/O I/O I/O I/O I/O I/O
153 I/O I/O I/O I/O I/O I/O
154 I/O I/O I/O I/O I/O I/O
155 I/O I/O I/O I/O I/O I/O
156 GND GND GND GND GND GND
208-Pin PQFP (Continued)
Pin
Number APA150
Function APA300
Function APA450
Function APA600
Function APA750
Function APA1000
Function
ProASICPLUS Family Flash FPGAs
60 Advanced v0.6
157 VDDP VDDP VDDP VDDP VDDP VDDP
158 I/O I/O I/O I/O I/O I/O
159 I/O I/O I/O I/O I/O I/O
160 I/O I/O I/O I/O I/O I/O
161 I/O I/O I/O I/O I/O I/O
162 GND GND GND GND GND GND
163 I/O I/O I/O I/O I/O I/O
164 I/O I/O I/O I/O I/O I/O
165 I/O I/O I/O I/O I/O I/O
166 I/O I/O I/O I/O I/O I/O
167 I/O I/O I/O I/O I/O I/O
168 I/O I/O I/O I/O I/O I/O
169 I/O I/O I/O I/O I/O I/O
170 VDDP VDDP VDDP VDDP VDDP VDDP
171 VDD VDD VDD VDD VDD VDD
172 I/O I/O I/O I/O I/O I/O
173 I/O I/O I/O I/O I/O I/O
174 I/O I/O I/O I/O I/O I/O
175 I/O I/O I/O I/O I/O I/O
176 I/O I/O I/O I/O I/O I/O
177 I/O I/O I/O I/O I/O I/O
178 GND GND GND GND GND GND
179 I/O I/O I/O I/O I/O I/O
180 I/O I/O I/O I/O I/O I/O
181 I/O I/O I/O I/O I/O I/O
182 I/O I/O I/O I/O I/O I/O
183 I/O I/O I/O I/O I/O I/O
184 I/O I/O I/O I/O I/O I/O
185 I/O I/O I/O I/O I/O I/O
186 VDDP VDDP VDDP VDDP VDDP VDDP
187 VDD VDD VDD VDD VDD VDD
188 I/O I/O I/O I/O I/O I/O
189 I/O I/O I/O I/O I/O I/O
190 I/O I/O I/O I/O I/O I/O
191 I/O I/O I/O I/O I/O I/O
192 I/O I/O I/O I/O I/O I/O
193 I/O I/O I/O I/O I/O I/O
194 I/O I/O I/O I/O I/O I/O
195 GND GND GND GND GND GND
208-Pin PQFP (Continued)
Pin
Number APA150
Function APA300
Function APA450
Function APA600
Function APA750
Function APA1000
Function
Advanced v0.6 61
ProASICPLUS Family Flash FPGAs
196 I/O I/O I/O I/O I/O I/O
197 I/O I/O I/O I/O I/O I/O
198 I/O I/O I/O I/O I/O I/O
199 I/O I/O I/O I/O I/O I/O
200 I/O I/O I/O I/O I/O I/O
201 I/O I/O I/O I/O I/O I/O
202 I/O I/O I/O I/O I/O I/O
203 I/O I/O I/O I/O I/O I/O
204 I/O I/O I/O I/O I/O I/O
205 I/O I/O I/O I/O I/O I/O
206 I/O I/O I/O I/O I/O I/O
207 I/O I/O I/O I/O I/O I/O
208 VDDP VDDP VDDP VDDP VDDP VDDP
208-Pin PQFP (Continued)
Pin
Number APA150
Function APA300
Function APA450
Function APA600
Function APA750
Function APA1000
Function
ProASICPLUS Family Flash FPGAs
62 Advanced v0.6
Package Pin Assignments (Continued)
456-Pin PBGA (Bottom View)
12356789101115 14 13 121617181920212223 4242526
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
AF
Advanced v0.6 63
ProASICPLUS Family Flash FPGAs
456-Pin PBGA
Pin
Number APA150
Function APA300
Function APA450
Function APA600
Function APA750
Function APA1000
Function
A1 VDDP VDDP VDDP VDDP VDDP VDDP
A2 VDDP VDDP VDDP VDDP VDDP VDDP
A3 NC NC I/O I/O I/O I/O
A4 NC NC I/O I/O I/O I/O
A5 NC NC I/O I/O I/O I/O
A6 NC NC I/O I/O I/O I/O
A7 NC NC I/O I/O I/O I/O
A8 I/O I/O I/O I/O I/O I/O
A9 I/O I/O I/O I/O I/O I/O
A10 I/O I/O I /O I/O I/O I/O
A11 I/O I/O I/O I/O I/O I/O
A12 I/O I/O I /O I/O I/O I/O
A13 I/O I/O I /O I/O I/O I/O
A14 I/O I/O I /O I/O I/O I/O
A15 I/O I/O I /O I/O I/O I/O
A16 I/O I/O I /O I/O I/O I/O
A17 I/O I/O I /O I/O I/O I/O
A18 I/O I/O I /O I/O I/O I/O
A19 I/O I/O I /O I/O I/O I/O
A20 NC NC I /O I/O I/O I/O
A21 NC NC I /O I/O I/O I/O
A22 NC NC I /O I/O I/O I/O
A23 NC NC I /O I/O I/O I/O
A24 NC NC I /O I/O I/O I/O
A25 VDDP VDDP VDDP VDDP VDDP VDDP
A26 VDDP VDDP VDDP VDDP VDDP VDDP
B1 VDDP VDDP VDDP VDDP VDDP VDDP
B2 VDDP VDDP VDDP VDDP VDDP VDDP
B3 NC NC NC I/O I/O I/O
B4 NC NC I/O I/O I/O I/O
B5 NC NC I/O I/O I/O I/O
B6 NC NC I/O I/O I/O I/O
B7 NC NC I/O I/O I/O I/O
B8 I/O I/O I/O I/O I/O I/O
B9 I/O I/O I/O I/O I/O I/O
B10 I/O I/O I /O I/O I/O I/O
B11 I/O I/O I/O I/O I/O I/O
B12 I/O I/O I /O I/O I/O I/O
B13 I/O I/O I /O I/O I/O I/O
ProASICPLUS Family Flash FPGAs
64 Advanced v0.6
B14 I/O I/O I /O I/O I/O I/O
B15 I/O I/O I /O I/O I/O I/O
B16 I/O I/O I /O I/O I/O I/O
B17 I/O I/O I /O I/O I/O I/O
B18 I/O I/O I /O I/O I/O I/O
B19 I/O I/O I /O I/O I/O I/O
B20 NC NC I /O I/O I/O I/O
B21 NC NC I /O I/O I/O I/O
B22 NC NC I /O I/O I/O I/O
B23 NC NC I /O I/O I/O I/O
B24 NC NC I /O I/O I/O I/O
B25 VDDP VDDP VDDP VDDP VDDP VDDP
B26 VDDP VDDP VDDP VDDP VDDP VDDP
C1 VDDP VDDP VDDP VDDP VDDP VDDP
C2 NC I/O I/O I/O I/O I/O
C3 VDDP VDDP VDDP VDDP VDDP VDDP
C4 NC NC NC I/O I/O I/O
C5 NC NC I/O I/O I/O I/O
C6 NC NC I/O I/O I/O I/O
C7 I/O I/O I/O I/O I/O I/O
C8 I/O I/O I/O I/O I/O I/O
C9 I/O I/O I/O I/O I/O I/O
C10 I/O I/O I/O I/O I/O I/O
C11 I/O I/O I/O I/O I/O I/O
C12 I/O I/O I/O I/O I/O I/O
C13 I/O I/O I/O I/O I/O I/O
C14 I/O I/O I/O I/O I/O I/O
C15 I/O I/O I/O I/O I/O I/O
C16 I/O I/O I/O I/O I/O I/O
C17 I/O I/O I/O I/O I/O I/O
C18 I/O I/O I/O I/O I/O I/O
C19 I/O I/O I/O I/O I/O I/O
C20 I/O I/O I/O I/O I/O I/O
C21 NC NC I/O I/O I/O I/O
C22 NC NC I/O I/O I/O I/O
C23 NC NC I/O I/O I/O I/O
C24 VDDP VDDP VDDP VDDP VDDP VDDP
C25 NC NC NC I/O I/O I/O
C26 NC NC NC I/O I/O I/O
456-Pin PBGA (Continued)
Pin
Number APA150
Function APA300
Function APA450
Function APA600
Function APA750
Function APA1000
Function
Advanced v0.6 65
ProASICPLUS Family Flash FPGAs
D1 NC NC NC I/O I/O I/O
D2 NC NC NC I/O I/O I/O
D3 NC I/O I/O I/O I/O I/O
D4 VDDP VDDP VDDP VDDP VDDP VDDP
D5 NC NC I/O I/O I/O I/O
D6 NC NC I/O I/O I/O I/O
D7 I/O I/O I/O I/O I/O I/O
D8 I/O I/O I/O I/O I/O I/O
D9 I/O I/O I/O I/O I/O I/O
D10 I/O I/O I/O I/O I/O I/O
D11 I/O I/O I/O I/O I/O I/O
D12 I/O I/O I/O I/O I/O I/O
D13 I/O I/O I/O I/O I/O I/O
D14 I/O I/O I/O I/O I/O I/O
D15 I/O I/O I/O I/O I/O I/O
D16 I/O I/O I/O I/O I/O I/O
D17 I/O I/O I/O I/O I/O I/O
D18 I/O I/O I/O I/O I/O I/O
D19 I/O I/O I/O I/O I/O I/O
D20 I/O I/O I/O I/O I/O I/O
D21 I/O I/O I/O I/O I/O I/O
D22 NC NC I/O I/O I/O I/O
D23 VDDP VDDP VDDP VDDP VDDP VDDP
D24 NC I/O I/O I/O I/O I/O
D25 NC NC NC I/O I/O I/O
D26 NC NC NC I/O I/O I/O
E1 NC I/O I/O I/O I/O I/O
E2 NC I/O I/O I/O I/O I/O
E3 NC I/O I/O I/O I/O I/O
E4 NC I/O I/O I/O I/O I/O
E5 VDD VDD VDD VDD VDD VDD
E6 VDD VDD VDD VDD VDD VDD
E7 VDD VDD VDD VDD VDD VDD
E8 VDD VDD VDD VDD VDD VDD
E9 I/O I/O I/O I/O I/O I/O
E10 I/O I/O I /O I/O I/O I/O
E11 I/O I/O I/O I/O I/O I/O
E12 I/O I/O I /O I/O I/O I/O
E13 I/O I/O I /O I/O I/O I/O
456-Pin PBGA (Continued)
Pin
Number APA150
Function APA300
Function APA450
Function APA600
Function APA750
Function APA1000
Function
ProASICPLUS Family Flash FPGAs
66 Advanced v0.6
E14 I/O I/O I /O I/O I/O I/O
E15 I/O I/O I /O I/O I/O I/O
E16 I/O I/O I /O I/O I/O I/O
E17 I/O I/O I /O I/O I/O I/O
E18 I/O I/O I /O I/O I/O I/O
E19 I/O I/O I /O I/O I/O I/O
E20 VDD VDD VDD VDD VDD VDD
E21 VDD VDD VDD VDD VDD VDD
E22 VDD VDD VDD VDD VDD VDD
E23 NC I/O I /O I/O I/O I/O
E24 NC I/O I /O I/O I/O I/O
E25 NC I/O I /O I/O I/O I/O
E26 NC I/O I /O I/O I/O I/O
F1 NC I/O I/O I/O I/O I/O
F2 NC I/O I/O I/O I/O I/O
F3 NC I/O I/O I/O I/O I/O
F4 NC I/O I/O I/O I/O I/O
F5 VDD VDD VDD VDD VDD VDD
F22 VDD VDD VDD VDD VDD VDD
F23 NC I/O I/O I/O I/O I/O
F24 NC I/O I/O I/O I/O I/O
F25 NC I/O I/O I/O I/O I/O
F26 NC I/O I/O I/O I/O I/O
G1 I/O I/O I/O I/O I/O I/O
G2 I/O I/O I/O I/O I/O I/O
G3 NC I/O I/O I/O I/O I/O
G4 NC I/O I/O I/O I/O I/O
G5 VDD VDD VDD VDD VDD VDD
G22 VDD VDD VDD VDD VDD VDD
G23 NC I/O I/O I/O I/O I/O
G24 NC I/O I/O I/O I/O I/O
G25 NC I/O I/O I/O I/O I/O
G26 I/O I/O I/O I/O I/O I/O
H1 I/O I/O I/O I/O I/O I/O
H2 I/O I/O I/O I/O I/O I/O
H3 I/O I/O I/O I/O I/O I/O
H4 I/O I/O I/O I/O I/O I/O
H5 VDD VDD VDD VDD VDD VDD
H22 VDD VDD VDD VDD VDD VDD
456-Pin PBGA (Continued)
Pin
Number APA150
Function APA300
Function APA450
Function APA600
Function APA750
Function APA1000
Function
Advanced v0.6 67
ProASICPLUS Family Flash FPGAs
H23 I/O I/O I/O I/O I/O I/O
H24 I/O I/O I/O I/O I/O I/O
H25 I/O I/O I/O I/O I/O I/O
H26 I/O I/O I/O I/O I/O I/O
J1 I/O I/O I/O I/O I/O I/O
J2 I/O I/O I/O I/O I/O I/O
J3 I/O I/O I/O I/O I/O I/O
J4 I/O I/O I/O I/O I/O I/O
J5 I/O I/O I/O I/O I/O I/O
J22 I/O I/O I/O I/O I/O I/O
J23 I/O I/O I/O I/O I/O I/O
J24 I/O I/O I/O I/O I/O I/O
J25 I/O I/O I/O I/O I/O I/O
J26 I/O I/O I/O I/O I/O I/O
K1 I/O I/O I/O I/O I/O I/O
K2 I/O I/O I/O I/O I/O I/O
K3 I/O I/O I/O I/O I/O I/O
K4 I/O I/O I/O I/O I/O I/O
K5 I/O I/O I/O I/O I/O I/O
K22 I/O I/O I /O I/O I/O I/O
K23 I/O I/O I /O I/O I/O I/O
K24 I/O I/O I /O I/O I/O I/O
K25 I/O I/O I /O I/O I/O I/O
K26 I/O I/O I /O I/O I/O I/O
L1 I/O I/O I/O I/O I/O I/O
L2 I/O I/O I/O I/O I/O I/O
L3 I/O I/O I/O I/O I/O I/O
