Parameter Max. Units
VCES Collector-to-Emitter Breakdown Voltage 600 V
IC @ TC = 25°C Continuous Collector Current 70
IC @ TC = 100°C Continuous Collector Current 39 A
ICM Pulsed Collector Current 280
ILM Clamped Inductive Load Current 280
VGE Gate-to-Emitter Voltage ± 20 V
EARV Reverse Voltage Avalanche Energy 20 mJ
PD @ TC = 25°C Maximum Power Dissipation 200
PD @ TC = 100°C Maximum Power Dissipation 78
TJOperating Junction and -55 to + 150
TSTG Storage Temperature Range
Soldering Temperature, for 10 seconds 300 (0.063 in. (1.6mm from case )
°C
Mounting torque, 6-32 or M3 screw. 10 lbfin (1.1Nm)
IRG4PC50FPbF
Fast Speed IGBT
INSULATED GATE BIPOLAR TRANSISTOR
PD - 95398
E
C
G
n-channel
TO-247AC
Features
Optimized for medium operating
frequencies ( 1-5 kHz in hard switching, >20
kHz in resonant mode).
Generation 4 IGBT design provides tighter
parameter distribution and higher efficiency than
Generation 3
Industry standard TO-247AC package
Generation 4 IGBT's offer highest efficiency available
IGBT's optimized for specified application conditions
Designed to be a "drop-in" replacement for equivalent
industry-standard Generation 3 IR IGBT's
Benefits
VCES = 600V
VCE(on) typ. = 1.45V
@VGE = 15V, IC = 39A
6/16/04
Parameter Typ. Max. Units
RθJC Junction-to-Case  0.64
RθCS Case-to-Sink, Flat, Greased Surface 0.24  °C/W
RθJA Junction-to-Ambient, typical socket mount  40
Wt Weight 6 (0.21)  g (oz)
Thermal Resistance
Absolute Maximum Ratings
W
www.irf.com 1
Lead-Free
IRG4PC50FPbF
2www.irf.com
Parameter Min. Typ. Max. Units Conditions
QgTotal Gate Charge (turn-on) 190 290 IC = 39A
Qge Gate - Emitter Charge (turn-on) 28 42 nC VCC = 400V See Fig. 8
Qgc Gate - Collector Charge (turn-on) 65 97 VGE = 15V
td(on) Turn-On Delay Time 31
trRise Time 25 TJ = 25°C
td(off) Turn-Off Delay Time 240 350 IC = 39A, VCC = 480V
tfFall Time 130 190 VGE = 15V, RG = 5.0
Eon Turn-On Switching Loss 0.37 Energy losses include "tail"
Eoff Turn-Off Switching Loss 2.1 mJ See Fig. 10, 11, 13, 14
Ets Total Switching Loss 2.47 3.0
td(on) Turn-On Delay Time 28 TJ = 150°C,
trRise Time 24 IC = 39A, VCC = 480V
td(off) Turn-Off Delay Time 390 VGE = 15V, RG = 5.0
tfFall Time 230 Energy losses include "tail"
Ets Total Switching Loss 5.0 mJ See Fig. 13, 14
LEInternal Emitter Inductance 13 nH Measured 5mm from package
Cies Input Capacitance 4100 VGE = 0V
Coes Output Capacitance 250 pF VCC = 30V See Fig. 7
Cres Reverse Transfer Capacitance 49 = 1.0MHz
Parameter Min. Typ. Max. Units Conditions
V(BR)CES Collector-to-Emitter Breakdown Voltage 600 V VGE = 0V, IC = 250µA
V(BR)ECS Emitter-to-Collector Breakdown Voltage 18 V VGE = 0V, IC = 1.0A
V(BR)CES/TJTemperature Coeff. of Breakdown Voltage 0.62 V/°C VGE = 0V, IC = 1.0mA
1.45 1.6 IC = 39A VGE = 15V
VCE(ON) Collector-to-Emitter Saturation Voltage 1.79 IC = 70A See Fig.2, 5
1.53 IC = 39A , TJ = 150°C
VGE(th) Gate Threshold Voltage 3.0 6.0 VCE = VGE, IC = 250µA
VGE(th)/TJTemperature Coeff. of Threshold Voltage -14 mV/°C VCE = VGE, IC = 250µA
gfe Forward Transconductance 21 30 S VCE = 100V, IC = 39A
250 VGE = 0V, VCE = 600V
2.0 VGE = 0V, VCE = 10V, TJ = 25°C
2000 VGE = 0V, VCE = 600V, TJ = 150°C
IGES Gate-to-Emitter Leakage Current ±100 n A VGE = ±20V
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
ICES Zero Gate Voltage Collector Current
V
µA
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
ns
ns
Pulse width 80µs; duty factor 0.1%.
Pulse width 5.0µs, single shot.
Notes:
Repetitive rating; VGE = 20V, pulse width limited by
max. junction temperature. ( See fig. 13b )
VCC = 80%(VCES), VGE = 20V, L = 10µH, RG = 5.0,
(See fig. 13a)
Repetitive rating; pulse width limited by maximum
junction temperature.
IRG4PC50FPbF
www.irf.com 3
Fig. 1 - Typical Load Current vs. Frequency
(For square wave, I=IRMS of fundamental; for triangular wave, I=IPK)
Fig. 2 - Typical Output Characteristics Fig. 3 - Typical Transfer Characteristics
0
20
40
60
80
100
0.1 1 10 100
f, Frequency (kHz)
Load Current (A)
A
60% of rated
voltage
Ideal diodes
Square wave:
For both:
Duty cycle: 50%
T = 125°C
T = 90°C
Gate drive as specified
sink
J
Power Dissipation = 40W
Triangular wave:
Clamp voltage:
80% of rated
1
10
100
1000
0.1 1 10
CE
C
I , Collector-to-Emitter Current (A)
V , Collector-to-Emitter Voltage (V)
T = 150°C
T = 25°C
J
J
V = 15V
20µs PULSE WIDTH
GE
A
1
10
100
1000
5 6 7 8 9 101112
C
I , Collector-to-Emitter Current (A)
GE
T = 25°C
T = 150°C
J
J
V , Gate-to-Emitter Voltage (V)
A
V = 50V
5µs PULSE WIDTH
CC
IRG4PC50FPbF
4www.irf.com
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig. 5 - Collector-to-Emitter Voltage vs.
Junction Temperature
Fig. 4 - Maximum Collector Current vs. Case
Temperature
1.0
1.5
2.0
2.5
-60 -40 -20 0 20 40 60 80 100 120 140 160
CE
V , Collector-to-Emitter Voltage (V)
V = 15V
80µs PULSE WIDTH
GE
A
T , Junction Temperature (°C)
J
I = 78A
I = 39A
I = 20A
C
C
C
0
10
20
30
40
50
60
70
25 50 75 100 125 15
0
Maximum DC Collector Current (A)
T , Case Temperature (°C)
C
V = 15V
GE
0.01
0.1
1
0.00001 0.0001 0.001 0.01 0.1 1 10
t , Rectangular Pulse Duration (sec)
1
thJC
D = 0.50
0.01
0.02
0.05
0.10
0.20
SINGLE PULSE
(THERMAL RESPONSE)
Thermal Response (Z )
P
t
2
1
t
DM
Notes:
1. Duty factor D = t / t
2. Peak T = P x Z + T
1
2
J
DM
thJC
C
IRG4PC50FPbF
www.irf.com 5
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
0
4
8
12
16
20
0 40 80 120 160 200
GE
V , Gate-to-Emitter Voltage (V)
g
Q , Total Gate Charge (nC)
A
V = 400V
I = 39A
CE
C
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
0 102030405060
Total Switching Losses (mJ)
A
V = 480V
V = 15V
T = 25°C
I = 39A
CC
GE
J
C
G
R , Gate Resistance
( Ω
)
0.1
1
10
100
-60 -40 -20 0 20 40 60 80 100 120 140 160
Total Switching Losses (mJ)
A
T , Junction Temperature (°C)
J
I = 78A
I = 39A
I = 20A
R = 5.0
V = 15V
V = 480V
C
C
C
G
GE
CC
0
2000
4000
6000
8000
1 10 100
CE
C, Capacitance (pF)
V , Collector-to-Emitter Voltage (V)
C
ies
C
res
C
oes
VGE = 0V f = 1 MHz
Cies = Cge + Cgc + Cce SHORTED
Cres = Cce
Coes = Cce + Cgc
IRG4PC50FPbF
6www.irf.com
Fig. 12 - Turn-Off SOA
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
0
2
4
6
8
10
12
0 20406080
C
Total Switching Losses (mJ)
I , Collector-to-Emitter Current (A)
A
R = 5.0
T = 150°C
V = 480V
V = 15V
G
J
CC
GE
1
10
100
1000
1 10 100 100
0
C
CE
GE
V , Collector-to-Emitter Voltage (V)
I , Collector-to-Emitter Current (A)
SAFE OPERATING AREA
V = 20V
T = 125°C
GE
J
IRG4PC50FPbF
www.irf.com 7
480V
4 X IC@25°C
D.U.T.
50V
L
V *
C
cd
* Driver same type as D.U.T.; Vc = 80% of Vce(max)
* Note: Due to the 50V power supply, pulse width and inductor
will increase to obtain rated Id.
1000V
Fig. 13a - Clamped Inductive
Load Test Circuit
Fig. 13b - Pulsed Collector
Current Test Circuit
480µF
960V
0 - 480V
RL =
t=5µs
d(on)
t
t
f
t
r
90%
t
d(off)
10%
90%
10%
5%
V
C
I
C
E
on
E
off
ts on off
E = (E +E )
c
d
e
Fig. 14b - Switching Loss
Waveforms
50V
Driver*
1000V
D.U.T.
I
C
C
V
c
de
L
Fig. 14a - Switching Loss
Test Circuit
* Driver same type
as D.U.T., VC = 480V
IRG4PC50FPbF
8www.irf.com
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.
Data and specifications subject to change without notice. 6/04
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
TO-247AC Part Marking Information
EXAMPLE:
AS S E MBL ED ON WW 35, 2000
LOT CODE 5657
WITH ASSEMBLY
T HIS IS AN IRF PE30
IN THE AS SEMB LY LINE "H" 035H
LOGO
INT ER NAT IONAL
RE CT IF IE R IRFPE30
LOT CODE
ASSEMBLY
56 57
PART NUMBER
DAT E CODE
YEAR 0 = 2000
WE E K 35
LINE H
Note: "P" in assembly line
position indicates "Lead-Free"
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/