LMV321-Q1 SINGLE, LMV358-Q1 DUAL, LMV324-Q1 QUAD
LOW-VOLTAGE RAIL-TO-RAIL OUTPUT
OPERATIONAL AMPLIFIERS
SLOS415E − JUNE 2003 − REVISED APRIL 2008
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
DQualified for Automotive Applications
D2.7-V and 5-V Performance
DNo Crossover Distortion
DLow Supply Current:
LMV321 . . . 130 µA Typ
LMV358 . . . 210 µA Typ
LMV324 . . . 410 µA Typ
DRail-to-Rail Output Swing
description/ordering information
The LMV321, LMV358, and LMV324 are single,
dual, and quad low-voltage (2.7 V to 5.5 V)
operational amplifiers with rail-to-rail output
swing.
The LMV321, LMV358, and LMV324 are the most
cost-effective solution for applications where
low-voltage operation, space saving, and low
price are required. These amplifiers were
designed specifically for low-voltage (2.7 V to 5 V)
operation, with performance specifications
meeting or exceeding the LM358 and LM324
devices that operate from 5 V to 30 V. Additional
features of the LMV3xx devices are a
common-mode input voltage range that includes
ground, 1-MHz unity-gain bandwidth, and 1-V/µs
slew rate.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright 2008, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
1
2
3
4
5
6
7
14
13
12
11
10
9
8
1OUT
1IN−
1IN+
VCC+
2IN+
2IN−
2OUT
4OUT
4IN−
4IN+
GND
3IN+
3IN−
3OUT
LMV324 ...D OR PW PACKAGE
(TOP VIEW)
LMV358 ...D OR PW PACKAGE
(TOP VIEW)
1
2
3
4
8
7
6
5
1OUT
1IN−
1IN+
GND
VCC+
2OUT
2IN−
2IN+
LMV321 . . . DBV PACKAGE
(TOP VIEW)
VCC+
OUT
1
2
3
5
4
1IN+
GND
IN−
LMV321-Q1 SINGLE, LMV358-Q1 DUAL, LMV324-Q1 QUAD
LOW-VOLTAGE RAIL-TO-RAIL OUTPUT
OPERATIONAL AMPLIFIERS
SLOS415E − JUNE 2003 − REVISED APRIL 2008
2POST OFFICE BOX 655303 DALLAS, TEXAS 75265
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
ORDERING INFORMATION{
TAPACKAGEORDERABLE
PART NUMBER
TOP-SIDE
MARKING
−40°C to 85°C Single SOT23-5 (DBV) Reel of 3000 LMV321IDBVRQ1 RC1B
SOIC (D)
Tube of 75 LMV358IDQ1
358IQ1
−40°C to 85°C Dual SOIC (D) Reel of 2500 LMV358IDRQ1 358IQ1
40 C
to
85 C
Dual
TSSOP (PW) Reel of 2000 LMV358IPWRQ1 358IQ1
SOIC (D)
Tube of 50 LMV324IDQ1
LMV324IQ1
−40°C to 85°C Quad SOIC (D) Reel of 2500 LMV324IDRQ1 LMV324IQ1
Q
TSSOP (PW) Reel of 2000 LMV324IPWRQ1 V324IQ1
−40°C to 125°C Single SOT23-5 (DBV) Reel of 3000 LMV321QDBVRQ1 RCCB
SOIC (D)
Tube of 75 LMV358QDQ1
V358Q1
−40°C to 125°C Dual SOIC (D) Reel of 2500 LMV358QDRQ1 V358Q1
40 C
to
125 C
Dual
TSSOP (PW) Reel of 2000 LMV358QPWRQ1 V358Q1
SOIC (D)
Tube of 50 LMV324QDQ1
LMV324Q1
−40°C to 125°C Quad SOIC (D) Reel of 2500 LMV324QDRQ1 LMV324Q1
Q
TSSOP (PW) Reel of 2000 LMV324QPWRQ1 MV324Q1
For the most current package and ordering information, see the Package Option Addendum at the end of this
document, or see the TI web site at http://www.ti.com.