L4 I/O I/O I/O I/O I/O I/O
L5 I/O I/O I/O I/O I/O I/O
L11 GND GND GND GND GND GND
L12 GND GND GND GND GND GND
L13 GND GND GND GND GND GND
L14 GND GND GND GND GND GND
L15 GND GND GND GND GND GND
L16 GND GND GND GND GND GND
L22 I/O I/O I/O I/O I/O I/O
L23 I/O I/O I/O I/O I/O I/O
L24 I/O I/O I/O I/O I/O I/O
L25 I/O I/O I/O I/O I/O I/O
456-Pin PBGA (Continued)
Pin
Number APA150
Function APA300
Function APA450
Function APA600
Function APA750
Function APA1000
Function
ProASICPLUS Family Flash FPGAs
68 Advanced v0.6
L26 I/O I/O I/O I/O I/O I/O
M1 GL GL GL GL GL GL
M2 GL GL GL GL GL GL
M3 I/O I/O I/O I/O I/O I/O
M4 I/O I/O I/O I/O I/O I/O
M5 I/O I/O I/O I/O I/O I/O
M11 GND GND GND GND GND GND
M12 GND GND G ND GND GND GND
M13 GND GND G ND GND GND GND
M14 GND GND G ND GND GND GND
M15 GND GND G ND GND GND GND
M16 GND GND G ND GND GND GND
M22GLGLGLGLGLGL
M23 I/O I/O I/O I/O I/O I/O
M24 I/O I/O I/O I/O I/O I/O
M25 I/O I/O I/O I/O I/O I/O
M26 I/O I/O I/O I/O I/O I/O
N1 I/O I/O I/O I/O I/O I/O
N2 I/O I/O I/O I/O I/O I/O
N3 AGND AGND AGND AGND AGND AGND
N4 PPECL PPECL PPECL PPECL PPECL PPECL
N5 AVDD AVDD AVDD AVDD AVDD AVDD
N11 GND GND GND GND GND GND
N12 GND GND GND GND GND GND
N13 GND GND GND GND GND GND
N14 GND GND GND GND GND GND
N15 GND GND GND GND GND GND
N16 GND GND GND GND GND GND
N22 NPECL NPECL NPECL N PECL NPECL NPECL
N23GLGLGLGLGLGL
N24 AVDDAVDDAVDDAVDDAVDDAVDD
N25 I/O I/O I/O I/O I/O I/O
N26 AGND AGND AGND AGND AGND AGND
P1 I/O I/O I/O I/O I/O I/O
P2 I/O I/O I/O I/O I/O I/O
P3 I/O I/O I/O I/O I/O I/O
P4 I/O I/O I/O I/O I/O I/O
P5 NPECL NPECL NPECL NPECL NPECL NPECL
P11 GND GND GND GND GND GND
456-Pin PBGA (Continued)
Pin
Number APA150
Function APA300
Function APA450
Function APA600
Function APA750
Function APA1000
Function
Advanced v0.6 69
ProASICPLUS Family Flash FPGAs
P12 GND GND GND GND GND GND
P13 GND GND GND GND GND GND
P14 GND GND GND GND GND GND
P15 GND GND GND GND GND GND
P16 GND GND GND GND GND GND
P22 I/O I/O I /O I/O I/O I/O
P23 I/O I/O I /O I/O I/O I/O
P24 I/O I/O I /O I/O I/O I/O
P25 I/O I/O I /O I/O I/O I/O
P26 PPECL PPECL PPECL PPECL PPECL PPECL
R1 I/O I/O I/O I/O I/O I/O
R2 I/O I/O I/O I/O I/O I/O
R3 I/O I/O I/O I/O I/O I/O
R4 I/O I/O I/O I/O I/O I/O
R5 I/O I/O I/O I/O I/O I/O
R11 GND GND GND GND GND GND
R12 GND GND GND GND GND GND
R13 GND GND GND GND GND GND
R14 GND GND GND GND GND GND
R15 GND GND GND GND GND GND
R16 GND GND GND GND GND GND
R22 I/O I/O I/O I/O I/O I/O
R23 I/O I/O I/O I/O I/O I/O
R24 I/O I/O I/O I/O I/O I/O
R25 I/O I/O I/O I/O I/O I/O
R26 I/O I/O I/O I/O I/O I/O
T1 I/O I/O I/O I/O I/O I/O
T2 I/O I/O I/O I/O I/O I/O
T3 I/O I/O I/O I/O I/O I/O
T4 I/O I/O I/O I/O I/O I/O
T5 I/O I/O I/O I/O I/O I/O
T11 GND GND GND GND G ND GND
T12 GND GND GND GND GND GND
T13 GND GND GND GND GND GND
T14 GND GND GND GND GND GND
T15 GND GND GND GND GND GND
T16 GND GND GND GND GND GND
T22 I/O I/O I/O I/O I/O I/O
T23 I/O I/O I/O I/O I/O I/O
456-Pin PBGA (Continued)
Pin
Number APA150
Function APA300
Function APA450
Function APA600
Function APA750
Function APA1000
Function
ProASICPLUS Family Flash FPGAs
70 Advanced v0.6
T24 I/O I/O I/O I/O I/O I/O
T25 I/O I/O I/O I/O I/O I/O
T26 I/O I/O I/O I/O I/O I/O
U1 I/O I/O I/O I/O I/O I/O
U2 I/O I/O I/O I/O I/O I/O
U3 I/O I/O I/O I/O I/O I/O
U4 I/O I/O I/O I/O I/O I/O
U5 I/O I/O I/O I/O I/O I/O
U22 I/O I/O I/O I/O I/O I/O
U23 I/O I/O I/O I/O I/O I/O
U24 I/O I/O I/O I/O I/O I/O
U25 I/O I/O I/O I/O I/O I/O
U26 I/O I/O I/O I/O I/O I/O
V1 I/O I/O I/O I/O I/O I/O
V2 I/O I/O I/O I/O I/O I/O
V3 I/O I/O I/O I/O I/O I/O
V4 I/O I/O I/O I/O I/O I/O
V5 I/O I/O I/O I/O I/O I/O
V22 I/O I/O I /O I/O I/O I/O
V23 I/O I/O I /O I/O I/O I/O
V24 I/O I/O I /O I/O I/O I/O
V25 I/O I/O I /O I/O I/O I/O
V26 I/O I/O I /O I/O I/O I/O
W1 I/O I/O I/O I/O I/O I/O
W2 I/O I/O I/O I/O I/O I/O
W3 I/O I/O I/O I/O I/O I/O
W4 I/O I/O I/O I/O I/O I/O
W5 VDD VDD VDD VDD VDD VDD
W22 VDD VDD VDD VDD VDD VDD
W23 I/O I/O I/O I/O I/O I/O
W24 I/O I/O I/O I/O I/O I/O
W25 I/O I/O I/O I/O I/O I/O
W26 I/O I/O I/O I/O I/O I/O
Y1 I/O I/O I/O I/O I/O I/O
Y2 I/O I/O I/O I/O I/O I/O
Y3 I/O I/O I/O I/O I/O I/O
Y4 NC I/O I/O I/O I/O I/O
Y5 VDD VDD VDD VDD VDD VDD
Y22 VDD VDD VDD VDD VDD VDD
456-Pin PBGA (Continued)
Pin
Number APA150
Function APA300
Function APA450
Function APA600
Function APA750
Function APA1000
Function
Advanced v0.6 71
ProASICPLUS Family Flash FPGAs
Y23 NC I/O I /O I/O I/O I/O
Y24 NC I/O I /O I/O I/O I/O
Y25 NC I/O I /O I/O I/O I/O
Y26 NC I/O I /O I/O I/O I/O
AA1 I/O I/O I/O I/O I/O I/O
AA2 NC I/O I/O I/O I/O I/O
AA3 NC I/O I/O I/O I/O I/O
AA4 NC I/O I/O I/O I/O I/O
AA5 VDD VDD VDD VDD VDD VDD
AA22 VDD VDD VDD VDD VDD VDD
AA23 NC I/O I/O I/O I/O I/O
AA24 NC I/O I/O I/O I/O I/O
AA25 NC I/O I/O I/O I/O I/O
AA26 NC I/O I/O I/O I/O I/O
AB1 NC I/O I/O I/O I/O I/O
AB2 NC I/O I/O I/O I/O I/O
AB3 NC I/O I/O I/O I/O I/O
AB4 NC I/O I/O I/O I/O I/O
AB5 VDD VDD VDD VDD VDD VDD
AB6 VDD VDD VDD VDD VDD VDD
AB7 VDD VDD VDD VDD VDD VDD
AB8 I/O I/O I/O I/O I/O I/O
AB9 I/O I/O I/O I/O I/O I/O
AB10 I/O I/O I/O I/O I/O I/O
AB11 I/O I/O I/O I/O I/O I/O
AB12 I/O I/O I/O I/O I/O I/O
AB13 I/O I/O I/O I/O I/O I/O
AB14 I/O I/O I/O I/O I/O I/O
AB15 I/O I/O I/O I/O I/O I/O
AB16 I/O I/O I/O I/O I/O I/O
AB17 I/O I/O I/O I/O I/O I/O
AB18 I/O I/O I/O I/O I/O I/O
AB19 I/O I/O I/O I/O I/O I/O
AB20 VDD VDD VDD VDD VDD VDD
AB21 VDD VDD VDD VDD VDD VDD
AB22 VDD VDD VDD VDD VDD VDD
AB23 NC I/O I/O I/O I/O I/O
AB24 NC I/O I/O I/O I/O I/O
AB25 NC I/O NC I/O I/O I/O
456-Pin PBGA (Continued)
Pin
Number APA150
Function APA300
Function APA450
Function APA600
Function APA750
Function APA1000
Function
ProASICPLUS Family Flash FPGAs
72 Advanced v0.6
AB26 NC NC I/O I/O I/O I/O
AC1 NC I/O I/O I/O I/O I/O
AC2 NC I/O I/O I/O I/O I/O
AC3 NC I/O I/O I/O I/O I/O
AC4 VDDP VDDP VDDP VDDP VDDP VDDP
AC5 NC NC I/O I/O I/O I/O
AC6 I/O I/O I/O I/O I/O I/O
AC7 I/O I/O I/O I/O I/O I/O
AC8 I/O I/O I/O I/O I/O I/O
AC9 I/O I/O I/O I/O I/O I/O
AC10 I/O I/O I/O I/O I/O I/O
AC11 I/O I/O I/O I/O I/O I/O
AC12 I/O I/O I/O I/O I/O I/O
AC13 I/O I/O I/O I/O I/O I/O
AC14 I/O I/O I/O I/O I/O I/O
AC15 I/O I/O I/O I/O I/O I/O
AC16 I/O I/O I/O I/O I/O I/O
AC17 I/O I/O I/O I/O I/O I/O
AC18 I/O I/O I/O I/O I/O I/O
AC19 I/O I/O I/O I/O I/O I/O
AC20 I/O I/O I /O I/O I/O I/O
AC21 T MS TMS TMS TMS TMS TMS
AC22TDOTDOTDOTDO TDOTDO
AC23 VDDP VDDP VDDP VDDP VDDP VDDP
AC24 RCK RCK RCK RCK RCK RCK
AC25 NC NC I/O I/O I/O I/O
AC26 NC I/O I/O I/O I/O I/O
AD1 NC NC NC I/O I/O I/O
AD2 NC I/O I/O I/O I/O I/O
AD3 VDDP VDDP VDDP VDDP VDDP VDDP
AD4 NC NC I/O I/O I/O I/O
AD5 NC NC I/O I/O I/O I/O
AD6 NC NC I/O I/O I/O I/O
AD7 I/O I/O I/O I/O I/O I/O
AD8 I/O I/O I/O I/O I/O I/O
AD9 I/O I/O I/O I/O I/O I/O
AD10 I/O I/O I/O I/O I/O I/O
AD11 I/O I/O I/O I/O I/O I/O
AD12 I/O I/O I/O I/O I/O I/O
456-Pin PBGA (Continued)
Pin
Number APA150
Function APA300
Function APA450
Function APA600
Function APA750
Function APA1000
Function
Advanced v0.6 73
ProASICPLUS Family Flash FPGAs
AD13 I/O I/O I/O I/O I/O I/O
AD14 I/O I/O I/O I/O I/O I/O
AD15 I/O I/O I/O I/O I/O I/O
AD16 I/O I/O I/O I/O I/O I/O
AD17 I/O I/O I/O I/O I/O I/O
AD18 I/O I/O I/O I/O I/O I/O
AD19 I/O I/O I/O I/O I/O I/O
AD20 NC NC I/O I/O I/O I/O
AD21 TCK TCK TCK TCK TCK TCK
AD22 VPP VPP VPP VPP VPP VPP
AD23 NC NC NC I/O I/O I/O
AD24 VDDP VDDP VDDP VDDP VDDP VDDP
AD25 NC NC I/O I/O I/O I/O
AD26 NC NC I/O I/O I/O I/O
AE1 VDDP VDDP VDDP VDDP VDDP VDDP
AE2 VDDP VDDP VDDP VDDP VDDP VDDP
AE3 NC NC I/O I/O I/O I/O
AE4 NC NC I/O I/O I/O I/O
AE5 NC NC I/O I/O I/O I/O
AE6 NC NC I/O I/O I/O I/O
AE7 NC NC I/O I/O I/O I/O
AE8 I/O I/O I/O I/O I/O I/O
AE9 I/O I/O I/O I/O I/O I/O
AE10 I/O I/O I/O I/O I/O I/O
AE11 I/O I/O I/O I/O I/O I/O
AE12 I/O I/O I/O I/O I/O I/O
AE13 I/O I/O I/O I/O I/O I/O
AE14 I/O I/O I/O I/O I/O I/O
AE15 I/O I/O I/O I/O I/O I/O
AE16 I/O I/O I/O I/O I/O I/O
AE17 I/O I/O I/O I/O I/O I/O
AE18 I/O I/O I/O I/O I/O I/O
AE19 I/O I/O I/O I/O I/O I/O
AE20 NC NC I/O I/O I/O I/O
AE21 NC NC I/O I/O I/O I/O
AE22 NC NC I/O I/O I/O I/O
AE23 VPN VPN VPN VPN VPN VPN
AE24 TRST TRST TRST TRST TRST TRST
AE25 VDDP VDDP VDDP VDDP VDDP VDDP
456-Pin PBGA (Continued)
Pin
Number APA150
Function APA300
Function APA450
Function APA600
Function APA750
Function APA1000
Function
ProASICPLUS Family Flash FPGAs
