July 2017
DocID030319 Rev 3
1/20
This is information on a product in full production.
www.st.com
LDL1117
1.2 A high PSRR low-dropout linear voltage regulator
Datasheet - production data
Features
Input voltage from 2.5 V to 18 V
20 V AMR
Available on fixed output voltages: 1.2 V
(1.185 V), 1.5 V, 1.8 V, 2.5 V, 3 V, 3.3 V, 5.0
V (other options are available on request)
Guaranteed output current 1.2 A
Typical dropout 350 mV@1.2 A
Internal thermal, current and power limitation
High PSRR 87 dB @120 Hz
Operating temperature range: -40 °C to 125
°C package SOT223
Applications
Consumer
Industrial
SMPS
Motherboard P.O.L.
DC-DC post-regulation
Description
The LDL1117 provides 1.2 A of maximum current
with an input voltage range from 2.5 V to 18 V,
and a typical dropout voltage of 350 mV@1.2 A.
The high power supply rejection ratio of 87 dB at
120 Hz, rolling down to more than 40 dB at 100
kHz, makes the LDL1117 suitable for direct
regulations in SMPS and secondary linear
regulations in DC-DC converters.
This device includes current limit, SOA and
thermal protections.
Contents
LDL1117
DocID030319 Rev 3
Contents
1 Block diagram .................................................................................. 5
2 Pin configuration ............................................................................. 6
3 Typical application .......................................................................... 7
4 Maximum ratings ............................................................................. 8
5 Electrical characteristics ................................................................ 9
6 Application information ................................................................ 10
6.1 Thermal and short-circuit protections .............................................. 10
6.2 Input and output capacitor selection ................................................ 10
7 Typical performance characteristics ........................................... 11
8 Package information ..................................................................... 16
8.1 SOT223 package information.......................................................... 16
9 Ordering information ..................................................................... 18
10 Revision history ............................................................................ 19
LDL1117
List of tables
DocID030319 Rev 3
3/20
List of tables
Table 1: Pin description .............................................................................................................................. 6
Table 2: Absolute maximum ratings ........................................................................................................... 8
Table 3: Thermal data ................................................................................................................................. 8
Table 4: Electrical characteristics ............................................................................................................... 9
Table 5: SOT223 package mechanical data ............................................................................................ 17
Table 6: Order code .................................................................................................................................. 18
Table 7: Document revision history .......................................................................................................... 19
List of figures
LDL1117
DocID030319 Rev 3
List of figures
Figure 1: Block diagram .............................................................................................................................. 5
Figure 2: Pin configuration (top view) ......................................................................................................... 6
Figure 3: Typical application schematic ...................................................................................................... 7
Figure 4: Output voltage vs temperature (VIN = 2.6 V, VOUT = 1.2 V, no-load) .................................... 11
Figure 5: Output voltage vs temperature (VIN = 2.6 V, VOUT = 1.2, 1200 mA) ..................................... 11
Figure 6: Output voltage vs temperature (VIN = 6 V, VOUT = 5 V, no-load) .......................................... 11
Figure 7: Output voltage vs temperature (VIN = 6 V, VOUT =5 V, 1200 mA) ......................................... 11
Figure 8: Line regulation vs temperature (VIN = 6 to 18 V, VOUT = 5 V, IOUT = 10 mA) ...................... 12
Figure 9: Line regulation vs temperature (VIN = 2.5 to 18 V, VOUT = 1.2 V, IOUT = 10 mA) ................ 12
Figure 10: Load regulation vs temperature (VIN = 6 V, VOUT = 5 V, IOUT = 10 to 1200 mA) ............... 12
Figure 11: Load regulation vs temperature (VIN = 2.6 V, VOUT = 1.2 V, IOUT = 10 to 1200 mA) ......... 12
Figure 12: Dropout voltage vs temperature .............................................................................................. 12
Figure 13: Quiescent current vs temperature (no-load)........................................................................... 12
Figure 14: Quiescent current vs temperature (600 mA) .......................................................................... 13
Figure 15: Quiescent current vs temperature (1.2 A) .............................................................................. 13
Figure 16: Short-circuit current vs dropout voltage (VOUT = 5 V) ............................................................ 13
Figure 17: Short-circuit current vs dropout voltage (VOUT = 1.2 V) ......................................................... 13
Figure 18: SVR vs frequency .................................................................................................................... 13
Figure 19: Output noise spectral density (VO = 1.2 V) ............................................................................. 13
Figure 20: Stability plan (VOUT = 5 V) ..................................................................................................... 14
Figure 21: Stability plan (VOUT = 1.2 V) .................................................................................................. 14
Figure 22: Turn-on time (VOUT = 5 V) ..................................................................................................... 14
Figure 23: Turn-on time (VOUT = 1.2 V) .................................................................................................. 14
Figure 24: Line transient (VOUT = 5 V) .................................................................................................... 14
Figure 25: Line transient (VOUT = 1.2 V) ................................................................................................. 14
Figure 26: Load transient (VOUT = 1.2 V) ................................................................................................ 15
Figure 27: Load transient (VOUT = 5 V) ................................................................................................... 15
Figure 28: SOT223 package outline ......................................................................................................... 16
LDL1117
Block diagram
DocID030319 Rev 3
5/20
1 Block diagram
Figure 1: Block diagram
Pin configuration
LDL1117
DocID030319 Rev 3
2 Pin configuration
Figure 2: Pin configuration (top view)
Table 1: Pin description
Pin name
Pin number
Description
GND
1
Ground
VOUT
2
Output voltage
VIN
3
Input voltage
The tab is connected to VOUT.
LDL1117
Typical application
DocID030319 Rev 3
7/20
3 Typical application
Figure 3: Typical application schematic
Maximum ratings
LDL1117
DocID030319 Rev 3
4 Maximum ratings
Table 2: Absolute maximum ratings
Symbol
Parameter
Value
Unit
VIN
Input supply voltage
-0.3 to 20
V
VOUT
Output voltage
-0.3 to VIN +0.3
V
IOUT
Output current
Internally limited
A
Pd
Power dissipation
Internally limited
W
TJ-OP
Operating junction temperature
-40 to 125
°C
TJ-MAX
Maximum junction temperature
150
°C
TSTG
Storage temperature
-55 to 150
°C
Absolute maximum ratings are those values beyond which damage to the device
may occur. Functional operation under these conditions is not implied.
Table 3: Thermal data
Symbol
Parameter
Value
Unit
θJ-C
Thermal resistance junction-to-case
15
°C/W
θJ-A
Thermal resistance junction-to-ambient
120
LDL1117
Electrical characteristics
DocID030319 Rev 3
9/20
5 Electrical characteristics
(TJ = 25 °C, VIN = VOUT + 1 V or 2.6 V, whichever is greater; CIN = 1 μF; COUT = 4.7 μF;
IOUT = 10 mA)
Table 4: Electrical characteristics
Symbol
Parameter
Test conditions
Min.
Typ.
Max.
Unit
VIN
Operating input
voltage
2.6
18
V
VUVLO
Turn-on threshold
2.3
2.4
V
Hysteresis
200
mV
VOUT
VOUT accuracy
IOUT = 10 mA, TJ = 25 °C
-2
+2
%
IOUT = 10 mA -40 °C < TJ <
125 °C
-3
+3
%
∆VOUT
Line regulation
VOUT + 1 V(1) ≤ VIN ≤ 18 V,
IOUT = 10 mA, -40 °C < TJ
< 125 °C
0.002
0.02
%/V
∆VOUT
Load regulation
IOUT = 10 mA to 1.2 A -40
°C < TJ < 125 °C
5
15
mV
VDROP
Dropout voltage(2)
IOUT = 1.2 A, VOUT > 2.5 V -
40 °C < TJ < 125 °C
350
600
mV
eN
Output noise voltage
10 Hz to 100 kHz,
IOUT = 100 mA
60
µVRMS/VOUT
SVR
Supply voltage
rejection
VIN = VOUT(NOM) +1 V
±VRIPPLE VRIPPLE = 0.5 V,
f = 120 Hz
87
dB
VIN = VOUT(NOM) +1 V
±VRIPPLE VRIPPLE = 0.5 V,
f = 1 kHz
80
VIN = VOUT(NOM) +1 V
±VRIPPLE VRIPPLE = 0.5 V,
f = 100 kHz
65
IQ
Quiescent current
IOUT = 0 mA to 1.2 A, -40
°C < TJ < 125 °C
250
500
µA
ISC
Output current
1.5
2
A
TSHDN
Thermal shutdown
175
°C
Hysteresis
25
Notes:
(1)VIN = VOUT+1 V or 2.6 V, whichever is greater.
(2)Dropout voltage is the input-to-output voltage difference at which the output voltage is 100 mV below its nominal
value; this specification does not apply for nominal output voltages below 2.5 V.
Application information
LDL1117
DocID030319 Rev 3
6 Application information
6.1 Thermal and short-circuit protections
The LDL1117 is self-protected from short-circuit conditions and overtemperature. When the
output load is higher than the one supported by the device, the output current rises until the
limit of typically 2 A is reached. The current limit value is dependent of the dissipated
power, thanks to an additional SOA protection, so that the maximum power is limited.
The peak current available for a defined drop voltage (VIN-VOUT) is shown in Section 7:
"Typical performance characteristics".
The thermal protection occurs when the junction temperature reaches typically 175 °C.
The IC enters the shutdown status. As soon as the junction temperature falls again below
150 °C (typ.) the device starts working again.
In order to calculate the maximum power that the device can dissipate, keeping the junction
temperature below TJ-OP, the following formula is used:
Equation 1
 󰇛󰇜
PDMAX should be also derated according to the maximum current allowed by the SOA
protection.
6.2 Input and output capacitor selection
The LDL1117 requires external capacitors to assure the regulator control loop stability.
Any good quality ceramic capacitor can be used but, the X5R and the X7R are suggested
since they guarantee a very stable combination of capacitance and ESR over the
temperature range. The input/output capacitors should be placed as close as possible to
the relative pins. The LDL1117 requires an input capacitor with a minimum value of 1 μF.
This capacitor must be placed as close as possible to the input pin of the device and
returned to a clean analog ground. The control loop of the LDL1117 is designed to work
with an output ceramic capacitor. Other type of capacitors may be used, as long as they
meet the requirements of minimum capacitance and equivalent series resistance (ESR), as
shown in Figure 20: "Stability plan (VOUT = 5 V)" and Figure 21: "Stability plan (VOUT =
1.2 V)".
To assure stability, the output capacitor must maintain its ESR and capacitance in the
stable region, over the full operating temperature range.
The suggested combination of 1 μF input and 4.7 μF output capacitors offers a good
compromise among the stability of the regulator, optimum transient response and total PCB
area occupation.
LDL1117
Typical performance characteristics
DocID030319 Rev 3
11/20
7 Typical performance characteristics
(The following plots are referred to the typical application circuit and, unless otherwise
noted, at TA = 25 °C)
Figure 4: Output voltage vs temperature
(VIN = 2.6 V, VOUT = 1.2 V, no-load)
Figure 5: Output voltage vs temperature
(VIN = 2.6 V, VOUT = 1.2, 1200 mA)
Figure 6: Output voltage vs temperature
(VIN = 6 V, VOUT = 5 V, no-load)
Figure 7: Output voltage vs temperature
(VIN = 6 V, VOUT =5 V, 1200 mA)
Typical performance characteristics
LDL1117
DocID030319 Rev 3
Figure 8: Line regulation vs temperature
(VIN = 6 to 18 V, VOUT = 5 V, IOUT = 10 mA)
Figure 9: Line regulation vs temperature
(VIN = 2.5 to 18 V, VOUT = 1.2 V, IOUT = 10 mA)
Figure 10: Load regulation vs temperature
(VIN = 6 V, VOUT = 5 V, IOUT = 10 to 1200 mA)
Figure 11: Load regulation vs temperature
(VIN = 2.6 V, VOUT = 1.2 V, IOUT = 10 to 1200 mA)
Figure 12: Dropout voltage vs temperature
Figure 13: Quiescent current vs temperature
(no-load)
LDL1117
Typical performance characteristics
DocID030319 Rev 3
13/20
Figure 14: Quiescent current vs temperature
(600 mA)
Figure 15: Quiescent current vs temperature
(1.2 A)
Figure 16: Short-circuit current vs dropout voltage
(VOUT = 5 V)
Figure 17: Short-circuit current vs dropout voltage
(VOUT = 1.2 V)
Figure 18: SVR vs frequency
Figure 19: Output noise spectral density (VO = 1.2 V)
Typical performance characteristics
LDL1117
DocID030319 Rev 3
Figure 20: Stability plan (VOUT = 5 V)
Figure 21: Stability plan (VOUT = 1.2 V)
Figure 22: Turn-on time (VOUT = 5 V)
Figure 23: Turn-on time (VOUT = 1.2 V)
Figure 24: Line transient (VOUT = 5 V)
Figure 25: Line transient (VOUT = 1.2 V)
LDL1117
Typical performance characteristics
DocID030319 Rev 3
15/20
Figure 26: Load transient (VOUT = 1.2 V)
Figure 27: Load transient (VOUT = 5 V)
Package information
LDL1117
DocID030319 Rev 3
8 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
8.1 SOT223 package information
Figure 28: SOT223 package outline
LDL1117
Package information
DocID030319 Rev 3
17/20
Table 5: SOT223 package mechanical data
Dim.
mm
Min.
Typ.
Max.
A
1.8
A1
0.02
0.1
B
0.6
0.7
0.85
B1
2.9
3
3.15
c
0.24
0.26
0.35
D
6.3
6.5
6.7
e
2.3
e1
4.6
E
3.3
3.5
3.7
H
6.7
7.0
7.3
V
10º
Ordering information
LDL1117
DocID030319 Rev 3
9 Ordering information
Table 6: Order code
Part number
Marking
Order code
Output voltage (V)
LDL1117
LL12
LDL1117S12R
1.185
LL15
LDL1117S15R
1.5
LL18
LDL1117S18R
1.8
LL25
LDL1117S25R
2.5
LL30
LDL1117S30R
3.0
LL33
LDL1117S33R
3.3
LL50
LDL1117S50R
5.0
LDL1117
Revision history
DocID030319 Rev 3
19/20
10 Revision history
Table 7: Document revision history
Date
Revision
Changes
27-Feb-2017
1
Initial release.
30-Mar-2017
2
Updated features in cover page and Section 9: "Ordering information".
Minor text changes.
04-Jul-2017
3
In Table 3: "Thermal data":
- thermal data values changed
Minor text changes.
LDL1117
DocID030319 Rev 3
IMPORTANT NOTICE PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST
products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the
design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2017 STMicroelectronics All rights reserved