Package drawings, thermal data, and symbolization are available at http://www.ti.com/packaging.
symbol (each amplifier)
+
IN−
IN+
OUT
LMV321-Q1 SINGLE, LMV358-Q1 DUAL, LMV324-Q1 QUAD
LOW-VOLTAGE RAIL-TO-RAIL OUTPUT
OPERATIONAL AMPLIFIERS
SLOS415E − JUNE 2003 − REVISED APRIL 2008
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
LMV324 simplified schematic
VBIAS4
+
+
IN+
IN−
VBIAS1
VBIAS2
VBIAS3
+
+
Output
VCC
VCC
VCC
VCC
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VCC (see Note 1) 5.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Differential input voltage, VID (see Note 2) ±5.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input voltage, VI (either input) 0 to 5.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Duration of output short circuit (one amplifier) to ground at (or below) TA = 25°C,
VCC 5.5 V (see Note 3) Unlimited. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Package thermal impedance, θJA (see Notes 4 and 5): D (8-pin) package 97°C/W. . . . . . . . . . . . . . . . . . . . . .
D (14-pin) package 86°C/W. . . . . . . . . . . . . . . . . . . .
DBV (5-pin) package 206°C/W. . . . . . . . . . . . . . . . . .
PW (8-pin) package 149°C/W. . . . . . . . . . . . . . . . . . .
PW (14-pin) package 113°C/W. . . . . . . . . . . . . . . . . .
Operating virtual junction temperature, TJ 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Storage temperature range, Tstg −65 to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values (except differential voltages and VCC specified for the measurement of IOS) are with respect to the network GND.
2. Differential voltages are at IN+ with respect to IN−.
3. Short circuits from outputs to VCC can cause excessive heating and eventual destruction.
4. Maximum power dissipation is a function of TJ(max), qJA, and TA. The maximum allowable power dissipation at any allowable
ambient temperature is PD = (TJ(max) − TA)/qJA. Selecting the maximum of 150°C can affect reliability.
5. The package thermal impedance is calculated in accordance with JESD 51-7.
LMV321-Q1 SINGLE, LMV358-Q1 DUAL, LMV324-Q1 QUAD
LOW-VOLTAGE RAIL-TO-RAIL OUTPUT
OPERATIONAL AMPLIFIERS
SLOS415E − JUNE 2003 − REVISED APRIL 2008
4POST OFFICE BOX 655303 DALLAS, TEXAS 75265
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
recommended operating conditions (see Note 6)
MIN MAX UNIT
VCC Supply voltage (single-supply operation) 2.7 5.5 V
V
Amplifier t rn on oltage le el
VCC = 2.7 V 1.7
V
VIH Amplifier turn-on voltage level VCC = 5 V 3.5 V
V
Amplifier turn off voltage level
VCC = 2.7 V 0.7
V
VIL Amplifier turn-off voltage level VCC = 5 V 1.5 V
T
Operating free air temperature
I suffix −40 85
°C
TAOperating free-air temperature Q suffix −40 125 °C
NOTE 6: All unused control inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