74 Advanced v0.6
AE26 VDDP VDDP VDDP VDDP VDDP VDDP
AF1 VDDP VDDP VDDP VDDP VDDP VDDP
AF2 VDDP VDDP VDDP VDDP VDDP VDDP
AF3 NC NC I/O I/O I/O I/O
AF4 NC NC I/O I/O I/O I/O
AF5 NC NC I/O I/O I/O I/O
AF6 NC NC I/O I/O I/O I/O
AF7 NC NC I/O I/O I/O I/O
AF8 NC NC NC I/O I/O I/O
AF9 I/O I/O I/O I/O I/O I/O
AF10 I/O I/O I/O I/O I/O I/O
AF11 I/O I/O I/O I/O I/O I/O
AF12 I/O I/O I/O I/O I/O I/O
AF13 I/O I/O I/O I/O I/O I/O
AF14 I/O I/O I/O I/O I/O I/O
AF15 I/O I/O I/O I/O I/O I/O
AF16 I/O I/O I/O I/O I/O I/O
AF17 I/O I/O I/O I/O I/O I/O
AF18 NC NC I/O I/O I/O I/O
AF19 NC NC I/O I/O I/O I/O
AF20 NC NC I/O I/O I/O I/O
AF21 NC NC I/O I/O I/O I/O
AF22 NC NC I/O I/O I/O I/O
AF23 TDI TDI TDI TDI TDI TDI
AF24 NC NC I/O I/O I/O I/O
AF25 VDDP VDDP VDDP VDDP VDDP VDDP
AF26 VDDP VDDP VDDP VDDP VDDP VDDP
456-Pin PBGA (Continued)
Pin
Number APA150
Function APA300
Function APA450
Function APA600
Function APA750
Function APA1000
Function
Advanced v0.6 75
ProASICPLUS Family Flash FPGAs
Package Assignments (Continued)
144-FBGA (Bottom View)
1
2
34567
89
101112
A
B
C
D
E
F
G
H
J
K
L
M
ProASICPLUS Family Flash FPGAs
76 Advanced v0.6
144-FBGA Pin
Pin
Number APA150
Function APA300
Function APA450
Function
A1 I/O I/O I/O
A2 I/O I/O I/O
A3 I/O I/O I/O
A4 I/O I/O I/O
A5 I/O I/O I/O
A6 GND GND GND
A7 I/O I/O I/O
A8 VDD VDD VDD
A9 I/O I/O I/O
A10 I/O I/O I/O
A11 I/O I/O I/O
A12 I/O I/O I/O
B1 I/O I/O I/O
B2 GND GND GND
B3 I/O I/O I/O
B4 I/O I/O I/O
B5 I/O I/O I/O
B6 I/O I/O I/O
B7 I/O I/O I/O
B8 I/O I/O I/O
B9 I/O I/O I/O
B10 I/O I/O I/O
B11 GND GND GND
B12 I/O I/O I/O
C1 I/O I/O I/O
C2 GL GL GL
C3 I/O I/O I/O
C4 VDD VDD VDD
C5 I/O I/O I/O
C6 I/O I/O I/O
C7 I/O I/O I/O
C8 I/O I/O I/O
C9 I/O I/O I/O
C10 I/O I/O I/O
C11 I/O I/O I/O
C12 I/O I/O I/O
D1 I/O I/O I/O
D2 I/O I/O I/O
D3 I/O I/O I/O
D4 I/O I/O I/O
D5 I/O I/O I/O
D6 I/O I/O I/O
D7 I/O I/O I/O
D8 I/O I/O I/O
D9 I/O I/O I/O
D10 I/O I/O I/O
D11 I/O I/O I/O
D12 I/O I/O I/O
E1 VDD VDD VDD
E2 I/O I/O I/O
E3 I/O I/O I/O
E4 VDDP VDDP VDDP
E5 I/O I/O I/O
E6 VDDP VDDP VDDP
E7 VDDP VDDP VDDP
E8 AVDD AVDD AVDD
E9 VDDP VDDP VDDP
E10 VDD VDD VDD
E11 NPECL NPECL NPECL
E12 AGND AGND AGND
F1 GL GL GL
F2 AGND AGND AGND
F3 I/O I/O I/O
F4 I/O I/O I/O
F5 GND GND GND
F6 GND GND GND
F7 GND GND GND
F8 I/O I/O I/O
F9 GL GL GL
F10 GND GND GND
F11 PPECL PPECL PPECL
F12 GL GL GL
G1 PPECL PPECL PPECL
G2 GND GND GND
G3 AVDD AVDD AVDD
G4 NPECL NPECL NPECL
G5 GND GND GND
G6 GND GND GND
144-FBGA Pin (Continued)
Pin
Number APA150
Function APA300
Function APA450
Function
Advanced v0.6 77
ProASICPLUS Family Flash FPGAs
G7 GND GND GND
G8 I/O I/O I/O
G9 I/O I/O I/O
G10 I/O I/O I/O
G11 I/O I/O I/O
G12 I/O I/O I/O
H1 VDD VDD VDD
H2 I/O I/O I/O
H3 I/O I/O I/O
H4 I/O I/O I/O
H5 VDD VDD VDD
H6 I/O I/O I/O
H7 I/O I/O I/O
H8 I/O I/O I/O
H9 I/O I/O I/O
H10 VDDP VDDP VDDP
H11 I/O I/O I/O
H12 VDD VDD VDD
J1 I/O I/O I/O
J2 I/O I/O I/O
J3 VDDP VDDP VDDP
J4 I/O I/O I/O
J5 I/O I/O I/O
J6 I/O I/O I/O
J7 VDD VDD VDD
J8 TCK TCK TCK
J9 I/O I/O I/O
J10 TDO TDO TDO
J11 I/O I/O I/O
J12 I/O I/O I/O
K1 I/O I/O I/O
K2 I/O I/O I/O
K3 I/O I/O I/O
K4 I/O I/O I/O
K5 I/O I/O I/O
K6 I/O I/O I/O
K7 GND GND GND
K8 I/O I/O I/O
K9 I/O I/O I/O
144-FBGA Pin (Continued)
Pin
Number APA150
Function APA300
Function APA450
Function
K10 GND GND GND
K11 I/O I/O I/O
K12 I/O I/O I/O
L1 GND GND GND
L2 I/O I/O I/O
L3 I/O I/O I/O
L4 I/O I/O I/O
L5 VDDP VDDP VDDP
L6 I/O I/O I/O
L7 I/O I/O I/O
L8 I/O I/O I/O
L9 TMS TMS TMS
L10 RCK RCK RCK
L11 I/O I/O I/O
L12 TRST TRST TRST
M1 I/O I/O I/O
M2 I/O I/O I/O
M3 I/O I/O I/O
M4 I/O I/O I/O
M5 I/O I/O I/O
M6 I/O I/O I/O
M7 I/O I/O I/O
M8 I/O I/O I/O
M9 TDI TDI TDI
M10 VDDP VDDP VDDP
M11 VPP VPP VPP
M12 VPN VPN VPN
144-FBGA Pin (Continued)
Pin
Number APA150
Function APA300
Function APA450
Function
ProASICPLUS Family Flash FPGAs
78 Advanced v0.6
Package Assignments (Continued)
256-FBGA (Bottom View)
1
3
5
791113
15 246
8
101214
16
C
E
G
J
L
N
R
D
F
H
K
M
P
T
B
A
Pin one corner
Advanced v0.6 79
ProASICPLUS Family Flash FPGAs
256-Pin FBGA
Pin Number APA150
Function APA300
Function APA450
Function APA600
Function
A1 GND GND GND GND
A2 I/O I/O I/O I/O
A3 I/O I/O I/O I/O
A4 I/O I/O I/O I/O
A5 I/O I/O I/O I/O
A6 I/O I/O I/O I/O
A7 I/O I/O I/O I/O
A8 I/O I/O I/O I/O
A9 I/O I/O I/O I/O
A10 I/O I/O I/O I/O
A11 I/O I/O I/O I/O
A12 I/O I/O I/O I/O
A13 I/O I/O I/O I/O
A14 I/O I/O I/O I/O
A15 I/O I/O I/O I/O
A16 GND GND GND GND
B1 I/O I/O I/O I/O
B2 I/O I/O I/O I/O
B3 I/O I/O I/O I/O
B4 I/O I/O I/O I/O
B5 I/O I/O I/O I/O
B6 I/O I/O I/O I/O
B7 I/O I/O I/O I/O
B8 I/O I/O I/O I/O
B9 I/O I/O I/O I/O
B10 I/O I/O I/O I/O
B11 I/O I/O I/O I/O
B12 I/O I/O I/O I/O
B13 I/O I/O I/O I/O
B14 I/O I/O I/O I/O
B15 I/O I/O I/O I/O
B16 I/O I/O I/O I/O
C1 I/O I/O I/O I/O
C2 I/O I/O I/O I/O
C3 I/O I/O I/O I/O
C4 I/O I/O I/O I/O
C5 I/O I/O I/O I/O
C6 I/O I/O I/O I/O
C7 I/O I/O I/O I/O
ProASICPLUS Family Flash FPGAs
80 Advanced v0.6
C8 I/O I/O I/O I/O
C9 I/O I/O I/O I/O
C10 I/O I/O I/O I/O
C11 I/O I/O I/O I/O
C12 I/O I/O I/O I/O
C13 I/O I/O I/O I/O
C14 I/O I/O I/O I/O
C15 I/O I/O I/O I/O
C16 I/O I/O I/O I/O
D1 I/O I/O I/O I/O
D2 I/O I/O I/O I/O
D3 I/O I/O I/O I/O
D4 I/O I/O I/O I/O
D5 I/O I/O I/O I/O
D6 I/O I/O I/O I/O
D7 I/O I/O I/O I/O
D8 I/O I/O I/O I/O
D9 I/O I/O I/O I/O
D10 I/O I/O I/O I/O
D11 I/O I/O I/O I/O
D12 I/O I/O I/O I/O
D13 I/O I/O I/O I/O
D14 I/O I/O I/O I/O
D15 I/O I/O I/O I/O
D16 I/O I/O I/O I/O
E1 I/O I/O I/O I/O
E2 I/O I/O I/O I/O
E3 I/O I/O I/O I/O
E4 I/O I/O I/O I/O
E5 I/O I/O I/O I/O
E6 VDDP VDDP VDDP VDDP
E7 VDDP VDDP VDDP VDDP
E8 I/O I/O I/O I/O
E9 I/O I/O I/O I/O
E1 0 VDDP VDDP VDDP VDDP
E11 VDDP VDDP VDDP VDDP
E12 I/O I/O I/O I/O
E13 I/O I/O I/O I/O
E14 I/O I/O I/O I/O
256-Pin FBGA (Continued)
Pin Number APA150
Function APA300
Function APA450
Function APA600
Function
Advanced v0.6 81
ProASICPLUS Family Flash FPGAs
E15 I/O I/O I/O I/O
E16 I/O I/O I/O I/O
F1 I/O I/O I/O I/O
F2 I/O I/O I/O I/O
F3 I/O I/O I/O I/O
F4 I/O I/O I/O I/O
F5 VDDP VDDP VDDP VDDP
F6 GND GND GND GND
F7 VDD VDD VDD VDD
F8 VDD VDD VDD VDD
F9 VDD VDD VDD VDD
F10 VDD VDD VDD VDD
F11 GND GND GND GND
F12 VDDP VDDP VDDP VDDP
F13 I/O I/O I/O I/O
F14 I/O I/O I/O I/O
F15 I/O I/O I/O I/O
F16 I/O I/O I/O I/O
G1 I/O I/O I/O I/O
G2 I/O I/O I/O I/O
G3 I/O I/O I/O I/O
G4 I/O I/O I/O I/O
G5 VDDP VDDP VDDP VDDP
G6 VDD VDD VDD VDD
G7 GND GND GND GND
G8 GND GND GND GND
G9 GND GND GND GND
G10 GND GND GND GND
G11 VDD VDD VDD VDD
G12 VDDP VDDP VDDP VDDP
G13 I/O I/O I/O I/O
G14 I/O I/O I/O I/O
G15 I/O I/O I/O I/O
G16 I/O I/O I/O I/O
H1 GL GL GL GL
H2 NPECL NPECL NPECL NPECL
H3 I/O I/O I/O I/O
H4 A GND AGND AGND AGND
H5 I/O I/O I/O I/O
256-Pin FBGA (Continued)
Pin Number APA150
Function APA300
Function APA450
Function APA600
Function
ProASICPLUS Family Flash FPGAs
82 Advanced v0.6
H6 VDD VDD VDD VDD
H7 GND G ND GND GND
H8 GND G ND GND GND
H9 GND G ND GND GND
H10 GND GND GND GND
H11 VDD VDD VDD VDD
H12 I/O I/O I/O I/O
H13 I/O I/O I/O I/O
H14 NPECL NPECL NPECL NPECL
H15 AGND AGND AGND AGND
H16GLGLGLGL
J1 GL GL GL GL
J2 PPECL PPECL PPECL PPECL
J3 AVDD AVDD AVDD AVDD
J4 I/O I/O I/O I/O
J5 I/O I/O I/O I/O
J6 VDD VDD VDD VDD
J7 GND GND GND GND
J8 GND GND GND GND
J9 GND GND GND GND
J10 GND GND GND GND
J11 VDD VDD VDD VDD
J12 I/O I/O I/O I/O
J13 PPECL PPE CL PPECL PPECL
J14 I/O I/O I/O I/O
J15 AVDD AVDD AVDD AVDD
J16GLGLGLGL
K1 I/O I/O I/O I/O
K2 I/O I/O I/O I/O
K3 I/O I/O I/O I/O
K4 I/O I/O I/O I/O
K5 VDDP VDDP VDDP VDDP
K6 VDD VDD VDD VDD
K7 GND GND GND G ND
K8 GND GND GND G ND
K9 GND GND GND G ND
K10 GND GND GND GND
K11 VDD VDD VDD VDD
K1 2 VDDP VDDP VDDP VDDP
256-Pin FBGA (Continued)
Pin Number APA150
Function APA300
Function APA450
Function APA600
Function
Advanced v0.6 83
ProASICPLUS Family Flash FPGAs
K13 I/O I/O I/O I/O
K14 I/O I/O I/O I/O
K15 I/O I/O I/O I/O
K16 I/O I/O I/O I/O
L1 I/O I/O I/O I/O
L2 I/O I/O I/O I/O
L3 I/O I/O I/O I/O
L4 I/O I/O I/O I/O
L5 VDDP VDDP VDDP VDDP
L6 GND GND GND GND
L7 VDD VDD VDD VDD
L8 VDD VDD VDD VDD
L9 VDD VDD VDD VDD
L10 VDD VDD VDD VDD
L11 GND GND GND GND
L12 VDDP VDDP VDDP VDDP
L13 I/O I/O I/O I/O
L14 I/O I/O I/O I/O
L15 I/O I/O I/O I/O
L16 I/O I/O I/O I/O
M1 I/O I/O I/O I/O
M2 I/O I/O I/O I/O
M3 I/O I/O I/O I/O
M4 I/O I/O I/O I/O
M5 I/O I/O I/O I/O