electrical characteristics at TA = 25°C, VCC+ = 2.7 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VIO Input offset voltage 1.7 7 mV
aVIO
Average temperature coefficient
of input offset voltage 5mV/°C
IIB Input bias current 11 250 nA
IIO Input offset current 5 50 nA
CMRR Common-mode rejection ratio VCM = 0 to 1.7 V 50 63 dB
kSVR Supply-voltage rejection ratio VCC = 2.7 V to 5 V, VO = 1 V 50 60 dB
VICR Common-mode input voltage range CMRR w 50 dB 0 to 1.7 −0.2 to 1.9 V
Output swing
R10 kto135V
High level VCC − 100 VCC − 10
mV
Output swing RL = 10 k to 1.35 V Low level 60 180 mV
LMV321 80 170
ICC Supply current LMV358 (both amplifiers) 140 340 mA
CC
pp y
LMV324 (all four amplifiers) 260 680
m
B1Unity-gain bandwidth CL = 200 pF 1 MHz
fmPhase margin 60 deg
GmGain margin 10 dB
VnEquivalent input noise voltage f = 1 kHz 46 nV/Hz
InEquivalent input noise current f = 1 kHz 0.17 pA/Hz
LMV321-Q1 SINGLE, LMV358-Q1 DUAL, LMV324-Q1 QUAD
LOW-VOLTAGE RAIL-TO-RAIL OUTPUT
OPERATIONAL AMPLIFIERS
SLOS415E − JUNE 2003 − REVISED APRIL 2008
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
electrical characteristics at specified free-air temperature range, VCC+ = 5 V (unless otherwise
noted)
PARAMETER TEST CONDITIONS TAMIN TYP MAX UNIT
V
Input offset voltage
25°C 1.7 7
mV
VIO Input offset voltage Full range 9mV
aVIO
Average temperature coefficient
of input offset voltage 25°C 5 mV/°C
I
Input bias current
25°C 15 250
nA
IIB Input bias current Full range 500 nA
I
Input offset current
25°C 5 50
nA
IIO Input offset current Full range 150 nA
CMRR Common-mode rejection ratio VCM = 0 to 4 V 25°C 50 65 dB
kSVR Supply-voltage rejection ratio VCC = 2.7 V to 5 V, VO = 1 V,
VCM = 1 V 25°C 50 60 dB
V
Common-mode
CMMR w50 dB
0to4
02to42
V
VICR
Common mode
input voltage range CMMR w 50 dB 25°C0 to 4 −0.2 to 4.2 V
Hi
g
h25°C VCC − 300 VCC − 40
R2kto25V
High
level Full range VCC − 400
RL = 2 k to 2.5 V Low 25°C 120 300
Output swing
Low
level Full range 400
mV
Output swing Hi
g
h25°C VCC − 100 VCC − 10 mV
R10 kto25V
High
level Full range VCC − 200
RL = 10 k to 2.5 V Low 25°C 65 180
Low
level Full range 280
A
Lar
g
e-si
g
nal differential
R2k
25°C 15 100
V/mV
AVD
Large signal
differential
voltage gain RL = 2 kFull range 10 V/mV
I
Output short circuit current
Sourcing, VO = 0 V
5 60
mA
IOS Output short-circuit current Sinking, VO = 5 V 25°C10 160 mA
LMV321
25°C 130 250
LMV321 Full range 350
I
Supply current
LMV358 (both amplifiers)
25°C 210 440
A
ICC Supply current LMV358 (both amplifiers) Full range 615 mA
LMV324 (all four amplifiers)
25°C 410 830
LMV324 (all four amplifiers) Full range 1160
B1Unity-gain bandwidth CL = 200 pF 25°C 1 MHz
fmPhase margin 25°C 60 deg
GmGain margin 25°C 10 dB
VnEquivalent input noise voltage f = 1 kHz 25°C 39 nV/Hz
InEquivalent input noise current f = 1 kHz 25°C 0.21 pA/Hz
SR Slew rate 25°C 1 V/ms
Full range is −40°C to 85°C for I-level part, −40°C to 125°C for Q-level part.