M6 VDDP VDDP VDDP VDDP
M7 VDDP VDDP VDDP VDDP
M8 I/O I/O I/O I/O
M9 I/O I/O I/O I/O
M10 VDDP VDDP VDDP VDDP
M11 VDDP VDDP VDDP VDDP
M12 I/O I/O I/O I/O
M13 I/O I/O I/O I/O
M14 I/O I/O I/O I/O
M15 I/O I/O I/O I/O
M16 I/O I/O I/O I/O
N1 I/O I/O I/O I/O
N2 I/O I/O I/O I/O
N3 I/O I/O I/O I/O
256-Pin FBGA (Continued)
Pin Number APA150
Function APA300
Function APA450
Function APA600
Function
ProASICPLUS Family Flash FPGAs
84 Advanced v0.6
N4 I/O I/O I/O I/O
N5 I/O I/O I/O I/O
N6 I/O I/O I/O I/O
N7 I/O I/O I/O I/O
N8 I/O I/O I/O I/O
N9 I/O I/O I/O I/O
N10 I/O I/O I/O I/O
N11 I/O I/O I/O I/O
N12 I/O I/O I/O I/O
N13 I/O I/O I/O I/O
N14 RCK RCK RCK RCK
N15 I/O I/O I/O I/O
N16 I/O I/O I/O I/O
P1 I/O I/O I/O I/O
P2 I/O I/O I/O I/O
P3 I/O I/O I/O I/O
P4 I/O I/O I/O I/O
P5 I/O I/O I/O I/O
P6 I/O I/O I/O I/O
P7 I/O I/O I/O I/O
P8 I/O I/O I/O I/O
P9 I/O I/O I/O I/O
P10 I/O I/O I/O I/O
P11 I/O I/O I/O I/O
P12 I/O I/O I/O I/O
P13 TCK TCK TCK TCK
P1 4 VPP VPP VPP VPP
P15 TRST TRST TRST TRST
P16 I/O I/O I/O I/O
R1 I/O I/O I/O I/O
R2 I/O I/O I/O I/O
R3 I/O I/O I/O I/O
R4 I/O I/O I/O I/O
R5 I/O I/O I/O I/O
R6 I/O I/O I/O I/O
R7 I/O I/O I/O I/O
R8 I/O I/O I/O I/O
R9 I/O I/O I/O I/O
R10 I/O I/O I/O I/O
256-Pin FBGA (Continued)
Pin Number APA150
Function APA300
Function APA450
Function APA600
Function
Advanced v0.6 85
ProASICPLUS Family Flash FPGAs
R11 I/O I/O I/O I/O
R12 I/O I/O I/O I/O
R13 I/O I/O I/O I/O
R14 TDI TDI TDI TDI
R15 VPN VPN VPN VPN
R16 TDO TDO TDO TDO
T1 GND GND GND GND
T2 I/O I/O I/O I/O
T3 I/O I/O I/O I/O
T4 I/O I/O I/O I/O
T5 I/O I/O I/O I/O
T6 I/O I/O I/O I/O
T7 I/O I/O I/O I/O
T8 I/O I/O I/O I/O
T9 I/O I/O I/O I/O
T10 I/O I/O I/O I/O
T11 I/O I/O I/O I/O
T12 I/O I/O I/O I/O
T13 I/O I/O I/O I/O
T14 I/O I/O I/O I/O
T15 TMS TMS TMS TMS
T16 GND GND GND GND
256-Pin FBGA (Continued)
Pin Number APA150
Function APA300
Function APA450
Function APA600
Function
ProASICPLUS Family Flash FPGAs
86 Advanced v0.6
Package Pin Assignments (Continued)
676-Pin FBGA (Bottom View)
12356789101115 14 13 121617181920212223 4242526
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
AF
Advanced v0.6 87
ProASICPLUS Family Flash FPGAs
676-FBGA Pin
Pin
Number APA600
Function APA750
Function
A1 GND GND
A2 GND GND
A3 I/O I/O
A4 I/O I/O
A5 I/O I/O
A6 I/O I/O
A7 I/O I/O
A8 I/O I/O
A9 I/O I/O
A10 I/O I/O
A11 I/O I/O
A12 I/O I/O
A13 I/O I/O
A14 I/O I/O
A15 I/O I/O
A16 I/O I/O
A17 I/O I/O
A18 I/O I/O
A19 I/O I/O
A20 I/O I/O
A21 I/O I/O
A22 I/O I/O
A23 I/O I/O
A24 I/O I/O
A25 GND GND
A26 GND GND
B1 GND GND
B2 GND GND
B3 GND GND
B4 GND GND
B5 I/O I/O
B6 I/O I/O
B7 I/O I/O
B8 I/O I/O
B9 I/O I/O
B10 I/O I/O
B11 I/O I/O
B12 I/O I/O
B13 I/O I/O
B14 I/O I/O
B15 I/O I/O
B16 I/O I/O
B17 I/O I/O
B18 I/O I/O
B19 I/O I/O
B20 I/O I/O
B21 I/O I/O
B22 I/O I/O
B23 I/O I/O
B24 I/O I/O
B25 GND GND
B26 GND GND
C1 GND GND
C2 GND GND
C3 GND GND
C4 GND GND
C5 I/O I/O
C6 I/O I/O
C7 I/O I/O
C8 I/O I/O
C9 I/O I/O
C10 I/O I/O
C11 I/O I/O
C12 I/O I/O
C13 I/O I/O
C14 I/O I/O
C15 I/O I/O
C16 I/O I/O
C17 I/O I/O
C18 I/O I/O
C19 I/O I/O
C20 I/O I/O
C21 I/O I/O
C22 I/O I/O
C23 I/O I/O
C24 I/O I/O
C25 I/O I/O
C26 I/O I/O
676-FBGA Pin (Continued)
Pin
Number APA600
Function APA750
Function
ProASICPLUS Family Flash FPGAs
88 Advanced v0.6
D1 I/O I/O
D2 I/O I/O
D3 GND GND
D4 I/O I/O
D5 I/O I/O
D6 I/O I/O
D7 I/O I/O
D8 I/O I/O
D9 I/O I/O
D10 I/O I/O
D11 I/O I/O
D12 I/O I/O
D13 I/O I/O
D14 I/O I/O
D15 I/O I/O
D16 I/O I/O
D17 I/O I/O
D18 I/O I/O
D19 I/O I/O
D20 I/O I/O
D21 I/O I/O
D22 I/O I/O
D23 I/O I/O
D24 I/O I/O
D25 I/O I/O
D26 I/O I/O
E1 I/O I/O
E2 I/O I/O
E3 I/O I/O
E4 I/O I/O
E5 I/O I/O
E6 I/O I/O
E7 I/O I/O
E8 I/O I/O
E9 I/O I/O
E10 I/O I/O
E11 I/O I/O
E12 I/O I/O
E13 I/O I/O
676-FBGA Pin (Continued)
Pin
Number APA600
Function APA750
Function
E14 I/O I/O
E15 I/O I/O
E16 I/O I/O
E17 I/O I/O
E18 I/O I/O
E19 I/O I/O
E20 I/O I/O
E21 I/O I/O
E22 I/O I/O
E23 I/O I/O
E24 I/O I/O
E25 I/O I/O
E26 I/O I/O
F1 I/O I/O
F2 I/O I/O
F3 I/O I/O
F4 I/O I/O
F5 GND GND
F6 I/O I/O
F7 NC NC
F8 I/O I/O
F9 I/O I/O
F10 I/O I/O
F11 I/O I/O
F12 I/O I/O
F13 I/O I/O
F14 I/O I/O
F15 I/O I/O
F16 I/O I/O
F17 I/O I/O
F18 I/O I/O
F19 I/O I/O
F20 I/O I/O
F21 I/O I/O
F22 I/O I/O
F23 I/O I/O
F24 I/O I/O
F25 I/O I/O
F26 I/O I/O
676-FBGA Pin (Continued)
Pin
Number APA600
Function APA750
Function
Advanced v0.6 89
ProASICPLUS Family Flash FPGAs
G1 I/O I/O
G2 I/O I/O
G3 I/O I/O
G4 I/O I/O
G5 I/O I/O
G6 I/O I/O
G7 I/O I/O
G8 VDD VDD
G9 NC NC
G10 I/O I/O
G11 NC NC
G12 I/O I/O
G13 NC NC
G14 I/O I/O
G15 NC NC
G16 I/O I/O
G17 NC NC
G18 I/O I/O
G19 VDDP VDDP
G20 NC NC
G21 I/O I/O
G22 I/O I/O
G23 I/O I/O
G24 I/O I/O
G25 I/O I/O
G26 I/O I/O
H1 I/O I/O
H2 I/O I/O
H3 I/O I/O
H4 I/O I/O
H5 I/O I/O
H6 I/O I/O
H7 VDDP VDDP
H8 VDD VDD
H9 VDDP VDDP
H10 VDDP VDDP
H11 VDDP VDDP
H12 VDDP VDDP
H13 VDDP VDDP
676-FBGA Pin (Continued)
Pin
Number APA600
Function APA750
Function
H14 VDDP VDDP
H15 VDDP VDDP
H16 VDDP VDDP
H17 VDDP VDDP
H18 VDDP VDDP
H19 VDD VDD
H20 VDD VDD
H21 I/O I/O
H22 I/O I/O
H23 I/O I/O
H24 I/O I/O
H25 I/O I/O
H26 I/O I/O
J1 I/O I/O
J2 I/O I/O
J3 I/O I/O
J4 I/O I/O
J5 I/O I/O
J6 I/O I/O
J7 NC NC
J8 VDDP VDDP
J9 VDD VDD
J10 VDD VDD
J11 VDD VDD
J12 VDD VDD
J13 VDD VDD
J14 VDD VDD
J15 VDD VDD
J16 VDD VDD
J17 VDD VDD
J18 VDD VDD
J19 VDDP VDDP
J20 NC NC
J21 I/O I/O
J22 I/O I/O
J23 I/O I/O
J24 I/O I/O
J25 I/O I/O
J26 I/O I/O
676-FBGA Pin (Continued)
Pin
Number APA600
Function APA750
Function
ProASICPLUS Family Flash FPGAs
90 Advanced v0.6
K1 I/O I/O
K2 I/O I/O
K3 I/O I/O
K4 I/O I/O
K5 I/O I/O
K6 I/O I/O
K7 I/O I/O
K8 VDDP VDDP
K9 VDD VDD
K10 GND GND
K11 GND GND
K12 GND GND
K13 GND GND
K14 GND GND
K15 GND GND
K16 GND GND
K17 GND GND
K18 VDD VDD
K19 VDDP VDDP
K20 I/O I/O
K21 I/O I/O
K22 I/O I/O
K23 I/O I/O
K24 I/O I/O
K25 I/O I/O
K26 I/O I/O
L1 I/O I/O
L2 I/O I/O
L3 I/O I/O
L4 I/O I/O
L5 I/O I/O
L6 I/O I/O
L7 NC NC
L8 VDDP VDDP
L9 VDD VDD
L10 GND GND
L11 GND GND
L12 GND GND
L13 GND GND
676-FBGA Pin (Continued)
Pin
Number APA600
Function APA750
Function
L14 GND GND
L15 GND GND
L16 GND GND
L17 GND GND
L18 VDD VDD
L19 VDDP VDDP
L20 NC NC
L21 I/O I/O
L22 I/O I/O
L23 I/O I/O
L24 I/O I/O
L25 I/O I/O
L26 I/O I/O
M1 I/O I/O
M2 I/O I/O
M3 I/O I/O
M4 I/O I/O
M5 I/O I/O
M6 I/O I/O
M7 I/O I/O
M8 VDDP VDDP
M9 VDD VDD
M10 GND GND
M11 GND GND
M12 GND GND
M13 GND GND
M14 GND GND
M15 GND GND
M16 GND GND
M17 GND GND
M18 VDD VDD
M19 VDDP VDDP
M20 I/O I/O
M21 I/O I/O
M22 I/O I/O
M23 I/O I/O
M24 I/O I/O
M25 I/O I/O
M26 I/O I/O
676-FBGA Pin (Continued)
Pin
Number APA600
Function APA750
Function
Advanced v0.6 91
ProASICPLUS Family Flash FPGAs
N1 GL GL
N2 AGND AGND
N3 I/O I/O
N4 I/O I/O
N5 NPECL NPECL
N6 I/O I/O
N7 NC NC
N8 VDDP VDDP
N9 VDD VDD
N10 GND GND
N11 GND GND
N12 GND GND
N13 GND GND
N14 GND GND
N15 GND GND
N16 GND GND
N17 GND GND
N18 VDD VDD
N19 VDDP VDDP
N20 NC NC
N21 I/O I/O
N22 GL GL
N23 I/O I/O
N24 NPECL NPECL
N25 GL GL
N26 I/O I/O
P1 GL GL
P2 AVDD AVDD
P3 I/O I/O
P4 I/O I/O
P5 PPECL PPECL
P6 I/O I/O
P7 I/O I/O
P8 VDDP VDDP
P9 VDD VDD
P10 GND GND
P11 GND GND
P12 GND GND
P13 GND GND
676-FBGA Pin (Continued)
Pin
Number APA600
Function APA750
Function
P14 GND GND
P15 GND GND
P16 GND GND
P17 GND GND
P18 VDD VDD
P19 VDDP VDDP
P20 I/O I/O
P21 I/O I/O
P22 I/O I/O
P23 I/O I/O
P24 PPECL PPECL
P25 AVDD AVDD
P26 AGND AGND
R1 I/O I/O
R2 I/O I/O
R3 I/O I/O
R4 I/O I/O
R5 I/O I/O
R6 I/O I/O
R7 NC NC
R8 VDDP VDDP
R9 VDD VDD
R10 GND GND
R11 GND GND
R12 GND GND
R13 GND GND
R14 GND GND
R15 GND GND
R16 GND GND
R17 GND GND
R18 VDD VDD
R19 VDDP VDDP
R20 NC NC
R21 I/O I/O
R22 I/O I/O
R23 I/O I/O
R24 I/O I/O
R25 I/O I/O
R26 I/O I/O
676-FBGA Pin (Continued)
Pin
Number APA600
Function APA750
Function
ProASICPLUS Family Flash FPGAs
92 Advanced v0.6
T1 I/O I/O
T2 I/O I/O
T3 I/O I/O
T4 I/O I/O
T5 I/O I/O
T6 I/O I/O
T7 I/O I/O
T8 VDDP VDDP
T9 VDD VDD
T10 GND GND
T11 GND GND
T12 GND GND
T13 GND GND
T14 GND GND
T15 GND GND
T16 GND GND
T17 GND GND
T18 VDD VDD
T19 VDDP VDDP
T20 I/O I/O
T21 I/O I/O
T22 I/O I/O
T23 I/O I/O
T24 I/O I/O
T25 I/O I/O
T26 I/O I/O
U1 I/O I/O
U2 I/O I/O
U3 I/O I/O
U4 I/O I/O
U5 I/O I/O
U6 I/O I/O
U7 NC NC
U8 VDDP VDDP
U9 VDD VDD
U10 GND GND
U11 GND GND
U12 GND GND
U13 GND GND
676-FBGA Pin (Continued)
Pin
Number APA600
Function APA750
Function
U14 GND GND
U15 GND GND