LMV321-Q1 SINGLE, LMV358-Q1 DUAL, LMV324-Q1 QUAD
LOW-VOLTAGE RAIL-TO-RAIL OUTPUT
OPERATIONAL AMPLIFIERS
SLOS415E − JUNE 2003 − REVISED APRIL 2008
6POST OFFICE BOX 655303 DALLAS, TEXAS 75265
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
TYPICAL CHARACTERISTICS
10000
−50
Figure 1
−20
−10
0
10
20
30
40
110 100 1000
0
50
100
150
200
Gain − dB
Phase Margin − Deg
GAIN AND PHASE MARGIN
vs
FREQUENCY
Frequency − kHz
VCC = 2.7 V
RL = 100 k, 2 kΩ, 600
Gain
Phase
100 k
2 k
600
Phase Margin − Deg
GAIN AND PHASE MARGIN
vs
FREQUENCY
Figure 2
−20
−10
0
10
20
30
40
110 100 1000 10000
−50
0
50
Gain − dB
Frequency − kHz
100
150
200
VCC = 5 V
RL = 100 k, 2 kΩ, 600
Gain
Phase
100 k
2 k
600
GAIN AND PHASE MARGIN
vs
FREQUENCY
−20
−10
0
10
20
30
40
50
60
70
10 100 1000 10000
−80
−60
−40
−20
0
20
40
60
80
100
Figure 3
VCC = 5 V
RL = 600 W
CL = 16 pF, 100 pF,
500 pF, 1000 pF
Gain − dB
Frequency − kHz
Phase Margin − Deg
16 pF
100 pF
500 pF
1000 pF
16 pF
100 pF
500 pF
1000 pF
Phase
Gain
−20
−10
0
10
20
30
40
50
60
70
10 100 1000 10000
Frequency − kHz
Gain − dB
−80
−60
−40
−20
0
20
40
60
80
100
VCC = 5 V
RL = 100 k
CL = 16 pF, 100 pF,
500 pF, 1000 pF
Phase Margin − Deg
16 pF
100 pF
16 pF
100 pF
500 pF
500 pF
1000 pF
1000 pF
Phase
Gain
GAIN AND PHASE MARGIN
vs
FREQUENCY
Figure 4
LMV321-Q1 SINGLE, LMV358-Q1 DUAL, LMV324-Q1 QUAD
LOW-VOLTAGE RAIL-TO-RAIL OUTPUT
OPERATIONAL AMPLIFIERS
SLOS415E − JUNE 2003 − REVISED APRIL 2008
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
TYPICAL CHARACTERISTICS
−10
0
10
20
30
40
50
10 100 1000 10000
−20
10
40
70
100
130
160
GAIN AND PHASE MARGIN
vs
FREQUENCY
Figure 5
Frequency − kHz
Gain − dB
VCC = 5 V
RL = 2 k
TA = 85°C, 25°C, −40°C
Phase Margin − Deg
85°C
25°C
−40°C
Gain
Phase
STABILITY
vs
CAPACITIVE LOAD
10
100
1000
10000
1.510.50−0.5−1−1.5−2
LMV3xx
(25% Overshoot)
VCC = ±2.5 V
AV = +1
RL = 2 k
VO = 100 mVPP
Figure 6
Output Voltage − V
Capacitive Load − pF
_
+
VI
−2.5 V
RL
2.5 V
VO
CL
Figure 7
10
100
1000
10000
1.510.50−0.5−1−1.5−2.0
Output Voltage − V
Capacitive Load − pF
STABILITY
vs
CAPACITIVE LOAD
LMV3xx
(25% Overshoot)
VCC = ±2.5 V
AV = +1
RL = 1 M
VO = 100 mVPP
_
+
VI
2.5 V
RL
2.5 V
VO
CL
10
100
1000
10000
1.510.50−0.5−1−1.5−2.0
Capacitive Load − nF
Figure 8
STABILITY
vs
CAPACITIVE LOAD
Output Voltage − V
VCC = ±2.5 V
RL = 2 k
AV = 10
VO = 100 mVPP
_
+
VI
−2.5 V
RL
+2.5 V
VO
CL
LMV3xx
(25% Overshoot)
134 k1.21 M
LMV321-Q1 SINGLE, LMV358-Q1 DUAL, LMV324-Q1 QUAD
LOW-VOLTAGE RAIL-TO-RAIL OUTPUT
OPERATIONAL AMPLIFIERS