U16 GND GND
U17 GND GND
U18 VDD VDD
U19 VDDP VDDP
U20 NC NC
U21 I/O I/O
U22 I/O I/O
U23 I/O I/O
U24 I/O I/O
U25 I/O I/O
U26 I/O I/O
V1 I/O I/O
V2 I/O I/O
V3 I/O I/O
V4 I/O I/O
V5 I/O I/O
V6 I/O I/O
V7 I/O I/O
V8 VDDP VDDP
V9 VDD VDD
V10 VDD VDD
V11 VDD VDD
V12 VDD VDD
V13 VDD VDD
V14 VDD VDD
V15 VDD VDD
V16 VDD VDD
V17 VDD VDD
V18 VDD VDD
V19 VDDP VDDP
V20 I/O I/O
V21 I/O I/O
V22 I/O I/O
V23 I/O I/O
V24 I/O I/O
V25 I/O I/O
V26 I/O I/O
676-FBGA Pin (Continued)
Pin
Number APA600
Function APA750
Function
Advanced v0.6 93
ProASICPLUS Family Flash FPGAs
W1 I/O I/O
W2 I/O I/O
W3 I/O I/O
W4 I/O I/O
W5 I/O I/O
W6 I/O I/O
W7 VDD VDD
W8 VDD VDD
W9 VDDP VDDP
W10 VDDP VDDP
W11 VDDP VDDP
W12 VDDP VDDP
W13 VDDP VDDP
W14 VDDP VDDP
W15 VDDP VDDP
W16 VDDP VDDP
W17 VDDP VDDP
W18 VDDP VDDP
W19 VDD VDD
W20 VDDP VDDP
W21 I/O I/O
W22 I/O I/O
W23 I/O I/O
W24 I/O I/O
W25 I/O I/O
W26 I/O I/O
Y1 I/O I/O
Y2 I/O I/O
Y3 I/O I/O
Y4 I/O I/O
Y5 I/O I/O
Y6 I/O I/O
Y7 I/O I/O
Y8 VDDP VDDP
Y9 NC NC
Y10 I/O I/O
Y11 NC NC
Y12 I/O I/O
Y13 NC NC
676-FBGA Pin (Continued)
Pin
Number APA600
Function APA750
Function
Y14 I/O I/O
Y15 NC NC
Y16 I/O I/O
Y17 NC NC
Y18 I/O I/O
Y19 VDD VDD
Y20 VPP VPP
Y21 I/O I/O
Y22 I/O I/O
Y23 I/O I/O
Y24 I/O I/O
Y25 I/O I/O
Y26 I/O I/O
AA1 I/O I/O
AA2 I/O I/O
AA3 I/O I/O
AA4 I/O I/O
AA5 I/O I/O
AA6 GND GND
AA7 I/O I/O
AA8 I/O I/O
AA9 I/O I/O
AA10 I/O I/O
AA11 I/O I/O
AA12 I/O I/O
AA13 I/O I/O
AA14 I/O I/O
AA15 I/O I/O
AA16 I/O I/O
AA17 I/O I/O
AA18 I/O I/O
AA19 I/O I/O
AA20 I/O I/O
AA21 TDO TDO
AA22 GND GND
AA23 GND GND
AA24 I/O I/O
AA25 I/O I/O
AA26 I/O I/O
676-FBGA Pin (Continued)
Pin
Number APA600
Function APA750
Function
ProASICPLUS Family Flash FPGAs
94 Advanced v0.6
AB1 I/O I/O
AB2 I/O I/O
AB3 I/O I/O
AB4 I/O I/O
AB5 I/O I/O
AB6 GND GND
AB7 GND GND
AB8 I/O I/O
AB9 I/O I/O
AB10 I/O I/O
AB11 I/O I/O
AB12 I/O I/O
AB13 I/O I/O
AB14 I/O I/O
AB15 I/O I/O
AB16 I/O I/O
AB17 I/O I/O
AB18 I/O I/O
AB19 I/O I/O
AB20 I/O I/O
AB21 TCK TCK
AB22 TRST TRST
AB23 I/O I/O
AB24 I/O I/O
AB25 I/O I/O
AB26 I/O I/O
AC1 I/O I/O
AC2 I/O I/O
AC3 I/O I/O
AC4 I/O I/O
AC5 GND GND
AC6 I/O I/O
AC7 I/O I/O
AC8 I/O I/O
AC9 GND GND
AC10 I/O I/O
AC11 I/O I/O
AC12 I/O I/O
AC13 I/O I/O
676-FBGA Pin (Continued)
Pin
Number APA600
Function APA750
Function
AC14 I/O I/O
AC15 I/O I/O
AC16 I/O I/O
AC17 I/O I/O
AC18 I/O I/O
AC19 I/O I/O
AC20 I/O I/O
AC21 I/O I/O
AC22 TMS TMS
AC23 RCK RCK
AC24 I/O I/O
AC25 I/O I/O
AC26 I/O I/O
AD1 I/O I/O
AD2 I/O I/O
AD3 I/O I/O
AD4 I/O I/O
AD5 I/O I/O
AD6 I/O I/O
AD7 I/O I/O
AD8 I/O I/O
AD9 I/O I/O
AD10 I/O I/O
AD11 I/O I/O
AD12 I/O I/O
AD13 I/O I/O
AD14 I/O I/O
AD15 I/O I/O
AD16 I/O I/O
AD17 I/O I/O
AD18 I/O I/O
AD19 I/O I/O
AD20 I/O I/O
AD21 I/O I/O
AD22 I/O I/O
AD23 TDI TDI
AD24 VPN VPN
AD25 I/O I/O
AD26 I/O I/O
676-FBGA Pin (Continued)
Pin
Number APA600
Function APA750
Function
Advanced v0.6 95
ProASICPLUS Family Flash FPGAs
AE1 GND GND
AE2 GND GND
AE3 GND GND
AE4 I/O I/O
AE5 I/O I/O
AE6 I/O I/O
AE7 I/O I/O
AE8 I/O I/O
AE9 I/O I/O
AE10 I/O I/O
AE11 I/O I/O
AE12 I/O I/O
AE13 I/O I/O
AE14 I/O I/O
AE15 I/O I/O
AE16 I/O I/O
AE17 I/O I/O
AE18 I/O I/O
AE19 I/O I/O
AE20 I/O I/O
AE21 I/O I/O
AE22 I/O I/O
AE23 I/O I/O
AE24 I/O I/O
AE25 GND GND
AE26 GND GND
AF1 GND GND
AF2 GND GND
AF3 GND GND
AF4 GND GND
AF5 I/O I/O
AF6 I/O I/O
AF7 I/O I/O
AF8 I/O I/O
AF9 I/O I/O
AF10 I/O I/O
AF11 I/O I/O
AF12 I/O I/O
AF13 I/O I/O
676-FBGA Pin (Continued)
Pin
Number APA600
Function APA750
Function
AF14 I/O I/O
AF15 I/O I/O
AF16 I/O I/O
AF17 I/O I/O
AF18 I/O I/O
AF19 I/O I/O
AF20 I/O I/O
AF21 I/O I/O
AF22 I/O I/O
AF23 I/O I/O
AF24 I/O I/O
AF25 GND GND
AF26 GND GND
676-FBGA Pin (Continued)
Pin
Number APA600
Function APA750
Function
ProASICPLUS Family Flash FPGAs
96 Advanced v0.6
Package Pin Assignments (Continued)
896-Pin FBGA (Bottom View)
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
AF
AG
AH
AJ
AK
1234567891011
12131415161718192021222324252627282930
Advanced v0.6 97
ProASICPLUS Family Flash FPGAs
896 FBGA Pin
Pin Number APA750
Function APA1000
Function
A2 GND GND
A3 GND GND
A4 I/O I/O
A5 GND GND
A6 I/O I/O
A7 GND GND
A8 I/O I/O
A9 I/O I/O
A10 I/O I/O
A11 I/O I/O
A12 I/O I/O
A13 I/O I/O
A14 I/O I/O
A15 I/O I/O
A16 I/O I/O
A17 I/O I/O
A18 I/O I/O
A19 I/O I/O
A20 I/O I/O
A21 I/O I/O
A22 I/O I/O
A23 I/O I/O
A2 4 G ND GN D
A25 I/O I/O
A2 6 G ND GN D
A27 I/O I/O
A2 8 G ND GN D
A2 9 G ND GN D
B1 GND GND
B2 GND GND
B3 I/O I/O
B4 VDD VDD
B5 I/O I/O
B6 VDD VDD
B7 I/O I/O
B8 I/O I/O
B9 I/O I/O
B10 I/O I/O
B11 I/O I/O
B12 I/O I/O
B13 I/O I/O
B14 I/O I/O
B15 I/O I/O
B16 I/O I/O
B17 I/O I/O
B18 I/O I/O
B19 I/O I/O
B20 I/O I/O
B21 I/O I/O
B22 I/O I/O
B23 I/O I/O
B24 I/O I/O
B25 VDD VDD
B26 I/O I/O
B27 VDD VDD
B28 I/O I/O
B29 GND GND
B30 GND GND
C1 GND GND
C2 I/O I/O
C3 VDD VDD
C4 I/O I/O
C5 VDDP VDDP
C6 I/O I/O
C7 I/O I/O
C8 I/O I/O
C9 I/O I/O
C10 I/O I/O
C11 I/O I/O
C12 I/O I/O
C13 I/O I/O
C14 I/O I/O
C15 I/O I/O
C16 I/O I/O
C17 I/O I/O
C18 I/O I/O
C19 I/O I/O
C20 I/O I/O
896 FBGA Pin (Continued)
Pin Number APA750
Function APA1000
Function
ProASICPLUS Family Flash FPGAs
98 Advanced v0.6
C21 I/O I/O
C22 I/O I/O
C23 I/O I/O
C24 I/O I/O
C25 I/O I/O
C26 VDDP VDDP
C27 I/O I/O
C28 VDD VDD
C29 NC I/O
C30 GND GND
D1 I/O I/O
D2 VDD VDD
D3 I/O I/O
D4 GND GND
D5 I/O I/O
D6 I/O I/O
D7 I/O I/O
D8 I/O I/O
D9 I/O I/O
D10 I/O I/O
D11 I/O I/O
D12 I/O I/O
D13 I/O I/O
D14 I/O I/O
D15 I/O I/O
D16 I/O I/O
D17 I/O I/O
D18 I/O I/O
D19 I/O I/O
D20 I/O I/O
D21 I/O I/O
D22 I/O I/O
D23 I/O I/O
D24 I/O I/O
D25 I/O I/O
D26 I/O I/O
D27 GND GND
D28 I/O I/O
D29 VDD VDD
896 FBGA Pin (Continued)
Pin Number APA750
Function APA1000
Function
D30 I/O I/O
E1 GND GND
E2 I/O I/O
E3 VDDP VDDP
E4 I/O I/O
E5 VDD VDD
E6 I/O I/O
E7 VDDP VDDP
E8 I/O I/O
E9 I/O I/O
E10 I/O I/O
E11 I/O I/O
E12 I/O I/O
E13 I/O I/O
E14 I/O I/O
E15 I/O I/O
E16 I/O I/O
E17 I/O I/O
E18 I/O I/O
E19 I/O I/O
E20 I/O I/O
E21 I/O I/O
E22 I/O I/O
E23 I/O I/O
E24 VDDP VDDP
E25 I/O I/O
E26 VDD VDD
E27 I/O I/O
E28 VDDP VDDP
E29 I/O I/O
E30 GND GND
F1 I/O I/O
F2 VDD VDD
F3 I/O I/O
F4 I/O I/O
F5 I/O I/O
F6 GND GND
F7 I/O I/O
F8 I/O I/O
896 FBGA Pin (Continued)
Pin Number APA750
Function APA1000
Function
Advanced v0.6 99
ProASICPLUS Family Flash FPGAs
F9 I/O I/O
F10 I/O I/O
F11 I/O I/O
F12 I/O I/O
F13 I/O I/O
F14 I/O I/O
F15 I/O I/O
F16 I/O I/O
F17 I/O I/O
F18 I/O I/O
F19 I/O I/O
F20 I/O I/O
F21 I/O I/O
F22 I/O I/O
F23 I/O I/O
F24 I/O I/O
F25 GND GND
F26 I/O I/O
F27 I/O I/O
F28 I/O I/O
F29 VDD VDD
F30 I/O I/O
G1 GND GND
G2 I/O I/O
G3 I/O I/O
G4 I/O I/O
G5 VDDP VDDP
G6 I/O I/O
G7 VDD VDD
G8 I/O I/O
G9 VDDP VDDP
G10 I/O I/O
G11 I/O I/O
G12 I/O I/O
G13 I/O I/O
G14 I/O I/O
G15 I/O I/O
G16 I/O I/O
G17 I/O I/O
896 FBGA Pin (Continued)
Pin Number APA750
Function APA1000
Function
G18 I/O I/O
G19 I/O I/O
G20 I/O I/O
G21 I/O I/O
G22 VDDP VDDP
G23 I/O I/O
G24 VDD VDD
G25 I/O I/O
G26 VDDP VDDP
G27 I/O I/O
G28 I/O I/O
G29 I/O I/O
G30 GND GND
H1 I/O I/O
H2 I/O I/O
H3 I/O I/O
H4 I/O I/O
H5 I/O I/O
H6 I/O I/O
H7 I/O I/O
H8 GND GND
H9 NC I/O
H10 NC I/O
H11 NC I/O
H12 NC I/O
H13 NC I/O
H14 NC I/O
H15 NC I/O
H16 NC I/O
H17 NC I/O
H18 NC I/O
H19 NC I/O
H20 NC I/O
H21 NC I/O
H22 NC I/O
H23 GND GND
H24 I/O I/O
H25 I/O I/O
H26 I/O I/O
896 FBGA Pin (Continued)
Pin Number APA750
Function APA1000
Function
ProASICPLUS Family Flash FPGAs
100 Advanced v0.6
H27 I/O I/O
H28 I/O I/O
H29 I/O I/O
H30 I/O I/O
J1 I/O I/O
J2 I/O I/O
J3 I/O I/O
J4 I/O I/O
J5 I/O I/O
J6 I/O I/O
J7 VDDP VDDP
J8 I/O I/O
J9 VDD VDD
J10 NC I/O
J11 NC I/O
J12 NC I/O
J13 NC I/O
J14 NC I/O
J15 NC I/O
J16 NC I/O
J17 NC I/O
J18 NC I/O
J19 NC I/O
J20 NC I/O
J21 NC I/O
J22 VDD VDD
J23 I/O I/O
J24 VDDP VDDP
J25 I/O I/O
J26 I/O I/O
J27 I/O I/O
J28 I/O I/O
J29 I/O I/O
J30 I/O I/O
K1 I/O I/O
K2 I/O I/O
K3 I/O I/O
K4 I/O I/O
K5 I/O I/O
896 FBGA Pin (Continued)
Pin Number APA750
Function APA1000
Function
K6 I/O I/O
K7 I/O I/O
K8 I/O I/O
K9 NC I/O
K10 VDD VDD
K11 NC I/O
K12 VDDP VDDP
K13 VDDP VDDP
K14 VDDP VDDP
K15 VDDP VDDP
K16 VDDP VDDP
K17 VDDP VDDP
K18 VDDP VDDP
K19 VDDP VDDP
K20 NC I/O
K21 VDD VDD
K22 NC I/O
K23 I/O I/O
K24 I/O I/O
K25 I/O I/O
K26 I/O I/O
K27 I/O I/O
K28 I/O I/O
K29 I/O I/O
K30 I/O I/O
L1 I/O I/O
L2 I/O I/O
L3 I/O I/O
L4 I/O I/O
L5 I/O I/O
L6 I/O I/O
L7 I/O I/O
L8 I/O I/O
L9 NC I/O
L10 NC I/O