SLOS415E − JUNE 2003 − REVISED APRIL 2008
8POST OFFICE BOX 655303 DALLAS, TEXAS 75265
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
TYPICAL CHARACTERISTICS
10
100
1000
10000
1.510.50−0.5−1−1.5−2.0
STABILITY
vs
CAPACITIVE LOAD
Figure 9
Output Voltage − V
Capacitive Load − nF
VCC = ±2.5 V
RL = 1 M
AV = 10
VO = 100 mVPP
_
+
VI
−2.5 V
RL
+2.5 V
VO
CL
LMV3xx
(25% Overshoot)
134 k1.21 M
0.500
0.600
0.700
0.800
0.900
1.000
1.100
1.200
1.300
1.400
1.500
2.5 3.0 3.5 4.0 4.5 5.0
PSLEW
NSLEW
− Supply Voltage − V
Slew Rate − V/
SLEW RATE
vs
SUPPLY VOLTAGE
Figure 10
LMV3xx
RL = 100 k
µs
VCC
Gain
0
100
200
300
400
500
600
700
012345
Figure 11
SUPPLY CURRENT
vs
SUPPLY VOLTAGE − QUAD AMPLIFIER
VCC − Supply Voltage − V
Supply Current − Aµ
TA = 85°C
TA = 25°C
TA = −40°C
6
Figure 12
Input Current − nA
INPUT CURRENT
vs
TEMPERATURE
−60
−50
−40
−30
−20
−10
−40 −30 −20 −10 0 10 20 30 40 50 60 70 80
LMV3xx
TA°C
VCC = 5 V
VI = VCC/2
LMV321-Q1 SINGLE, LMV358-Q1 DUAL, LMV324-Q1 QUAD
LOW-VOLTAGE RAIL-TO-RAIL OUTPUT
OPERATIONAL AMPLIFIERS
SLOS415E − JUNE 2003 − REVISED APRIL 2008
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
TYPICAL CHARACTERISTICS
0.001
0.01
0.1
1
10
100
0.001 0.01 0.1 1 10
Figure 13
Sourcing Current − mA
SOURCE CURRENT
vs
OUTPUT VOLTAGE
Output Voltage Referenced to VCC+ − V
VCC = 2.7 V
LMV3xx
0.001
0.01
0.1
1
10
100
0.001 0.01 0.1 1 10
Figure 14
Sourcing Current − mA
SOURCE CURRENT
vs
OUTPUT VOLTAGE
Output Voltage Referenced to VCC+ − V
LMV3xx
VCC = 5 V
0.001
0.01
0.1
1
10
100
0.001 0.01 0.1 1 10
Figure 15
Sinking Current − mA
SINKING CURRENT
vs
OUTPUT VOLTAGE
Output Voltage Referenced to GND − V
LMV3xx
VCC = 2.7 V
0.001
0.01
0.1
1
10
100
0.001 0.01 0.1 1 10
Figure 16
Sinking Current − mA
SINKING CURRENT
vs
OUTPUT VOLTAGE
Output Voltage Referenced to GND − V
VCC = 5 V
LMV324
LMV321-Q1 SINGLE, LMV358-Q1 DUAL, LMV324-Q1 QUAD
LOW-VOLTAGE RAIL-TO-RAIL OUTPUT
OPERATIONAL AMPLIFIERS
SLOS415E − JUNE 2003 − REVISED APRIL 2008
10 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
TYPICAL CHARACTERISTICS
Figure 17
0
30
60
90
120
150
180
210
240
270
300
−40 −30−20−10 0 10 20 30 40 50 60 70 80 90
SHORT-CIRCUIT CURRENT
vs
TEMPERATURE
Sinking Current − mA
TA°C
LMV3xx
VCC = 5 V
LMV3xx
VCC = 2.7 V
SHORT-CIRCUIT CURRENT
vs
TEMPERATURE
TA°C
Figure 18
Sourcing Current − mA
0
20
40
60
80
100
120
−40 −30 −20−10 0 10 20 30 40 50 60 70 80 90
LMV3xx
VCC = 5 V
LMV3xx
VCC = 2.7 V
0
10
20
30
40
50
60
70
80
100 1K 10K 100K 1M
Figure 19
−kSVR
vs
FREQUENCY
Frequency − Hz
−k
VCC = −5 V
RL = 10 k
SVR− dB
LMV3xx
0
10
20
30
40
50
60
70
80
90
100 1K 10K 100K 1M
Figure 20
+kSVR
vs
FREQUENCY
Frequency − Hz
VCC = 5 V
RL = 10 k
+k SVR− dB
LMV3xx
LMV321-Q1 SINGLE, LMV358-Q1 DUAL, LMV324-Q1 QUAD
LOW-VOLTAGE RAIL-TO-RAIL OUTPUT
OPERATIONAL AMPLIFIERS
SLOS415E − JUNE 2003 − REVISED APRIL 2008
11
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
TYPICAL CHARACTERISTICS
Figure 21
0
10
20
30
40
50
60
70
80
100 1K 10K 100K 1M
−kSVR
vs
FREQUENCY
Frequency − Hz
VCC = −2.7 V
RL = 10 k
−kSVR − dB
LMV3xx
+k SVR
0
10
20
30
40
50
60
70
80
100 1K 10K 100K 1M
Figure 22
Frequency − Hz
+kSVR
vs
FREQUENCY
VCC = 2.7 V
RL = 10 k
− dB
LMV3xx
VCC − Supply Voltage − V
0
10
20
30
40
50
60
70
2.5 3.0 3.5 4.0 4.5 5.0
Output Voltage Swing vs Supply Voltage − mV
OUTPUT VOLTAGE SWING
vs
SUPPLY VOLTAGE
Negative Swing
Positive Swing
Figure 23
RL = 10 k
Figure 24
OUTPUT VOLTAGE
vs
FREQUENCY
Peak Output Voltage − V
Frequency − kHz
OPP
0
1
2
3
4
5
6
1 10 100 1000 10000
RL = 10 k
THD > 5%
AV = 3
LMV3xx
VCC = 5 V
LMV3xx
VCC = 2.7 V
LMV321-Q1 SINGLE, LMV358-Q1 DUAL, LMV324-Q1 QUAD
LOW-VOLTAGE RAIL-TO-RAIL OUTPUT
OPERATIONAL AMPLIFIERS
SLOS415E − JUNE 2003 − REVISED APRIL 2008
12 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
TYPICAL CHARACTERISTICS
OPEN-LOOP OUTPUT IMPEDANCE
vs
FREQUENCY
Figure 25
20
30
40
50
60
70
80
90
100
110
1 1000 2000 3000 4000
LMV3xx
VCC = 5 V
Impedance −
Frequency − kHz
LMV3xx
VCC = 2.7 V
CROSSTALK REJECTION
vs
FREQUENCY
Figure 26
90
100
110
120
130
140
150
100 1K 10K 100K
Crosstalk Rejection − dB
Frequency − Hz
VCC = 5 V
RL = 5 k
AV = 1
VO = 3 VPP
LMV321-Q1 SINGLE, LMV358-Q1 DUAL, LMV324-Q1 QUAD
LOW-VOLTAGE RAIL-TO-RAIL OUTPUT
OPERATIONAL AMPLIFIERS
SLOS415E − JUNE 2003 − REVISED APRIL 2008
13
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
TYPICAL CHARACTERISTICS
Figure 27
1 V/Div
NONINVERTING LARGE-SIGNAL
PULSE RESPONSE
1 µs/Div
LMV3xx
Input
VCC = ±2.5 V
RL = 2 k
T = 25°C
1 V/Div
LMV3xx
Input
1 µs/Div
Figure 28
NONINVERTING LARGE-SIGNAL
PULSE RESPONSE
VCC = ±2.5 V
RL = 2 k
TA = 85°C
1 V/Div
LMV3xx
Input
Figure 29
NONINVERTING LARGE-SIGNAL
PULSE RESPONSE
1 µs/Div
VCC = ±2.5 V
RL = 2 k
TA = −40°C
LMV321-Q1 SINGLE, LMV358-Q1 DUAL, LMV324-Q1 QUAD
LOW-VOLTAGE RAIL-TO-RAIL OUTPUT
OPERATIONAL AMPLIFIERS
SLOS415E − JUNE 2003 − REVISED APRIL 2008
14 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
TYPICAL CHARACTERISTICS
LMV3xx
Input
Figure 30
50 mV/Div
NONINVERTING SMALL-SIGNAL
PULSE RESPONSE
1 µs/Div
VCC = ±2.5 V
RL = 2 k
TA = 25°C
Figure 31
NONINVERTING SMALL-SIGNAL