L11 VDD VDD
L12 VDD VDD
L13 VDD VDD
L14 VDD VDD
896 FBGA Pin (Continued)
Pin Number APA750
Function APA1000
Function
Advanced v0.6 101
ProASICPLUS Family Flash FPGAs
L15 VDD VDD
L16 VDD VDD
L17 VDD VDD
L18 VDD VDD
L19 VDD VDD
L20 VDD VDD
L21 NC I/O
L22 NC I/O
L23 I/O I/O
L24 I/O I/O
L25 I/O I/O
L26 I/O I/O
L27 I/O I/O
L28 I/O I/O
L29 I/O I/O
L30 I/O I/O
M1 I/O I/O
M2 I/O I/O
M3 I/O I/O
M4 I/O I/O
M5 I/O I/O
M6 I/O I/O
M7 I/O I/O
M8 I/O I/O
M9 NC I/O
M10 VDDP VDDP
M11 VDD VDD
M12 GND GND
M13 GND GND
M14 GND GND
M15 GND GND
M16 GND GND
M17 GND GND
M18 GND GND
M19 GND GND
M20 VDD VDD
M21 VDDP VDDP
M22 NC I/O
M23 I/O I/O
896 FBGA Pin (Continued)
Pin Number APA750
Function APA1000
Function
M24 I/O I/O
M25 I/O I/O
M26 I/O I/O
M27 I/O I/O
M28 I/O I/O
M29 I/O I/O
M30 I/O I/O
N1 I/O I/O
N2 I/O I/O
N3 I/O I/O
N4 I/O I/O
N5 I/O I/O
N6 I/O I/O
N7 I/O I/O
N8 I/O I/O
N9 NC I/O
N10 VDDP VDDP
N11 VDD VDD
N12 GND GND
N13 GND GND
N14 GND GND
N15 GND GND
N16 GND GND
N17 GND GND
N18 GND GND
N19 GND GND
N20 VDD VDD
N21 VDDP VDDP
N22 NC I/O
N23 I/O I/O
N24 I/O I/O
N25 I/O I/O
N26 I/O I/O
N27 I/O I/O
N28 I/O I/O
N29 I/O I/O
N30 I/O I/O
P1 I/O I/O
P2 I/O I/O
896 FBGA Pin (Continued)
Pin Number APA750
Function APA1000
Function
ProASICPLUS Family Flash FPGAs
102 Advanced v0.6
P3 I/O I/O
P4 I/O I/O
P5 I/O I/O
P6 I/O I/O
P7 I/O I/O
P8 I/O I/O
P9 I/O I/O
P10 VDDP VDDP
P11 VDD VDD
P1 2 G ND GN D
P1 3 G ND GN D
P1 4 G ND GN D
P1 5 G ND GN D
P1 6 G ND GN D
P1 7 G ND GN D
P1 8 G ND GN D
P1 9 G ND GN D
P20 VDD VDD
P21 VDDP VDDP
P22 I/O I/O
P23 I/O I/O
P24 I/O I/O
P25 I/O I/O
P26 I/O I/O
P27 I/O I/O
P28 I/O I/O
P29 I/O I/O
P30 I/O I/O
R1 I/O I/O
R2 I/O I/O
R3 AGND AGND
R4 NPECL NPECL
R5 GL GL
R6 I/O I/O
R7 I/O I/O
R8 I/O I/O
R9 NC I/O
R10 VDDP VDDP
R11 VDD VDD
896 FBGA Pin (Continued)
Pin Number APA750
Function APA1000
Function
R12 GND GND
R13 GND GND
R14 GND GND
R15 GND GND
R16 GND GND
R17 GND GND
R18 GND GND
R19 GND GND
R20 VDD VDD
R21 VDDP VDDP
R22 I/O I/O
R23 I/O I/O
R24 I/O I/O
R25 I/O I/O
R26 I/O I/O
R27 NPECL NPECL
R28 AGND AGND
R29 I/O I/O
R30 I/O I/O
T1 I/O I/O
T2 AVDD AVDD
T3 GL GL
T4 PPECL PPECL
T5 I/O I/O
T6 I/O I/O
T7 I/O I/O
T8 I/O I/O
T9 I/O I/O
T10 VDDP VDDP
T11 VDD VDD
T12 GND GND
T13 GND GND
T14 GND GND
T15 GND GND
T16 GND GND
T17 GND GND
T18 GND GND
T19 GND GND
T20 VDD VDD
896 FBGA Pin (Continued)
Pin Number APA750
Function APA1000
Function
Advanced v0.6 103
ProASICPLUS Family Flash FPGAs
T21 VDDP VDDP
T22 I/O I/O
T23 I/O I/O
T24 I/O I/O
T25 I/O I/O
T26 PPECL PPECL
T27 GL GL
T28 GL GL
T29 AVDD AVDD
T30 I/O I/O
U1 I/O I/O
U2 I/O I/O
U3 I/O I/O
U4 I/O I/O
U5 I/O I/O
U6 I/O I/O
U7 I/O I/O
U8 I/O I/O
U9 NC I/O
U10 VDDP VDDP
U11 VDD VDD
U12 GND GND
U13 GND GND
U14 GND GND
U15 GND GND
U16 GND GND
U17 GND GND
U18 GND GND
U19 GND GND
U20 VDD VDD
U21 VDDP VDDP
U22 NC I/O
U23 I/O I/O
U24 I/O I/O
U25 I/O I/O
U26 I/O I/O
U27 I/O I/O
U28 I/O I/O
U29 I/O I/O
896 FBGA Pin (Continued)
Pin Number APA750
Function APA1000
Function
U30 I/O I/O
V1 I/O I/O
V2 I/O I/O
V3 I/O I/O
V4 I/O I/O
V5 I/O I/O
V6 I/O I/O
V7 I/O I/O
V8 I/O I/O
V9 NC I/O
V10 VDDP VDDP
V11 VDD VDD
V12 GND GND
V13 GND GND
V14 GND GND
V15 GND GND
V16 GND GND
V17 GND GND
V18 GND GND
V19 GND GND
V20 VDD VDD
V21 VDDP VDDP
V22 NC I/O
V23 I/O I/O
V24 I/O I/O
V25 I/O I/O
V26 I/O I/O
V27 I/O I/O
V28 I/O I/O
V29 I/O I/O
V30 I/O I/O
W1 I/O I/O
W2 I/O I/O
W3 I/O I/O
W4 I/O I/O
W5 I/O I/O
W6 I/O I/O
W7 I/O I/O
W8 I/O I/O
896 FBGA Pin (Continued)
Pin Number APA750
Function APA1000
Function
ProASICPLUS Family Flash FPGAs
104 Advanced v0.6
W9 NC I/O
W10 VDDP VDDP
W11 VDD VDD
W1 2 GND G N D
W1 3 GND G N D
W1 4 GND G N D
W1 5 GND G N D
W1 6 GND G N D
W1 7 GND G N D
W1 8 GND G N D
W1 9 GND G N D
W2 0 VDD VDD
W2 1 VDDP VDDP
W22 NC I/O
W23 I/O I/O
W24 I/O I/O
W25 I/O I/O
W26 I/O I/O
W27 I/O I/O
W28 I/O I/O
W29 I/O I/O
W30 I/O I/O
Y1 I/O I/O
Y2 I/O I/O
Y3 I/O I/O
Y4 I/O I/O
Y5 I/O I/O
Y6 I/O I/O
Y7 I/O I/O
Y8 I/O I/O
Y9 NC I/O
Y10 NC I/O
Y11 VDD VDD
Y12 VDD VDD
Y13 VDD VDD
Y14 VDD VDD
Y15 VDD VDD
Y16 VDD VDD
Y17 VDD VDD
896 FBGA Pin (Continued)
Pin Number APA750
Function APA1000
Function
Y18 VDD VDD
Y19 VDD VDD
Y20 VDD VDD
Y21 NC I/O
Y22 NC I/O
Y23 I/O I/O
Y24 I/O I/O
Y25 I/O I/O
Y26 I/O I/O
Y27 I/O I/O
Y28 I/O I/O
Y29 I/O I/O
Y30 I/O I/O
AA1 I/O I/O
AA2 I/O I/O
AA3 I/O I/O
AA4 I/O I/O
AA5 I/O I/O
AA6 I/O I/O
AA7 I/O I/O
AA8 I/O I/O
AA9 NC I/O
AA10 VDD VDD
AA11 NC I/O
AA12 VDDP VDDP
AA13 VDDP VDDP
AA14 VDDP VDDP
AA15 VDDP VDDP
AA16 VDDP VDDP
AA17 VDDP VDDP
AA18 VDDP VDDP
AA19 VDDP VDDP
AA20 NC I/O
AA21 VDD VDD
AA22 NC I/O
AA23 I/O I/O
AA24 I/O I/O
AA25 I/O I/O
AA26 I/O I/O
896 FBGA Pin (Continued)
Pin Number APA750
Function APA1000
Function
Advanced v0.6 105
ProASICPLUS Family Flash FPGAs
AA27 I/O I/O
AA28 I/O I/O
AA29 I/O I/O
AA30 I/O I/O
AB1 I/O I/O
AB2 I/O I/O
AB3 I/O I/O
AB4 I/O I/O
AB5 I/O I/O
AB6 I/O I/O
AB7 VDDP VDDP
AB8 I/O I/O
AB9 VDD VDD
AB10 NC I/O
AB11 NC I/O
AB12 NC I/O
AB13 NC I/O
AB14 NC I/O
AB15 NC I/O
AB16 NC I/O
AB17 NC I/O
AB18 NC I/O
AB19 NC I/O
AB20 NC I/O
AB21 NC I/O
AB22 VDD VDD
AB23 I/O I/O
AB24 VDDP VDDP
AB25 I/O I/O
AB26 I/O I/O
AB27 I/O I/O
AB28 I/O I/O
AB29 I/O I/O
AB30 I/O I/O
AC1 I/O I/O
AC2 I/O I/O
AC3 I/O I/O
AC4 I/O I/O
AC5 I/O I/O
896 FBGA Pin (Continued)
Pin Number APA750
Function APA1000
Function
AC6 I/O I/O
AC7 I/O I/O
AC8 GND GND
AC9 NC I/O
AC10 NC I/O
AC11 NC I/O
AC12 NC I/O
AC13 NC I/O
AC14 NC I/O
AC15 NC I/O
AC16 NC I/O
AC17 NC I/O
AC18 NC I/O
AC19 NC I/O
AC20 NC I/O
AC21 NC I/O
AC22 NC I/O
AC23 GND GND
AC24 I/O I/O
AC25 I/O I/O
AC26 I/O I/O
AC27 I/O I/O
AC28 I/O I/O
AC29 I/O I/O
AC30 I/O I/O
AD1 G ND GND
AD2 I/O I/O
AD3 I/O I/O
AD4 I/O I/O
AD5 VDDP VDDP
AD6 I/O I/O
AD7 VDD VDD
AD8 I/O I/O
AD9 VDDP VDDP
AD10 I/O I/O
AD11 I/O I/O
AD12 I/O I/O
AD13 I/O I/O
AD14 I/O I/O
896 FBGA Pin (Continued)
Pin Number APA750
Function APA1000
Function
ProASICPLUS Family Flash FPGAs
106 Advanced v0.6
AD15 I/O I/O
AD16 I/O I/O
AD17 I/O I/O
AD18 I/O I/O
AD19 I/O I/O
AD20 I/O I/O
AD21 I/O I/O
AD22 VDDP VDDP
AD23 TCK TCK
AD24 VDD VDD
AD25 TRST TRST
AD26 VDDP VDDP
AD27 I/O I/O
AD28 I/O I/O
AD29 I/O I/O
AD30 GND GND
AE1 I/O I/O
AE2 VDD VDD
AE3 I/O I/O
AE4 I/O I/O
AE5 I/O I/O
AE6 GND GND
AE7 I/O I/O
AE8 I/O I/O
AE9 I/O I/O
AE10 I/O I/O
AE11 I/O I/O
AE12 I/O I/O
AE13 I/O I/O
AE14 I/O I/O
AE15 I/O I/O
AE16 I/O I/O
AE17 I/O I/O
AE18 I/O I/O
AE19 I/O I/O
AE20 I/O I/O
AE21 I/O I/O
AE22 I/O I/O
AE23 I/O I/O
896 FBGA Pin (Continued)
Pin Number APA750
Function APA1000
Function
AE24 I/O I/O
AE25 GND GND
AE26 I/O I/O
AE27 I/O I/O
AE28 I/O I/O
AE29 VDD VDD
AE30 I/O I/O
AF1 GND GND
AF2 I/O I/O
AF3 VDDP VDDP
AF4 I/O I/O
AF5 VDD VDD
AF6 I/O I/O
AF7 VDDP VDDP
AF8 I/O I/O
AF9 I/O I/O
AF10 I/O I/O
AF11 I/O I/O
AF12 I/O I/O
AF13 I/O I/O
AF14 I/O I/O
AF15 I/O I/O
AF16 I/O I/O
AF17 I/O I/O
AF18 I/O I/O
AF19 I/O I/O
AF20 I/O I/O
AF21 I/O I/O
AF22 I/O I/O
AF23 I/O I/O
AF24 VDDP VDDP
AF25 I/O I/O
AF26 VDD VDD
AF27 TDO TDO
AF28 VDDP VDDP
AF29 VPN VPN
AF30 GND GND
AG1 I/O I/O
AG2 VDD VDD
896 FBGA Pin (Continued)
Pin Number APA750
Function APA1000
Function
Advanced v0.6 107
ProASICPLUS Family Flash FPGAs
AG3 I/O I/O
AG4 GND GND
AG5 I/O I/O
AG6 I/O I/O
AG7 I/O I/O
AG8 I/O I/O
AG9 I/O I/O
AG10 I/O I/O
AG11 I/O I/O
AG12 I/O I/O
AG13 I/O I/O
AG14 I/O I/O
AG15 I/O I/O
AG16 I/O I/O
AG17 I/O I/O
AG18 I/O I/O
AG19 I/O I/O
AG20 I/O I/O
AG21 I/O I/O
AG22 I/O I/O
AG23 I/O I/O
AG24 I/O I/O
AG25 I/O I/O
AG26 I/O I/O
AG27 GND GND
AG28 RCK RCK
AG29 VDD VDD
AG30 I/O I/O
AH1 GND GND
AH2 I/O I/O
AH3 VDD VDD
AH4 I/O I/O
AH5 VDDP VDDP
AH6 I/O I/O
AH7 I/O I/O
AH8 I/O I/O
AH9 I/O I/O
AH10 I/O I/O
AH11 I/O I/O
896 FBGA Pin (Continued)
Pin Number APA750
Function APA1000
Function
AH12 I/O I/O
AH13 I/O I/O
AH14 I/O I/O
AH15 I/O I/O
AH16 I/O I/O
AH17 I/O I/O
AH18 I/O I/O
AH19 I/O I/O
AH20 I/O I/O
AH21 I/O I/O
AH22 I/O I/O
AH23 I/O I/O
AH24 I/O I/O
AH25 I/O I/O
AH26 V DDP VDDP
AH27 TDI TDI
AH28 VDD VDD
AH29 VPP VPP
AH30 GND GND
AJ1 GND GND
AJ2 GND GND
AJ3 I/O I/O
AJ4 VDD VDD
AJ5 I/O I/O
AJ6 VDD VDD
AJ7 I/O I/O
AJ8 I/O I/O
AJ9 I/O I/O
AJ10 I/O I/O
AJ11 I/O I/O
AJ12 I/O I/O
AJ13 I/O I/O
AJ14 I/O I/O
AJ15 I/O I/O
AJ16 I/O I/O
AJ17 I/O I/O
AJ18 I/O I/O
AJ19 I/O I/O
AJ20 I/O I/O
896 FBGA Pin (Continued)
Pin Number APA750
Function APA1000
Function
ProASICPLUS Family Flash FPGAs
108 Advanced v0.6
AJ21 I/O I/O
AJ22 I/O I/O
AJ23 I/O I/O
AJ24 I/O I/O
AJ25 VDD VDD
AJ26 I/O I/O
AJ27 VDD VDD
AJ28 TMS TMS
AJ29 GND GND
AJ30 GND GND
AK2 GND GND
AK3 GND GND
AK4 I/O I/O
AK5 GND GND
AK6 I/O I/O
AK7 GND GND
AK8 I/O I/O
AK9 I/O I/O
AK10 I/O I/O
AK11 I/O I/O
AK12 I/O I/O
AK13 I/O I/O
AK14 I/O I/O
AK15 I/O I/O
AK16 I/O I/O
AK17 I/O I/O
AK18 I/O I/O
AK19 I/O I/O
AK20 I/O I/O
AK21 I/O I/O
AK22 I/O I/O
AK23 I/O I/O
AK24 GND GND
AK25 I/O I/O
AK26 GND GND
AK27 I/O I/O
AK28 GND GND
AK29 GND GND
896 FBGA Pin (Continued)
Pin Number APA750
Function APA1000
Function
Advanced v0.6 109
ProASICPLUS Family Flash FPGAs
Package Pin Assignments (Continued)
1152-Pin FBGA (Bottom View)
A1 Ball Pad
Corner
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
AF
123456789101112131415161718192021222324252627282930
AG
AH
AJ
AP
AK
AL
AM
AN
31323334
ProASICPLUS Family Flash FPGAs
110 Advanced v0.6
1152-Pin FBGA
Pin
Number APA1000
Function
A2 NC
A3 GND
A4 GND
A5 GND
A6 I/O
A7 VDD
A8 VDD
A9 VDD
A10 VDD
A11 I/O
A12 GND
A13 I/O
A14 VDDP
A15 VDDP
A16 I/O
A17 GND
A18 GND
A19 I/O
A20 VDDP
A21 VDDP
A22 I/O
A23 GND
A24 I/O
A25 VDD
A26 VDD
A27 VDD
A28 VDD
A29 I/O
A30 GND
A31 GND
A32 GND
A33 NC
B1 NC
B2 NC
B3 GND
B4 GND
B5 GND
B6 NC
B7 I/O
B8 NC
B9 I/O
B10 NC
B11 I/O
B12 GND
B13 I/O
B14 VDDP
B15 VDDP
B16 I/O
B17 GND
B18 GND
B19 I/O
B20 VDDP
B21 VDDP
B22 I/O
B23 GND
B24 I/O
B25 NC
B26 I/O
B27 NC
B28 I/O
B29 NC
B30 GND
B31 GND
B32 GND
B33 NC
B34 NC
C1 GND
C2 GND
C3 NC
C4 GND
C5 GND
C6 I/O
C7 GND
C8 I/O
C9 GND
C10 I/O
C11 I/O
C12 I/O
C13 I/O
C14 I/O
C15 I/O
C16 I/O
C17 I/O
C18 I/O
C19 I/O
C20 I/O
C21 I/O
C22 I/O
C23 I/O
C24 I/O
1152-Pin FBGA
Pin
Number APA1000
Function
C25 I/O
C26 GND
C27 I/O
C28 GND
C29 I/O
C30 GND
C31 GND
C32 NC
C33 GND
C34 GND
D1 GND
D2 GND
D3 GND
D4 GND
D5 I/O
D6 VDD
D7 I/O
D8 VDD
D9 I/O
D10 I/O
D11 I/O
D12 I/O
D13 I/O
D14 I/O
D15 I/O
D16 I/O
D17 I/O
D18 I/O
D19 I/O
D20 I/O
D21 I/O
D22 I/O
D23 I/O
D24 I/O
D25 I/O
D26 I/O
D27 VDD
D28 I/O
D29 VDD
D30 I/O
D31 GND
D32 GND
D33 GND
D34 GND
E1 GND
1152-Pin FBGA
Pin
Number APA1000
Function
E2 GND
E3 GND
E4 I/O
E5 VDD
E6 I/O
E7 VDDP
E8 I/O
E9 I/O
E10 I/O
E11 I/O
E12 I/O
E13 I/O
E14 I/O
E15 I/O
E16 I/O
E17 I/O
E18 I/O
E19 I/O
E20 I/O
E21 I/O
E22 I/O
E23 I/O
E24 I/O
E25 I/O
E26 I/O
E27 I/O
E28 VDDP
E29 I/O
E30 VDD
E31 I/O
E32 GND
E33 GND
E34 GND
F1 I/O
F2 NC
F3 I/O
F4 VDD
F5 I/O
F6 GND
F7 I/O
F8 I/O
F9 I/O
F10 I/O
F11 I/O
F12 I/O
1152-Pin FBGA
Pin
Number APA1000
Function
Advanced v0.6 111
ProASICPLUS Family Flash FPGAs
F13 I/O
F14 I/O
F15 I/O
F16 I/O
F17 I/O
F18 I/O
F19 I/O
F20 I/O
F21 I/O
F22 I/O
F23 I/O
F24 I/O
F25 I/O
F26 I/O
F27 I/O
F28 I/O
F29 GND
F30 I/O
F31 VDD
F32 I/O
F33 NC
F34 NC
G1 VDD
G2 I/O
G3 GND
G4 I/O
G5 VDDP
G6 I/O
G7 VDD
G8 I/O
G9 VDDP
G10 I/O
G11 I/O
G12 I/O
G13 I/O
G14 I/O
G15 I/O
G16 I/O
G17 I/O
G18 I/O
G19 I/O
G20 I/O
G21 I/O
G22 I/O
G23 I/O
1152-Pin FBGA
Pin
Number APA1000
Function
G24 I/O
G25 I/O
G26 VDDP
G27 I/O
G28 VDD
G29 I/O
G30 VDDP
G31 I/O
G32 GND
G33 I/O
G34 VDD
H1 VDD
H2 NC
H3 I/O
H4 VDD
H5 I/O
H6 I/O
H7 I/O
H8 GND
H9 I/O
H10 I/O
H11 I/O
H12 I/O
H13 I/O
H14 I/O
H15 I/O
H16 I/O
H17 I/O
H18 I/O
H19 I/O
H20 I/O
H21 I/O
H22 I/O
H23 I/O
H24 I/O
H25 I/O
H26 I/O
H27 GND
H28 I/O
H29 I/O
H30 I/O
H31 VDD
H32 I/O
H33 NC
H34 VDD
1152-Pin FBGA
Pin
Number APA1000
Function
J1 VDD
J2 I/O
J3 GND
J4 I/O
J5 I/O
J6 I/O
J7 VDDP
J8 I/O
J9 VDD
J10 I/O
J11 VDDP
J12 I/O
J13 I/O
J14 I/O
J15 I/O
J16 I/O
J17 I/O
J18 I/O
J19 I/O
J20 I/O
J21 I/O
J22 I/O
J23 I/O
J24 VDDP
J25 I/O
J26 VDD
J27 I/O
J28 VDDP
J29 I/O
J30 I/O
J31 I/O
J32 GND
J33 I/O
J34 VDD
K1 VDD
K2 NC
K3 I/O
K4 I/O
K5 I/O
K6 I/O
K7 I/O
K8 I/O
K9 I/O
K10 GND
K11 I/O
1152-Pin FBGA
Pin
Number APA1000
Function
K12 I/O
K13 I/O
K14 I/O
K15 I/O
K16 I/O
K17 I/O
K18 I/O
K19 I/O
K20 I/O
K21 I/O
K22 I/O
K23 I/O
K24 I/O
K25 GND
K26 I/O
K27 I/O
K28 I/O
K29 I/O
K30 I/O
K31 I/O
K32 I/O
K33 NC
K34 VDD
L1 I/O
L2 I/O
L3 I/O
L4 I/O
L5 I/O
L6 I/O
L7 I/O
L8 I/O
L9 VDDP
L10 I/O
L11 VDD
L12 I/O
L13 I/O
L14 I/O
L15 I/O
L16 I/O
L17 I/O
L18 I/O
L19 I/O
L20 I/O
L21 I/O
L22 I/O
1152-Pin FBGA
Pin
Number APA1000
Function
ProASICPLUS Family Flash FPGAs
112 Advanced v0.6
L23 I/O
L24 VDD
L25 I/O
L26 VDDP
L27 I/O
L28 I/O
L29 I/O
L30 I/O
L31 I/O
L32 I/O
L33 I/O
L34 I/O
M1 GND
M2 GND
M3 I/O
M4 I/O
M5 I/O
M6 I/O
M7 I/O
M8 I/O
M9 I/O
M10 I/O
M11 I/O
M12 VDD
M13 I/O
M14 VDDP
M15 VDDP
M16 VDDP
M17 VDDP
M18 VDDP
M19 VDDP
M20 VDDP
M21 VDDP
M22 I/O
M23 VDD
M24 I/O
M25 I/O
M26 I/O
M27 I/O
M28 I/O
M29 I/O
M30 I/O
M31 I/O
M32 I/O
M33 GND
1152-Pin FBGA
Pin
Number APA1000
Function
M34 GND
N1 I/O
N2 I/O
N3 I/O
N4 I/O
N5 I/O
N6 I/O
N7 I/O
N8 I/O
N9 I/O
N10 I/O
N11 I/O
N12 I/O
N13 VDD
N14 VDD
N15 VDD
N16 VDD
N17 VDD
N18 VDD
N19 VDD
N20 VDD
N21 VDD
N22 VDD
N23 I/O
N24 I/O
N25 I/O
N26 I/O
N27 I/O
N28 I/O
N29 I/O
N30 I/O
N31 I/O
N32 I/O
N33 I/O
N34 I/O
P1 VDDP
P2 VDDP
P3 I/O
P4 I/O
P5 I/O
P6 I/O
P7 I/O
P8 I/O
P9 I/O
P10 I/O
1152-Pin FBGA
Pin
Number APA1000
Function
P11 I/O
P12 VDDP
P13 VDD
P14 GND
P15 GND
P16 GND
P17 GND
P18 GND
P19 GND
P20 GND
P21 GND
P22 VDD
P23 VDDP
P24 I/O
P25 I/O
P26 I/O
P27 I/O
P28 I/O
P29 I/O
P30 I/O
P31 I/O
P32 I/O
P33 VDDP
P34 VDDP
R1 VDDP
R2 VDDP
R3 I/O
R4 I/O
R5 I/O
R6 I/O
R7 I/O
R8 I/O
R9 I/O
R10 I/O
R11 I/O
R12 VDDP
R13 VDD
R14 GND
R15 GND
R16 GND
R17 GND
R18 GND
R19 GND
R20 GND
R21 GND
1152-Pin FBGA
Pin
Number APA1000
Function
R22 VDD
R23 VDDP
R24 I/O
R25 I/O
R26 I/O
R27 I/O
R28 I/O
R29 I/O
R30 I/O
R31 I/O
R32 I/O
R33 VDDP
R34 VDDP
T1 I/O
T2 I/O
T3 I/O
T4 I/O
T5 I/O
T6 I/O
T7 I/O
T8 I/O
T9 I/O
T10 I/O
T11 I/O
T12 VDDP
T13 VDD
T14 GND
T15 GND
T16 GND
T17 GND
T18 GND
T19 GND
T20 GND
T21 GND
T22 VDD
T23 VDDP
T24 I/O
T25 I/O
T26 I/O
T27 I/O
T28 I/O
T29 I/O
T30 I/O
T31 I/O
T32 I/O
1152-Pin FBGA
Pin
Number APA1000
Function
Advanced v0.6 113
ProASICPLUS Family Flash FPGAs
T33 I/O
T34 I/O
U1 GND
U2 GND
U3 I/O
U4 I/O
U5 AGND
U6 NPECL
U7 GL
U8 I/O
U9 I/O
U10 I/O
U11 I/O
U12 VDDP
U13 VDD
U14 GND
U15 GND
U16 GND
U17 GND
U18 GND
U19 GND
U20 GND
U21 GND
U22 VDD
U23 VDDP
U24 I/O
U25 I/O
U26 I/O
U27 I/O
U28 I/O
U29 NPECL
U30 AGND
U31 I/O
U32 I/O
U33 GND
U34 GND
V1 GND
V2 GND
V3 I/O
V4 AVDD
V5 GL
V6 PPECL
V7 I/O
V8 I/O
V9 I/O
1152-Pin FBGA
Pin
Number APA1000
Function
V10 I/O
V11 I/O
V12 VDDP
V13 VDD
V14 GND
V15 GND
V16 GND
V17 GND
V18 GND
V19 GND
V20 GND
V21 GND
V22 VDD
V23 VDDP
V24 I/O
V25 I/O
V26 I/O
V27 I/O
V28 PPECL
V29 GL
V30 GL
V31 AVDD
V32 I/O
V33 GND
V34 GND
W1 I/O
W2 I/O
W3 I/O
W4 I/O
W5 I/O
W6 I/O
W7 I/O
W8 I/O
W9 I/O
W10 I/O
W11 I/O
W12 VDDP
W13 VDD
W14 GND
W15 GND
W16 GND
W17 GND
W18 GND
W19 GND
W20 GND
1152-Pin FBGA
Pin
Number APA1000
Function
W21 GND
W22 VDD
W23 VDDP
W24 I/O
W25 I/O
W26 I/O
W27 I/O
W28 I/O
W29 I/O
W30 I/O
W31 I/O
W32 I/O
W33 I/O
W34 I/O
Y1 VDDP
Y2 VDDP
Y3 I/O
Y4 I/O
Y5 I/O
Y6 I/O
Y7 I/O
Y8 I/O
Y9 I/O
Y10 I/O
Y11 I/O
Y12 VDDP
Y13 VDD
Y14 GND
Y15 GND
Y16 GND
Y17 GND
Y18 GND
Y19 GND
Y20 GND
Y21 GND
Y22 VDD
Y23 VDDP
Y24 I/O
Y25 I/O
Y26 I/O
Y27 I/O
Y28 I/O
Y29 I/O
Y30 I/O
Y31 I/O
1152-Pin FBGA
Pin
Number APA1000
Function
Y32 I/O
Y33 VDDP
Y34 VDDP
AA1 VDDP
AA2 VDDP
AA3 I/O
AA4 I/O
AA5 I/O
AA6 I/O
AA7 I/O
AA8 I/O
AA9 I/O
AA10 I/O
AA11 I/O
AA12 VDDP
AA13 VDD
AA14 GND
AA15 GND
AA16 GND
AA17 GND
AA18 GND
AA19 GND
AA20 GND
AA21 GND
AA22 VDD
AA23 VDDP
AA24 I/O
AA25 I/O
AA26 I/O
AA27 I/O
AA28 I/O
AA29 I/O
AA30 I/O
AA31 I/O
AA32 I/O
AA33 VDDP
AA34 VDDP
AB1 I/O
AB2 I/O
AB3 I/O
AB4 I/O
AB5 I/O
AB6 I/O
AB7 I/O
AB8 I/O
1152-Pin FBGA
Pin
Number APA1000
Function
ProASICPLUS Family Flash FPGAs
114 Advanced v0.6
AB9 I/O
AB10 I/O
AB11 I/O
AB12 I/O
AB13 VDD
AB14 VDD
AB15 VDD
AB16 VDD
AB17 VDD
AB18 VDD
AB19 VDD
AB20 VDD
AB21 VDD
AB22 VDD
AB23 I/O
AB24 I/O
AB25 I/O
AB26 I/O
AB27 I/O
AB28 I/O
AB29 I/O
AB30 I/O
AB31 I/O
AB32 I/O
AB33 I/O
AB34 I/O
AC1 GND
AC2 GND
AC3 I/O
AC4 I/O
AC5 I/O
AC6 I/O
AC7 I/O
AC8 I/O
AC9 I/O
AC10 I/O
AC11 I/O
AC12 VDD
AC13 I/O
AC14 VDDP
AC15 VDDP
AC16 VDDP
AC17 VDDP
AC18 VDDP
AC19 VDDP
1152-Pin FBGA
Pin
Number APA1000
Function
AC20 VDDP
AC21 VDDP
AC22 I/O
AC23 VDD
AC24 I/O
AC25 I/O
AC26 I/O
AC27 I/O
AC28 I/O
AC29 I/O
AC30 I/O
AC31 I/O
AC32 I/O
AC33 GND
AC34 GND
AD1 I/O
AD2 I/O
AD3 I/O
AD4 I/O
AD5 I/O
AD6 I/O
AD7 I/O
AD8 I/O
AD9 VDDP
AD10 I/O
AD11 VDD
AD12 I/O
AD13 I/O
AD14 I/O
AD15 I/O
AD16 I/O
AD17 I/O
AD18 I/O
AD19 I/O
AD20 I/O
AD21 I/O
AD22 I/O
AD23 I/O
AD24 VDD
AD25 I/O
AD26 VDDP
AD27 I/O
AD28 I/O
AD29 I/O
AD30 I/O
1152-Pin FBGA
Pin
Number APA1000
Function
AD31 I/O
AD32 I/O
AD33 I/O
AD34 I/O
AE1 VDD
AE2 NC
AE3 I/O
AE4 I/O
AE5 I/O
AE6 I/O
AE7 I/O
AE8 I/O
AE9 I/O
AE10 GND
AE11 I/O
AE12 I/O
AE13 I/O
AE14 I/O
AE15 I/O
AE16 I/O
AE17 I/O
AE18 I/O
AE19 I/O
AE20 I/O
AE21 I/O
AE22 I/O
AE23 I/O
AE24 I/O
AE25 GND
AE26 I/O
AE27 I/O
AE28 I/O
AE29 I/O
AE30 I/O
AE31 I/O
AE32 I/O
AE33 NC
AE34 VDD
AF1 VDD
AF2 I/O
AF3 GND
AF4 I/O
AF5 I/O
AF6 I/O
AF7 VDDP
1152-Pin FBGA
Pin
Number APA1000
Function
AF8 I/O
AF9 VDD
AF10 I/O
AF11 VDDP
AF12 I/O
AF13 I/O
AF14 I/O
AF15 I/O
AF16 I/O
AF17 I/O
AF18 I/O
AF19 I/O
AF20 I/O
AF21 I/O
AF22 I/O
AF23 I/O
AF24 VDDP
AF25 TCK
AF26 VDD
AF27 TRST
AF28 VDDP
AF29 I/O
AF30 I/O
AF31 I/O
AF32 GND
AF33 I/O
AF34 VDD
AG1 VDD
AG2 NC
AG3 I/O
AG4 VDD
AG5 I/O
AG6 I/O
AG7 I/O
AG8 GND
AG9 I/O
AG10 I/O
AG11 I/O
AG12 I/O
AG13 I/O
AG14 I/O
AG15 I/O
AG16 I/O
AG17 I/O
AG18 I/O
1152-Pin FBGA
Pin
Number APA1000
Function
Advanced v0.6 115
ProASICPLUS Family Flash FPGAs
AG19 I/O
AG20 I/O
AG21 I/O
AG22 I/O
AG23 I/O
AG24 I/O
AG25 I/O
AG26 I/O
AG27 GND
AG28 I/O
AG29 I/O
AG30 I/O
AG31 VDD
AG32 I/O
AG33 NC
AG34 VDD
AH1 VDD
AH2 I/O
AH3 GND
AH4 I/O
AH5 VDDP
AH6 I/O
AH7 VDD
AH8 I/O
AH9 VDDP
AH10 I/O
AH11 I/O
AH12 I/O
AH13 I/O
AH14 I/O
AH15 I/O
AH16 I/O
AH17 I/O
AH18 I/O
AH19 I/O
AH20 I/O
AH21 I/O
AH22 I/O
AH23 I/O
AH24 I/O
AH25 I/O
AH26 VDDP
AH27 I/O
AH28 VDD
AH29 TDO
1152-Pin FBGA
Pin
Number APA1000
Function
AH30 VDDP
AH31 VPN
AH32 GND
AH33 I/O
AH34 VDD
AJ1 I/O
AJ2 NC
AJ3 I/O
AJ4 VDD
AJ5 I/O
AJ6 GND
AJ7 I/O
AJ8 I/O
AJ9 I/O
AJ10 I/O
AJ11 I/O
AJ12 I/O
AJ13 I/O
AJ14 I/O
AJ15 I/O
AJ16 I/O
AJ17 I/O
AJ18 I/O
AJ19 I/O
AJ20 I/O
AJ21 I/O
AJ22 I/O
AJ23 I/O
AJ24 I/O
AJ25 I/O
AJ26 I/O
AJ27 I/O
AJ28 I/O
AJ29 GND
AJ30 RCK
AJ31 VDD
AJ32 I/O
AJ33 NC
AJ34 NC
AK1 GND
AK2 GND
AK3 GND
AK4 I/O
AK5 VDD
AK6 I/O
1152-Pin FBGA
Pin
Number APA1000
Function
AK7 VDDP
AK8 I/O
AK9 I/O
AK10 I/O
AK11 I/O
AK12 I/O
AK13 I/O
AK14 I/O
AK15 I/O
AK16 I/O
AK17 I/O
AK18 I/O
AK19 I/O
AK20 I/O
AK21 I/O
AK22 I/O
AK23 I/O
AK24 I/O
AK25 I/O
AK26 I/O
AK27 I/O
AK28 VDDP
AK29 TDI
AK30 VDD
AK31 VPP
AK32 GND
AK33 GND
AK34 GND
AL1 GND
AL2 GND
AL3 GND
AL4 GND
AL5 I/O
AL6 VDD
AL7 I/O
AL8 VDD
AL9 I/O
AL10 I/O
AL11 I/O
AL12 I/O
AL13 I/O
AL14 I/O
AL15 I/O
AL16 I/O
AL17 I/O
1152-Pin FBGA
Pin
Number APA1000
Function
AL18 I/O
AL19 I/O
AL20 I/O
AL21 I/O
AL22 I/O
AL23 I/O
AL24 I/O
AL25 I/O
AL26 I/O
AL27 VDD
AL28 I/O
AL29 VDD
AL30 TMS
AL31 GND
AL32 GND
AL33 GND
AL34 GND
AM1 GND
AM2 GND
AM3 NC
AM4 GND
AM5 GND
AM6 I/O
AM7 GND
AM8 I/O
AM9 GND
AM10 I/O
AM11 I/O
AM12 I/O
AM13 I/O
AM14 I/O
AM15 I/O
AM16 I/O
AM17 I/O
AM18 I/O
AM19 I/O
AM20 I/O
AM21 I/O
AM22 I/O
AM23 I/O
AM24 I/O
AM25 I/O
AM26 GND
AM27 I/O
AM28 GND
1152-Pin FBGA
Pin
Number APA1000
Function
ProASICPLUS Family Flash FPGAs
116 Advanced v0.6
AM29 I/O
AM30 GND
AM31 GND
AM32 NC
AM33 GND
AM34 GND
AN1 NC
AN2 NC
AN3 GND
AN4 GND
AN5 GND
AN6 NC
AN7 I/O
AN8 NC
AN9 I/O
AN10 NC
AN11 I/O
AN12 GND
AN13 I/O
AN14 VDDP
AN15 VDDP
AN16 I/O
AN17 GND
AN18 GND
AN19 I/O
AN20 VDDP
AN21 VDDP
AN22 I/O
AN23 GND
AN24 I/O
AN25 NC
AN26 I/O
AN27 NC
AN28 I/O
AN29 NC
AN30 GND
AN31 GND
AN32 GND
AN33 NC
AN34 NC
AP2 NC
AP3 GND
AP4 GND
AP5 GND
AP6 I/O
1152-Pin FBGA
Pin
Number APA1000
Function
AP7 VDD
AP8 VDD
AP9 VDD
AP10 VDD
AP11 I/O
AP12 GND
AP13 I/O
AP14 VDDP
AP15 VDDP
AP16 I/O
AP17 GND
AP18 GND
AP19 I/O
AP20 VDDP
AP21 VDDP
AP22 I/O
AP23 GND
AP24 I/O
AP25 VDD
AP26 VDD
AP27 VDD
AP28 VDD
AP29 I/O
AP30 GND
AP31 GND
AP32 GND
AP33 NC
1152-Pin FBGA
Pin
Number APA1000
Function
Advanced v0.6 117
ProASICPLUS Family Flash FPGAs
List of Changes
The following table lists critical changes that were made in
the current version of the document.
Previous version Changes in current version (Advanced v0.6) Page
Advanced v0.5 The description for the V PN pin has changed. page 54
Advanced v0.4
The Plastic Device Resources table on page 4 has been updated. page 4
Figure 19 and Figure 20 on page 28 have been updated. page 28
The Trista te Buffer Dela ys table on page 30 has been updated. page 30
The Output Buffer Delays tabl e on page 31 has been updated. page 31
The Input Buffer Delays table on page 32 has been updated. page 32
The Global Input Buffer Delays ta ble on page 32 has been updated. page 32
The 456-Pin PBGA table on page 63 has been updated. page 63
The 676-FBGA Pin table on page 87 has been updated. page 87
Advanced v0.3
The ProASICPLUS Product Pr ofile section on page 1 has been changed. page 1
The Plastic Device Resources section on page 4 has been updated. page 4
The Supply Voltages table on page 10 has been updated. page 10
WDATA has ben change d to DI, and R DATA has been change d to DO to make them
consistent with the signal names found in the Macro Library Guide.
Figure 13 on page 15 and Figure 14 on page 16 have been updated. page 15
and page 16
The Design Environment section on page 17 and Figur e 18 on pag e 18 have been
updated. page 17
and page 18
The table in the Package Thermal Characteristics section on page 19 has been
updated. page 19
The Calculating Power Dissipation section on page 20 is new. page 20
The Programming and Storage Temperature Limits section on page 22 is new. page 22
The Supply Voltages section on page 22 has been updated. page 22
The DC Electrical Specifications (VDDP = 2.5V +/-0.2V) section on pa ge 23 was
updated. page 23
The DC Electrical Specifications (VDDP = 3.3V +/-0.3V and VDD 2.5+/-0.2V)
section on page 24 was updated. page 24
The AC Specifications (3.3V PCI Revision 2.2 Operation) section on page 26 was
updated. page 26
The Clock Conditioning Circuit secti on on pag e 27 was updated. page 27
Figure 19 on page 28 was updated. page 28
Figure 20 on page 28 is new. page 28
Tables 5, 6, and 7 from Advanced v0.3 were removed.
The Memory Block SRAM Interface Signals section on page 35 was updated. page 35
The Memory Block FIFO Interface Signals section on page 46 was updated. page 46
All pinout tables have been updated, and several packages are new:
208-Pin PQFP APA150, APA300, APA450, APA600
456-Pin PBGA APA150, APA300, APA450, APA600
144-Pin FBGA APA150, APA300, APA450
256-Pin FBGA APA150, APA300, APA450, APA600
676-Pin FBGA APA600
Advanced v0.1 Figure 15 on page 16 has been updated page 16
ProASICPLUS Family Flash FPGAs
118 Advanced v0.6
Data Sheet Categories
In order to provide the latest information to designers, some data sheets are published before data has been fully
characterized. Product Briefs are modified versions of data sheets. Data sheets are marked as Advanced, Preliminary, and
Web-only. The definition of these categories are as follows:
Product Brief
The product brief is a modified version of an Advanced data sheet containing general product information. This brief
summarizes specific device and family information for non-release products.
Advanced
The data sheet contains initial estimated information based on simulation, other products, devices, or speed grades. This
information can be used as estimates, but not for production.
Preliminary
The data sheet contains information based on simulation and/or initial characterization. The information is believed to be
correct, but changes are possible.
Unmarked (production)
The data sheet contains information that is considered to be final.
Web-only Versions
Web-only versions have three numbers in the version number (example: v2.0.1). A web-only version means Actel is posting
the data sheet so customers have the latest information, but we are not printing the version because some information is
going to change shortly after posting.
Actel and the Actel logo ar e regi stered trademarks of Actel Corporation.
All other trademarks are the property of their owners.
http://www.actel.com
Actel Europe Ltd.
Maxfli Court, Riverside W ay
Camberley, Surrey GU15 3YL
United Kingdom
Tel: +44 (0)1276 401450
Fax: +44 (0)1276 401490
Actel Corporation
955 East Arques A venue
Sunnyvale , California 94086
USA
Tel: (408) 739-1010
Fax: (408) 739-1540
Actel Asia-Pacific
EXOS Ebisu Bldg. 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan
Tel: +81 03-3445-7671
Fax: +81 03-3445-7668
5172161-5/4.02