PULSE RESPONSE
1 µs/Div
50 mV/Div
LMV3xx
Input
VCC = ±2.5 V
RL = 2 k
TA = 85°C
LMV3xx
Input
Figure 32
NONINVERTING SMALL-SIGNAL
PULSE RESPONSE
1 µs/Div
50 mV/Div
VCC = ±2.5 V
RL = 2 k
TA = −40°C
LMV321-Q1 SINGLE, LMV358-Q1 DUAL, LMV324-Q1 QUAD
LOW-VOLTAGE RAIL-TO-RAIL OUTPUT
OPERATIONAL AMPLIFIERS
SLOS415E − JUNE 2003 − REVISED APRIL 2008
15
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
TYPICAL CHARACTERISTICS
Figure 33
1 V/Div
INVERTING LARGE-SIGNAL
PULSE RESPONSE
1 µs/Div
LMV3xx
Input
VCC = ±2.5 V
RL = 2 k
TA = 25°C
LMV3xx
Input
INVERTING LARGE-SIGNAL
PULSE RESPONSE
1 µs/Div
Figure 34
1 V/Div
VCC = ±2.5 V
RL = 2 k
TA = 85°C
1 V/Div
Figure 35
1 µs/Div
VCC = ±2.5 V
RL = 2 k
TA = −40°C
INVERTING LARGE-SIGNAL
PULSE RESPONSE
LMV3xx
Input
LMV321-Q1 SINGLE, LMV358-Q1 DUAL, LMV324-Q1 QUAD
LOW-VOLTAGE RAIL-TO-RAIL OUTPUT
OPERATIONAL AMPLIFIERS
SLOS415E − JUNE 2003 − REVISED APRIL 2008
16 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
TYPICAL CHARACTERISTICS
LMV3xx
Input
Figure 36
1 µs/Div
50 mV/Div
INVERTING SMALL-SIGNAL
PULSE RESPONSE
VCC = ±2.5 V
RL = 2 k
TA = 25°C
LMV3xx
Input
Figure 37
1 µs/Div
50 mV/Div
INVERTING SMALL-SIGNAL
PULSE RESPONSE
VCC = ±2.5 V
RL = 2 k
TA = 85°C
INVERTING SMALL-SIGNAL
PULSE RESPONSE
1 µs/Div
50 mV/Div
VCC = ±2.5 V
RL = 2 k
TA = −40°C
Figure 38
LMV3xx
Input
LMV321-Q1 SINGLE, LMV358-Q1 DUAL, LMV324-Q1 QUAD
LOW-VOLTAGE RAIL-TO-RAIL OUTPUT
OPERATIONAL AMPLIFIERS
SLOS415E − JUNE 2003 − REVISED APRIL 2008
17
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
TYPICAL CHARACTERISTICS
Input Current Noise − pA/ Hz
Figure 39
0.00
0.20
0.40
0.60
0.80
10 Hz 100 Hz 1 kHz 10 kHz
INPUT CURRENT NOISE
vs
FREQUENCY
Frequency
VCC = 2.7 V
INPUT CURRENT NOISE
vs
FREQUENCY
Figure 40
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
10 Hz 100 Hz 1 kHz 10 kHz
Input Current Noise − pA/
Frequency
Hz
VCC = 5 V
INPUT VOLTAGE NOISE
vs
FREQUENCY
Figure 41
20
40
60
80
100
120
140
160
180
200
10 Hz 100 Hz 1 kHz 10 kHz
Frequency
VCC = 2.7 V
VCC = 5 V
Input Voltage Noise − nV/ Hz
LMV321-Q1 SINGLE, LMV358-Q1 DUAL, LMV324-Q1 QUAD
LOW-VOLTAGE RAIL-TO-RAIL OUTPUT
OPERATIONAL AMPLIFIERS
SLOS415E − JUNE 2003 − REVISED APRIL 2008
18 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
TYPICAL CHARACTERISTICS
0.001
0.010
0.100
1.000
10.000
10 100 1K 10K 100K
Figure 42
Frequency − Hz
THD + N
vs
FREQUENCY
LMV3xx
VCC = 2.7 V
RL = 10 k
AV = 1
VO = 1 VPP
THD − %
Figure 43
THD + N
vs
FREQUENCY
Frequency − Hz
0.001
0.010
0.100
1.000
10.000
10 100 1K 10K 100K
LMV3xx
THD − %
VCC = 2.7 V
RL = 10 k
AV = 10
VO = 1 VPP
0.001
0.010
0.100
1.000
10.000
10 100 1K 10K 100K
Figure 44
Frequency − Hz
THD + N
vs
FREQUENCY
LMV3xx
VCC = 5 V
RL = 10 k
AV = 1
VO = 1 VPP
THD − %
Figure 45
0.001
0.010
0.100
1.000
10.000
10 100 1K 10K 100K
THD + N
vs
FREQUENCY
Frequency − Hz
THD − %
LMV3xx
VCC = 5 V
RL = 10 k
AV = 10
VO = 2.5 VPP
PACKAGE OPTION ADDENDUM
www.ti.com 20-Oct-2011
Addendum-Page 1
PACKAGING INFORMATION
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
LMV321IDBVRQ1 ACTIVE SOT-23 DBV 5 3000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV321QDBVRQ1 ACTIVE SOT-23 DBV 5 3000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV324IDRG4Q1 ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV324IDRQ1 ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV324IPWRG4Q1 ACTIVE TSSOP PW 14 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV324IPWRQ1 ACTIVE TSSOP PW 14 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV324QDQ1 OBSOLETE SOIC D 14 TBD Call TI Call TI
LMV324QDRG4Q1 ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV324QDRQ1 ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV324QPWRG4Q1 ACTIVE TSSOP PW 14 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV324QPWRQ1 ACTIVE TSSOP PW 14 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV358IDRG4Q1 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV358IDRQ1 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV358IPWRG4Q1 ACTIVE TSSOP PW 8 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV358IPWRQ1 ACTIVE TSSOP PW 8 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV358QDQ1 OBSOLETE SOIC D 8 TBD Call TI Call TI
LMV358QDRG4Q1 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV358QDRQ1 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
PACKAGE OPTION ADDENDUM
www.ti.com 20-Oct-2011
Addendum-Page 2
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
LMV358QPWQ1 OBSOLETE TSSOP PW 8 TBD Call TI Call TI
LMV358QPWRG4Q1 ACTIVE TSSOP PW 8 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
LMV358QPWRQ1 ACTIVE TSSOP PW 8 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF LMV321-Q1, LMV324-Q1, LMV358-Q1 :
Catalog: LMV321, LMV324, LMV358
NOTE: Qualified Version Definitions:
PACKAGE OPTION ADDENDUM
www.ti.com 20-Oct-2011
Addendum-Page 3
Catalog - TI's standard catalog product
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such
components to meet such requirements.
Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated