Rev. 0.1 /Aug. 2011 1
240pin DDR3L SDRAM Registered DIMM
*Hynix Semiconductor reserves the right to change products or specifications without notice.
DDR3L SDRAM Registered DIMM
Based on 4Gb M-die
HMT42GR7MFR4A
HMT84GR7MMR4A
Rev. 0.1 / Aug. 2011 2
Revision History
Revision No. History Draft Date Remark
0.1 Initial Release Aug.2011
Rev. 0.1 / Aug. 2011 3
Description
Hynix Registered DDR3 SDRAM DIMMs (Registered Double Data Rate Synchronous DRAM Dual In-Line
Memory Modules) are low power, high-speed operation memory modules that use Hynix DDR3 SDRAM
devices. These Registered SDRAM DIMMs are intended for use as main memory when installed in systems
such as servers and workstations.
Features
Power Supply: VDD=1.35V (1.283V to 1.45V)
VDDQ = 1.35V (1.283V to 1.45V)
VDDSPD=3.0V to 3.6V
Functionality and operations comply with the DDR3L SDRAM datasheet
8 internal banks
Data transfer rates: PC3-10600, PC3-8500
Bi-Directional Differential Data Strobe
8 bit pre-fetch
Burst Length (BL) switch on-the-fly BL8 or BC4(Burst Chop)
Supports ECC error correction and detection
On-Die Termination (ODT)
Temperature sensor with integrated SPD
* This product is in compliance with the RoHS directive.
Ordering Information
* In order to uninstall FDHS, please contact sales administrator
Part Number Density Organization Component Composition # of
ranks FDHS
HMT42GR7MFR4A-G7/H9 16GB 2Gx72 1Gx4(H5TC4G43MFR)*36 2 O
HMT84GR7MMR4A-G7/H9 32GB 4Gx72 DDP 2Gx4(H5TC8G43MMR)*36 4 O
Rev. 0.1 / Aug. 2011 4
Key Parameters
Speed Grade
Address Table
MT/s Grade tCK
(ns)
CAS
Latency
(tCK)
tRCD
(ns)
tRP
(ns)
tRAS
(ns)
tRC
(ns) CL-tRCD-tRP
DDR3-1066 -G7 1.875 713.125 13.125 37.5 50.625 7-7-7
DDR3-1333 -H9 1.5 9 13.5 13.5 36 49.5 9-9-9
Grade
Frequency [MHz]
Remark
CL6 CL7 CL8 CL9 CL10
-G7 800 1066 1066
-H9 800 1066 1066 1333 1333
16GB(2Rx4) 32GB(4Rx4)
Refresh Method 8K/64ms 8K/64ms
Row Address A0-A15 A0-A15
Column Address A0-A9,A11 A0-A9,A11
Bank Address BA0-BA2 BA0-BA2
Page Size 1KB 1KB
Rev. 0.1 / Aug. 2011 5
Pin Descriptions
Pin Name Description Num
ber Pin Name Description Num
ber
CK0 Clock Input, positive line 1 ODT[1:0] On Die Termination Inputs 2
CK0 Clock Input, negative line 1 DQ[63:0] Data Input/Output 64
CK1 Clock Input, positive line 1 CB[7:0] Data check bits Input/Output 8
CK1 Clock Input, negative line 1 DQS[8:0] Data strobes 9
CKE[1:0] Clock Enables 2 DQS[8:0] Data strobes, negative line 9
RAS Row Address Strobe 1
DM[8:0]/
DQS[17:9],
TDQS[17:9]
Data Masks / Data strobes,
Termination data strobes 9
CAS Column Address Strobe 1 DQS[17:9],
TDQS[17:9]
Data strobes, negative line,
Termination data strobes 9
WE Write Enable 1 EVENT Reserved for optional hardware
temperature sensing 1
S[3:0] Chip Selects 4 TEST Memory bus test tool (Not Con-
nected and Not Usable on DIMMs) 1
A[9:0],A11,
A[15:13] Address Inputs 14 RESET Register and SDRAM control pin 1
A10/AP Address Input/Autoprecharge 1 VDD Power Supply 22
A12/BC Address Input/Burst chop 1 VSS Ground 59
BA[2:0] SDRAM Bank Addresses 3 VREFDQ Reference Voltage for DQ 1
SCL Serial Presence Detect (SPD)
Clock Input 1VREFCA Reference Voltage for CA 1
SDA SPD Data Input/Output 1 VTT Termination Voltage 4
SA[2:0] SPD Address Inputs 3 VDDSPD SPD Power 1
Par_In Parity bit for the Address and
Control bus 1
Err_Out Parity error found on the
Address and Control bus 1
Rev. 0.1 / Aug. 2011 6
Input/Output Functional Descriptions
Symbol Type Polarity Function
CK0 IN Positive
Line
Positive line of the differential pair of system clock inputs that drives input to the on-
DIMM Clock Driver.
CK0 IN Negative
Line
Negative line of the differential pair of system clock inputs that drives the input to the
on-DIMM Clock Driver.
CK1 IN Positive
Line Terminated but not used on RDIMMs.
CK1 IN Negative
Line Terminated but not used on RDIMMs.
CKE[1:0] IN Active
High
CKE HIGH activates, and CKE LOW deactivates internal clock signals, and device input
buffers and output drivers of the SDRAMs. Taking CKE LOW provides PRECHARGE
POWER-DOWN and SELF REFRESH operation (all banks idle), or ACTIVE POWER DOWN
(row ACTIVE in any bank)
S[3:0] IN Active
Low
Enables the command decoders for the associated rank of SDRAM when low and dis-
ables decoders when high. When decoders are disabled, new commands are ignored
and previous operations continue. Other combinations of these input signals perform
unique functions, including disabling all outputs (except CKE and ODT) of the register(s)
on the DIMM or accessing internal control words in the register device(s). For modules
with two registers, S[3:2] operate similarly to S[1:0] for the second set of register out-
puts or register control words.
ODT[1:0] IN Active
High On-Die Termination control signals
RAS, CAS, WE IN Active
Low
When sampled at the positive rising edge of the clock, CAS, RAS, and WE define the
operation to be executed by the SDRAM.
VREFDQ Supply Reference voltage for DQ0-DQ63 and CB0-CB7.
VREFCA Supply Reference voltage for A0-A15, BA0-BA2, RAS, CAS, WE, S0, S1, CKE0, CKE1, Par_In,
ODT0 and ODT1.
BA[2:0] IN
Selects which SDRAM bank of eight is activated.
BA0 - BA2 define to which bank an Active, Read, Write or Precharge command is being
applied. Bank address also determines mode register is to be accessed during an MRS
cycle.
A[15:13,
12/BC,11,
10/AP,[9:0]
IN
Provided the row address for Active commands and the column address
and Auto Precharge bit for Read/Write commands to select one location out of the mem-
ory array in the respective bank. A10 is sampled during a Precharge command to deter-
mine whether the Precharge applies to one bank (A10 LOW) or all banks (A10 HIGH). If
only one bank is to be precharged, the bank is selected by BA. A12 is also utilized for BL
4/8 identification for ‘’BL on the fly’’ during CAS command. The address inputs also pro-
vide the op-code during Mode Register Set commands.
DQ[63:0],
CB[7:0] I/O Data and Check Bit Input/Output pins
DM[8:0] IN Active
High Masks write data when high, issued concurrently with input data.
VDD, VSS Supply Power and ground for the DDR SDRAM input buffers and core logic.
VTT Supply Termination Voltage for Address/Command/Control/Clock nets.
Rev. 0.1 / Aug. 2011 7
DQS[17:0] I/O Positive
Edge Positive line of the differential data strobe for input and output data.
DQS[17:0] I/O Negative
Edge Negative line of the differential data strobe for input and output data.
TDQS[17:9]
TDQS[17:9] OUT
TDQS/TDQS is applicable for X8 DRAMs only. When enabled via Mode Register A11=1 in
MR1,DRAM will enable the same termination resistance function on TDQS/TDQS that is
applied to DQS/DQS. When disabled via mode register A11=0 in MR1, DM/TDQS will
provide the data mask function and TDQS is not used. X4/X16 DRAMs must disable the
TDQS function via mode register A11=0 in MR1
SA[2:0] IN These signals are tied at the system planar to either VSS or VDDSPD to configure the
serial SPD EEPROM address range.
SDA I/O
This bidirectional pin is used to transfer data into or out of the SPD EEPROM. A resistor
must be connected from the SDA bus line to VDDSPD on the system planar to act as a
pullup.
SCL IN This signal is used to clock data into and out of the SPD EEPROM. A resistor may be con-
nected from the SCL bus time to VDDSPD on the system planar to act as a pullup.
EVENT
OUT
(open
drain)
Active Low
This signal indicates that a thermal event has been detected in the thermal sensing
device.The system should guarantee the electrical level requirement is met for the
EVENT pin on TS/SPD part.
No pull-up resister is provided on DIMM.
VDDSPD Supply Serial EEPROM positive power supply wired to a separate power pin at the connector
which supports from 3.0 Volt to 3.6 Volt (nominal 3.3V) operation.
RESET IN The RESET pin is connected to the RESET pin on the register and to the RESET pin on
the DRAM.
Par_In IN Parity bit for the Address and Control bus. (“1 “: Odd, “0 “: Even)
Err_Out
OUT
(open
drain)
Parity error detected on the Address and Control bus. A resistor may be connected from
Err_Out bus line to VDD on the system planar to act as a pull up.
TEST Used by memory bus analysis tools (unused (NC) on memory DIMMs)
Symbol Type Polarity Function
Rev. 0.1 / Aug. 2011 8
Pin Assignments
Pin # Front Side
(left 1–60) Pin # Back Side
(right 121–180) Pin # Front Side
(left 61–120) Pin # Back Side
(right 181–240)
1VREFDQ 121
V
SS
61 A2 181 A1
2
V
SS
122 DQ4 62 VDD 182 VDD
3 DQ0 123 DQ5 63 NC, CK1 183 VDD
4 DQ1 124
V
SS
64 NC, CK1 184 CK0
5
V
SS
125 DM0,DQS9,
TDQS9 65 VDD 185 CK0
6DQS0126 NC,DQS9,
TDQS9 66 VDD 186 VDD
7 DQS0 127
V
SS
67 VREFCA 187 EVENT, NC
8
V
SS
128 DQ6 68 Par_In, NC 188 A0
9 DQ2 129 DQ7 69 VDD 189 VDD
10 DQ3 130
V
SS
70 A10 / AP 190 BA1
11
V
SS
131 DQ12 71 BA0 191 VDD
12 DQ8 132 DQ13 72 VDD 192 RAS
13 DQ9 133
V
SS
73 WE 193 S0
14
V
SS
134 DM1,DQS10,
TDQS10 74 CAS 194 VDD
15 DQS1 135 NC,DQS10,
TDQS10 75 VDD 195 ODT0
16 DQS1 136
V
SS
76 S1, NC 196 A13
17
V
SS
137 DQ14 77 ODT1, NC 197 VDD
18 DQ10 138 DQ15 78 VDD 198 S3, NC
19 DQ11 139
V
SS
79 S2, NC 199
V
SS
20
V
SS
140 DQ20 80
V
SS
200 DQ36
21 DQ16 141 DQ21 81 DQ32 201 DQ37
22 DQ17 142
V
SS
82 DQ33 202
V
SS
23
V
SS
143 DM2,DQS11,
TDQS11 83
V
SS
203 DM4,DQS13,
TDQS13
24 DQS2 144 NC,DQS11,
TDQS11 84 DQS4 204 NC,DQS13,
TDQS13
25 DQS2 145
V
SS
85 DQS4 205
V
SS
26
V
SS
146 DQ22 86
V
SS
206 DQ38
27 DQ18 147 DQ23 87 DQ34 207 DQ39
28 DQ19 148
V
SS
88 DQ35 208
V
SS
29
V
SS
149 DQ28 89
V
SS
209 DQ44
30 DQ24 150 DQ29 90 DQ40 210 DQ45
31 DQ25 151
V
SS
91 DQ41 211
V
SS
NC = No Connect; RFU = Reserved Future Use
Rev. 0.1 / Aug. 2011 9
32
V
SS
152 DM3,DQS12,
TDQS12 92
V
SS
212 DM5,DQS14,
TDQS14
33 DQS3 153 NC,DQS12,
TDQS12 93 DQS5 213 NC,DQS14,
TDQS14
34 DQS3 154
V
SS
94 DQS5 214
V
SS
35
V
SS
155 DQ30 95
V
SS
215 DQ46
36 DQ26 156 DQ31 96 DQ42 216 DQ47
37 DQ27 157
V
SS
97 DQ43 217
V
SS
38
V
SS
158 CB4, NC 98
V
SS
218 DQ52
39 CB0, NC 159 CB5, NC 99 DQ48 219 DQ53
40 CB1, NC 160
V
SS
100 DQ49 220
V
SS
41
V
SS
161 NC,DM8,DQS17,
TDQS17 101
V
SS
221 DM6,DQS15,
TDQS15
42 DQS8 162 NC,DQS17,
TDQS17 102 DQS6 222 NC,DQS15,
TDQS15
43 DQS8 163
V
SS
103 DQS6 223
V
SS
44
V
SS
164 CB6, NC 104
V
SS
224 DQ54
45 CB2, NC 165 CB7, NC 105 DQ50 225 DQ55
46 CB3, NC 166
V
SS
106 DQ51 226
V
SS
47
V
SS
167 NC(TEST) 107
V
SS
227 DQ60
48 VTT, NC 168 RESET 108 DQ56 228 DQ61
KEY KEY 109 DQ57 229
V
SS
49 VTT, NC 169 CKE1, NC 110
V
SS
230 DM7,DQS16,
TDQS16
50 CKE0 170 VDD 111 DQS7 231 NC,DQS16,
TDQS16
51 VDD 171 A15 112 DQS7 232
V
SS
52 BA2 172 A14 113
V
SS
233 DQ62
53 Err_Out, NC 173 VDD 114 DQ58 234 DQ63
54 VDD 174 A12 / BC 115 DQ59 235
V
SS
55 A11 175 A9 116
V
SS
236 VDDSPD
56 A7 176 VDD 117 SA0 237 SA1
57 VDD 177 A8 118 SCL 238 SDA
58 A5 178 A6 119
SA2
239
V
SS
59 A4 179 VDD 120 VTT 240 VTT
60 VDD 180 A3
Pin # Front Side
(left 1–60) Pin # Back Side
(right 121–180) Pin # Front Side
(left 61–120) Pin # Back Side
(right 181–240)
NC = No Connect; RFU = Reserved Future Use
Rev. 0.1 / Aug. 2011 10
Registering Clock Driver Specifications
Capacitance Values
Input & Output Timing Requirements
Symbol Parameter Conditions Min Typ Max Unit
CI
Input capacitance, Data inputs 1.5 -2.5 pF
Input capacitance, CK, CK, FBIN, FBIN 2 - 3 pF
Input capacitance, CK, CK, FBIN, FBIN
(DDR3-1600) 1.5 -2.5 pF
CIR Input capacitance, RESET, MIRROR,
QCSEN VI = VDD or GND; VDD = 1.5v --3pF
Symbol Parameter Conditions
DDR3-800
1066/1333 Unit
Min Max
fclock Input clock frequency Application frequency 300 670 Mhz
fTEST Input clock frequency Test frequency 70 300 Mhz
tSU Setup time Input valid before CK/CK 100 - ps
tHHold time Input to remain valid after CK/CK 175 - ps
tPDM Propagation delay, single-
bit switching CK/CK to output 0.65 1.0 ns
tDIS Output disable time (1/2-
Clock prelaunch) Yn/Yn to output float 0.5 tCK +
tQSK1(min) -ps
tEN Output enable time (1/2-
Clock prelaunch) Output driving to Yn/Yn 0.5 tCK -
tQSK1(max) -ps
Rev. 0.1 / Aug. 2011 11
On DIMM Thermal Sensor
The DDR3 SDRAM DIMM temperature is monitored by integrated thermal sensor. The integrated thermal
sensor comply with JEDEC “TSE2002av, Serial Presence Detect with Temperature Sensor”.
Connection of Thermal Sensor
Temperature-to-Digital Conversion Performance
Parameter Condition Min Typ Max Unit
Temperature Sensor Accuracy (Grade B)
Active Range,
75°C < TA < 95°C -± 0.5 ± 1.0 °C
Monitor Range,
40°C < TA < 125°C -± 1.0 ± 2.0 °C
-20°C < TA < 125°C -± 2.0 ± 3.0 °C
Resolution 0.25 °C
EVENT
SCL
SDA
SA0
SA1
SA2
EVENT
SCL
SDA
SA0
SA1
SA2
SPD with
Integrated
TS
Rev. 0.1 / Aug. 2011 12
Functional Block Diagram
16GB, 2Gx72 Module(2Rank of x4) - page1
RRASA
RCASA
RS0A
RWEA
PCK0A
PCK0A
RCKE0A
RODT0A
A[O:N]A
/BA[O:N]A
CB[7:4]
DQS17
DQS17
DQS
DQS
DM
D17
DQ [3:0]
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
DQS
DQS
DM
D35
DQ [3:0]
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
VSS
DQ[31:28]
DQS12
DQS12
DQS
DQS
DM
D12
DQ [3:0]
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
DQS
DQS
D30
DQ [3:0]
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
VSS
DQ[23:20]
DQS11
DQS11
DQS
DQS
DM
D11
DQ [3:0]
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
DQS
DQS
DM
D29
DQ [3:0]
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
VSS
DQ[15:12]
DQS10
DQS10
DQS
DQS
DM
D10
DQ [3:0]
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
DQS
DQS
DM
D28
DQ [3:0]
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
VSS
DQ[3:0]
DQS0
DQS0
DQS
DQS
DM
D0
DQ [3:0]
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
DQS
DQS
DM
D18
DQ [3:0]
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
VSS
Vtt
CB[3:0]
DQS8
DQS8
DQS
DQS
DM
D8
DQ [3:0]
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
DQS
DQS
DM
D26
DQ [3:0]
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
VSS
DQ[27:24]
DQS3
DQS3
DQS
DQS
DM
D3
DQ [3:0]
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
DQS
DQS
D21
DQ [3:0]
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
VSS
DQ[19:16]
DQS2
DQS2
DQS
DQS
DM
D2
DQ [3:0]
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
DQS
DQS
DM
D20
DQ [3:0]
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
VSS
DQ[11:8]
DQS1
DQS1
DQS
DQS
DM
D1
DQ [3:0]
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
DQS
DQS
DM
D19
DQ [3:0]
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
VSS
DQ[7:4]
DQS9
DQS9
DQS
DQS
DM
D9
DQ [3:0]
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
DQS
DQS
DM
D27
DQ [3:0]
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
VSS
RS1A
RCKE1A
R0DT1A
DM DM
Vtt
RRASA
RCASA
RS0A
RWEA
PCK0A
PCK0A
RCKE0A
RODT0A
A[O:N]A
/BA[O:N]A
RS1A
RCKE1A
R0DT1A
PCK1A
PCK1A
PCK1A
PCK1A
Rev. 0.1 / Aug. 2011 13
16GB, 2Gx72 Module(2Rank of x4) - page2
D0–D35
V
DD
D0–D35
V
TT
V
DDSPD
D0–D35
VREFDQ
SPD
VREFCA
V
SS
D0–D35
D0–D35
Note:
1. DQ-to-I/O wiring may be changed within a nibble.
2. See wiring diagrams for all resistors values.
3. ZQ pins of each SDRAM are connected to individual RZQ resistors (240+/-1%) ohms.
VDDSPD
EVENT
SCL
SDA
SA0
SPD with
Integrated
TS
SA1
SA2
VSS
VDDSPD
EVENT
SCL
SDA
SA0
SA1
SA2
VSS
RRASB
RCASB
RS0B
RWEB
PCK0B
PCK0B
RCKE0B
RODT0B
A[N:O]B
/BA[N:O]B
DQ[47:44]
DQS14
DQS14
DQS
DQS
DM
D14
DQ [3:0]
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
DQS
DQS
DM
D32
DQ [3:0]
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
VSS
DQS4
DQS4
DQS
DQS
DM
D4
DQ [3:0]
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
DQS
DQS
D22
DQ [3:0]
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
VSS
DQS16
DQS16
DQS
DQS
DM
D16
DQ [3:0]
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
DQS
DQS
DM
D34
DQ [3:0]
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
VSS
DQS7
DQS7
DQS
DQS
DM
D7
DQ [3:0]
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
DQS
DQS
DM
D25
DQ [3:0]
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
VSS
Vtt
DQ[39:36]
DQS13
DQS13
DQS
DQS
DM
D13
DQ [3:0]
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
DQS
DQS
DM
D31
DQ [3:0]
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
VSS
DQ[43:40]
DQS5
DQS5
DQS
DQS
DM
D5
DQ [3:0]
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
DQS
DQS
D23
DQ [3:0]
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
VSS
DQ[55:52]
DQS15
DQS15
DQS
DQS
DM
D15
DQ [3:0]
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
DQS
DQS
DM
D33
DQ [3:0]
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
VSS
DQ[51:48]
DQS6
DQS6
DQS
DQS
DM
D6
DQ [3:0]
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
DQS
DQS
DM
D24
DQ [3:0]
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
VSS
RS1B
RCKE1B
R0DT1B
DM DM
Vtt
RRASB
RCASB
RS0B
RWEB
PCK0B
PCK0B
RCKE0B
RODT0B
A[N:O]B
/BA[N:O]B
RS1B
RCKE1B
R0DT1B
PCK1B
PCK1B
PCK1B
PCK1B
DQ[35:32]
DQ[63:60]
DQ[59:56]
Plan to use SPD with Integrated TS of Class B and
might be changed on customer’s requests. For more
details of SPD and Thermal sensor, please contact
local Hynix sales representative
Rev. 0.1 / Aug. 2011 14
16GB, 2Gx72 Module(2Rank of x4) - page3
S0
S1
BA[N:0]
A[N:0]
RAS
CAS
WE
CKE0
ODT0
CK0
CK0
PAR_IN
RS0A
CS0: SDRAMs D[3:0], D[12:8], D17
RS0B
CS0: SDRAMs D[7:4], D[16:13]
RS1A
CS1: SDRAMs D[21:18], D[30:26], D35
RRASB
RAS: SDRAMs D[7:4], D[16:13], D[25:22], D[34:31]
RS1B
CS1: SDRAMs D[25:22], D[34:31]
RBA[N:0]B
BA[N:0]: SDRAMs D[7:4], D[16:13], D[25:22], D[34:31]
RBA[N:0]A
BA[N:0]: SDRAMs D[3:0], D[12:8], D[21:17], D[30:26], D35
RRASA
RAS: SDRAMs D[3:0], D[12:8], D[21:17], D[30:26], D35
RCASB
CAS: SDRAMs D[7:4], D[16:13], D[25:22], D[34:31]
RCASA
CAS: SDRAMs D[3:0], D[12:8], D[21:17], D[30:26], D35
RWEB
WE: SDRAMs D[7:4], D[16:13], D[25:22], D[34:31]
RWEA
WE: SDRAMs D[3:0], D[12:8], D[21:17], D[30:26], D35
RCKE0B
CKE0: SDRAMs D[7:4], D[16:13]
RCKE0A
CKE0: SDRAMs D[3:0], D[12:8], D17
RODT0B
ODT0: SDRAMs D[7:4], D[16:13]
RODT0A
ODT0: SDRAMs D[3:0], D[12:8], D17
PCK0B
CK: SDRAMs D[7:4], D[16:13]
PCK0A
CK: SDRAMs D[3:0], D[12:8], D17
PCK0B
CK: SDRAMs D[7:4], D[16:13]
PCK0A
CK: SDRAMs D[3:0], D[12:8], D17
Err_Out
RESET RST
RST: SDRAMs D[35:0]
1:2
R
E
G
I
S
T
E
R
/
P
RCKE1B
CKE1: SDRAMs D[25:22], D[34:31]
RCKE1A
CKE1: SDRAMs D[21:18], D[30:26], D35
ODT1
RODT1A
ODT1: SDRAMs D[25:22], D[34:31]
RODT1A
ODT1: SDRAMs D[21:18], D[30:26], D35
CKE1
RA[N:0]B
A[N:0]: SDRAMs D[7:4], D[16:13], D[25:22], D[34:31]
RA[N:0]A
A[N:0]: SDRAMs D[3:0], D[12:8], D[21:17], D[30:26], D35
PCK1B
CK: SDRAMs D[25:22], D[34:31]
PCK1A
CK: SDRAMs D[21:18], D[30:26], D35
PCK1B
CK: SDRAMs D[25:22], D[34:31]
PCK1A
CK: SDRAMs D[21:18], D[30:26], D35
L
L
* S[3:2], CK1 and CK1 are NC
CK1
CK1
120
±5%
Rev. 0.1 / Aug. 2011 15
32GB, 4Gx72 Module(4Rank of x4) - page1
ZQ
ARRASA
ARCASA
ARS0A
ARWEA
APCK0A
APCK0A
ARCKE0A
ARODT0A
ARA[N:O]A
Vtt
/ARBA[N:O]A
CB[3:0]
DQS8
DQS8
DQS
DQS
DM
D9
DQ [3:0]
ZQ
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
DQS
DQS
DM
D8
DQ [3:0]
ZQ
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
VSS
D7
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
D6
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
D5
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
D4
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
D3
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
D2
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
D1
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
D0
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
BRRASA
BRCASA
BRS2A
BRWEA
BPCK0A
BPCK0A
BRCKE0A
BRODT1A
BRA[N:O]A
/BRBA[N:O]A
DQS
DQS
DM
D45
DQ [3:0]
ZQ
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
DQS
DQS
DM
D44
DQ [3:0]
ZQ
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
D47
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
D46
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
D49
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
D48
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
D51
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
D50
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
D53
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
D52
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
VSSVSSVSSVSS
ARS1A
ARCKE1A
VDD
BRS3A
BRCKE1A
VDD
DQ[27:24]
DQS3
DQS3
DQS
DQS
DM
DQ [3:0]
ZQ
DQS
DQS
DM
DQ [3:0]
ZQ
VSS
DQS
DQS
DM
DQ [3:0]
ZQ
DQS
DQS
DM
DQ [3:0]
ZQVSSVSSVSSVSS
DQ[19:16]
DQS2
DQS2
DQS
DQS
DM
DQ [3:0]
DQS
DQS
DM
DQ [3:0]
ZQ
VSS
DQS
DQS
DM
DQ [3:0]
ZQ
DQS
DQS
DM
DQ [3:0]
ZQVSSVSSVSSVSS
DQ[11:8]
DQS1
DQS1
DQS
DQS
DM
DQ [3:0]
ZQ
DQS
DQS
DM
DQ [3:0]
ZQ
VSS
DQS
DQS
DM
DQ [3:0]
ZQ
DQS
DQS
DM
DQ [3:0]
ZQVSSVSSVSSVSS
ZQ
DQ[3:0]
DQS0
DQS0
DQS
DQS
DM
DQ [3:0]
ZQ
DQS
DQS
DM
DQ [3:0]
ZQ
VSS
DQS
DQS
DM
DQ [3:0]
ZQ
DQS
DQS
DM
DQ [3:0]
ZQVSSVSSVSSVSS
Rev. 0.1 / Aug. 2011 16
32GB, 4Gx72 Module(4Rank of x4) - page2
ZQ
ARRASA
ARCASA
ARS0A
ARWEA
APCK0A
APCK0A
ARCKE0A
ARODT0A
ARA[N:O]A
Vtt
/ARBA[N:O]A
CB[7:4]
DQS17
DQS17
DQS
DQS
DM
D27
DQ [3:0]
ZQ
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
DQS
DQS
DM
D26
DQ [3:0]
ZQ
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
VSS
D25
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
D24
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
D23
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
D22
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
D21
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
D20
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
D19
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
D18
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
BRRASA
BRCASA
BRS2A
BRWEA
BPCK0A
BPCK0A
BRCKE0A
BRODT1A
BRA[N:O]A
/BRBA[N:O]A
DQS
DQS
DM
D63
DQ [3:0]
ZQ
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
DQS
DQS
DM
D62
DQ [3:0]
ZQ
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
D65
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
D64
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
D67
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
D66
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
D69
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
D68
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
D71
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
D70
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
VSSVSSVSSVSS
ARS1A
ARCKE1A
VDD
BRS3A
BRCKE1A
VDD
DQ[31:28]
DQS12
DQS12
DQS
DQS
DM
DQ [3:0]
ZQ
DQS
DQS
DM
DQ [3:0]
ZQ
VSS
DQS
DQS
DM
DQ [3:0]
ZQ
DQS
DQS
DM
DQ [3:0]
ZQVSSVSSVSSVSS
DQ[23:20]
DQS11
DQS11
DQS
DQS
DM
DQ [3:0]
DQS
DQS
DM
DQ [3:0]
ZQ
VSS
DQS
DQS
DM
DQ [3:0]
ZQ
DQS
DQS
DM
DQ [3:0]
ZQVSSVSSVSSVSS
DQ[11:8]
DQS10
DQS10
DQS
DQS
DM
DQ [3:0]
ZQ
DQS
DQS
DM
DQ [3:0]
ZQ
VSS
DQS
DQS
DM
DQ [3:0]
ZQ
DQS
DQS
DM
DQ [3:0]
ZQVSSVSSVSSVSS
ZQ
DQ[7:4]
DQS9
DQS9
DQS
DQS
DM
DQ [3:0]
ZQ
DQS
DQS
DM
DQ [3:0]
ZQ
VSS
DQS
DQS
DM
DQ [3:0]
ZQ
DQS
DQS
DM
DQ [3:0]
ZQVSSVSSVSSVSS
Rev. 0.1 / Aug. 2011 17
32GB, 4Gx72 Module(4Rank of x4) - page3
ZQ
ARRASB
ARCASB
ARS0B
ARWEB
APCK0B
APCK0B
ARCKE0B
ARODT0B
ARA[N:O]B
Vtt
/ARBA[N:O]B
DQ[35:32]
DQS4
DQS4
DQS
DQS
DM
D11
DQ [3:0]
ZQ
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
DQS
DQS
DM
D10
DQ [3:0]
ZQ
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
VSS
D13
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
D12
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
D15
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
D14
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
D17
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
D16
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
BRRASB
BRCASB
BRS2B
BRWEB
BPCK0B
BPCK0B
BRCKE0B
BRODT1B
BRA[N:O]B
/BRBA[N:O]B
DQS
DQS
DM
D13
DQ [3:0]
ZQ
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
DQS
DQS
DM
D42
DQ [3:0]
ZQ
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
D41
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
D40
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
D39
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
D38
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
D37
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
D36
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
VSSVSSVSSVSS
ARS1B
ARCKE1B
VDD
BRS3B
BRCKE1B
VDD
DQ[43:40]
DQS5
DQS5
DQS
DQS
DM
DQ [3:0]
ZQ
DQS
DQS
DM
DQ [3:0]
ZQ
VSS
DQS
DQS
DM
DQ [3:0]
ZQ
DQS
DQS
DM
DQ [3:0]
ZQVSSVSSVSSVSS
DQ[51:48]
DQS6
DQS6
DQS
DQS
DM
DQ [3:0]
DQS
DQS
DM
DQ [3:0]
ZQ
VSS
DQS
DQS
DM
DQ [3:0]
ZQ
DQS
DQS
DM
DQ [3:0]
ZQVSSVSSVSSVSS
DQ[59:56
DQS7
DQS7
DQS
DQS
DM
DQ [3:0]
ZQ
DQS
DQS
DM
DQ [3:0]
ZQ
VSS
DQS
DQS
DM
DQ [3:0]
ZQ
DQS
DQS
DM
DQ [3:0]
ZQVSSVSSVSSVSS
ZQ
Rev. 0.1 / Aug. 2011 18
32GB, 4Gx72 Module(4Rank of x4) - page4
ZQ
ARRASB
ARCASB
ARS0B
ARWEB
APCK0B
APCK0B
ARCKE0B
ARODT0B
ARA[N:O]B
Vtt
/ARBA[N:O]B
DQ[39:36]
DQS13
DQS13
DQS
DQS
DM
D29
DQ [3:0]
ZQ
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
DQS
DQS
DM
D28
DQ [3:0]
ZQ
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
VSS
D31
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
D30
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
D33
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
D32
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
D35
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
D34
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
BRRASB
BRCASB
BRS2B
BRWEB
BPCK0B
BPCK0B
BRCKE0B
BRODT1B
BRA[N:O]B
/BRBA[N:O]B
DQS
DQS
DM
D61
DQ [3:0]
ZQ
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
DQS
DQS
DM
D60
DQ [3:0]
ZQ
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
D59
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
D58
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
D57
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
D56
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
D55
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
D54
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[N:O]/BA[N:O]
VSSVSSVSSVSS
ARS1B
ARCKE1B
VDD
BRS3B
BRCKE1B
VDD
DQ[47:44]
DQS14
DQS14
DQS
DQS
DM
DQ [3:0]
ZQ
DQS
DQS
DM
DQ [3:0]
ZQ
VSS
DQS
DQS
DM
DQ [3:0]
ZQ
DQS
DQS
DM
DQ [3:0]
ZQVSSVSSVSSVSS
DQ[55:52]
DQS15
DQS15
DQS
DQS
DM
DQ [3:0]
DQS
DQS
DM
DQ [3:0]
ZQ
VSS
DQS
DQS
DM
DQ [3:0]
ZQ
DQS
DQS
DM
DQ [3:0]
ZQVSSVSSVSSVSS
DQ[63:60]
DQS16
DQS16
DQS
DQS
DM
DQ [3:0]
ZQ
DQS
DQS
DM
DQ [3:0]
ZQ
VSS
DQS
DQS
DM
DQ [3:0]
ZQ
DQS
DQS
DM
DQ [3:0]
ZQVSSVSSVSSVSS
ZQ
D0–D71
V
DD
V
TT
V
DDSPD
D0–D71
VREFDQ
SPD
VREFCA
V
SS
D0–D71
D0–D71
Note:
1. DQ-to-I/O wiring may be changed within a nibble.
2. Unless otherwise noted, resistor values are 15 Ohms ±5%.
3. See the wiring diagrams for all resistors associated with the command, address and
control bus.
4. ZQ resistors are 240 Ohms ±1%. For all other resistor values refer to the appropriate
wiring diagram.
VDDSPD
EVENT
SCL
SDA
SA0
SPD with
Integrated
TS
SA1
SA2
VSS
VDDSPD
EVENT
SCL
SDA
SA0
SA1
SA2
VSS
Plan to use SPD with Integrated TS of Class B and
might be changed on customer’s requests. For more
details of SPD and Thermal sensor, please contact
local Hynix sales representative
Rev. 0.1 / Aug. 2011 19
32GB, 4Gx72 Module(4Rank of x4) - page5
CK1
CK1
120
±5%
S2
S3
BA[N:0]
A[N:0]
RAS
CAS
WE
CKE0
CK0
CK0
PAR_IN
BRS2A
CS1: SDRAMs D45,D47,D49,D51,D53
BRS2B
CS1: SDRAMs D37,D39,D41,D43,
BRS3A
CS0: SDRAMs D44.D46,D48,D50,D52,
BRRASB
RAS: SDRAMs D[43:36],D[61:54]
BRS3B
CS0: SDRAMs D36,D38,D40,D42,
BRBA[N:0]B
BA[N:0]: SDRAMs D[43:36],D[61:54]
BRBA[N:0]A
BA[N:0]: SDRAMs D[53:44],D[71:62]
BRRASA
RAS: SDRAMs D[53:44],D[71:62]
BRCASB
CAS: SDRAMs D[43:36],D[61:54]
BRCASA
CAS: SDRAMs D[53:44],D[71:62]
BRWEB
WE: SDRAMs D[43:36],D[61:54]
BRWEA
WE: SDRAMs D[53:44],D[71:62]
BRCKE0B
CKE1: SDRAMs D37,D39,D41,D43,
BRCKE0A
CKE1: SDRAMs D45,D47,D49,D51,D53,
BRODT1B
ODT0: SDRAMs D37,D39,D41,D43
BRODT1A
ODT1: SDRAMs D45,D47,D49,D51,D53
BPCK0B
CK: SDRAMs D[43:36]
BPCK0A
CK: SDRAMs D[53:44]
BPCK0B
CK: SDRAMs D[43:36]
BPCK0A
CK: SDRAMs D[53:44]
Err_Out
RESET RST
1:2
R
E
G
I
S
T
E
R
/
P
BRCKE1B
CKE0: SDRAMs D36,D38,D40,D42,
BRCKE1A
CKE0: SDRAMs D44.D46,D48,D50,D52,
ODT1
CKE1
BRA[N:0]B
A[N:0]: SDRAMs D[43:36],D[61:54]
BRA[N:0]A
A[N:0]: SDRAMs D[55:44],D[71:62]
BPCK1B
CK: SDRAMs D[61:54]
BPCK1A
CK: SDRAMs D[71:62]
BPCK1B
CK: SDRAMs D[61:54]
BPCK1A
CK: SDRAMs D[71:62]
L
L
B
D63,D65,D67,D69,D71
D55,D57,D59,D61
D62,D64,D66,D68,D70
D54,D56,D58,D60
D63,D65,D67,D69,D71
D55,D57,D59,D61
D62,D64,D66,D68,D70
D54,D56,D58,D60
D63,D65,D67,D69,D71
D55,D57,D59,D61
120
±5%
S0
S1
BA[N:0]
A[N:0]
RAS
CAS
WE
CKE0
CK0
CK0
PAR_IN
ARS0A
CS1: SDRAMs D1,D3,D5,D7 D9,
ARS0B
CS1: SDRAMs D11, D13, D15, D17,
ARS1A
CS0: SDRAMs D0, D2, D4, D6, D8,
ARRASB
RAS: SDRAMs D[17:10],D[35:28]
ARS1B
CS0: SDRAMs D10, D12, D14, D16,
ARBA[N:0]B
BA[N:0]: SDRAMs D[17:10],D[35:28]
ARBA[N:0]A
BA[N:0]: SDRAMs D[9:0],D[27:18]
ARRASA
RAS: SDRAMs D[9:0],D[27:18]
ARCASB
CAS: SDRAMs D[17:10],D[35:28]
ARCASA
CAS: SDRAMs D[9:0],D[27:18]
ARWEB
WE: SDRAMs D[17:10],D[35:28]
ARWEA
WE: SDRAMs D[9:0],D[27:18]
ARCKE0B
CKE1: SDRAMs D11,D13,D15,D17,
ARCKE0A
CKE1: SDRAMs D1,D3,D5,D7,D9,
ARODT0B
ODT0: SDRAMs D11,D13,D15,D17,
ARODT0A
ODT1: SDRAMs D1,D3,D5,D7,D9,
APCK0B
CK: SDRAMs D[17:10]
APCK0A
CK: SDRAMs D[9:0]
APCK0B
CK: SDRAMs D[17:10]
APCK0A
CK: SDRAMs D[9:0]
Err_Out
RESET RST
RST: SDRAMs D[35:0]
1:2
R
E
G
I
S
T
E
R
/
P
ARCKE1B
CKE0: SDRAMs D10,D12,D14,D16,
ARCKE1A
CKE0: SDRAMs D0,D2,D4,D6,D8,
ODT0
CKE1
ARA[N:0]B
A[N:0]: SDRAMs D[17:10],D[35:28]
ARA[N:0]A
A[N:0]: SDRAMs D[9:0],D[27:18]
APCK1B
CK: SDRAMs D[35:28]
APCK1A
CK: SDRAMs D[27:18]
APCK1B
CK: SDRAMs D[35:28]
APCK1A
CK: SDRAMs D[27:18]
L
L
A
D19, D21, D23, D25, D27
D29, D31, D33, D35
D18, D20, D22, D24, D26
D28, D30, D32, D34
D19, D21, D23, D25, D27
D29, D31, D33, D35
D18, D20, D22, D24, D26
D28, D30, D32, D34
D19, D21, D23, D25, D27
D29, D31, D33, D35
120
±5%
1. CK0 and CK0 are differentially terminated with a single
120 Ohms ±5% resistor.
2.
CK1 and CK1 are differentially terminated with a single
120 Ohms ±5% resistor, but is not used.
3. Unused register inputs ODT1 for Register A and ODT0 for Register B are tied to ground.
4. The module drawing on this page is not drawn to scale.
Rev. 0.1 / Aug. 2011 20
Absolute Maximum Ratings
Absolute Maximum DC Ratings
Notes:
1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the
device. This is a stress rating only and functional operation of the device at these or any other conditions above
those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rat-
ing conditions for extended periods may affect reliability.
2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement
conditions, please refer to JESD51-2 standard.
3. VDD and VDDQ must be within 300mV of each other at all times; and VREF must not be greater than
0.6XVDDQ,When VDD and VDDQ are less than 500mV; VREF may be equal to or less than 300mV.
DRAM Component Operating Temperature Range
Notes:
1. Operating Temperature TOPER is the case surface temperature on the center / top side of the DRAM. For mea-
surement conditions, please refer to the JEDEC document JESD51-2.
2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. Dur-
ing operation, the DRAM case temperature must be maintained between 0 - 85oC under all operating conditions.
3. Some applications require operation of the DRAM in the Extended Temperature Range between 85oC and 95oC
case temperature. Full specifications are guaranteed in this range, but the following additional conditions apply:
a. Refresh commands must be doubled in frequency, therefore reducing the Refresh interval tREFI to 3.9 µs. It
is also possible to specify a component with 1X refresh (tREFI to 7.8µs) in the Extended Temperature Range.
Please refer to the DIMM SPD for option availability
b. If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to either use
the Manual Self-Refresh mode with Extended Temperature Range capability (MR2 A6 = 0b and MR2 A7 = 1b)
or enable the optional Auto Self-Refresh mode (MR2 A6 = 1b and MR2 A7 = 0b). Hynix DDR3 SDRAMs sup-
port Auto Self-Refresh and in Extended Temperature Range and please refer to Hynix component datasheet
and/or the DIMM SPD for tREFI requirements in the Extended Temperature Range
Absolute Maximum DC Ratings
Symbol Parameter Rating Units Notes
VDD Voltage on VDD pin relative to Vss - 0.4 V ~ 1.975 V V 1,
VDDQ Voltage on VDDQ pin relative to Vss - 0.4 V ~ 1.975 V V 1,
VIN, VOUT Voltage on any pin relative to Vss - 0.4 V ~ 1.975 V V 1
TSTG Storage Temperature -55 to +100 oC1, 2
Temperature Range
Symbol Parameter Rating Units Notes
TOPER
Normal Operating Temperature Range 0 to 85 oC 1,2
Extended Temperature Range 85 to 95 oC1,3
Rev. 0.1 / Aug. 2011 21
AC & DC Operating Conditions
Recommended DC Operating Conditions
Recommended DC Operating Conditions - DDR3L (1.35V) operation
Symbol Parameter Rating Units Notes
Min. Typ. Max.
VDD Supply Voltage 1.283 1.35 1.45 V 1,2,3,4
VDDQ Supply Voltage for Output 1.283 1.35 1.45 V 1,2,3,4
Notes:
1. Maximum DC value may not be greater than 1.425V. The DC value is the linear average of VDD/VDDQ (t) over a
very long period of time (e.g., 1 sec).
2. If maximum limit is exceeded, input levels shall be governed by DDR3 specifications.
3. Under these supply voltages, the device operates to this DDR3L specification.
4. Once initialized for DDR3L operation, DDR3 operation may only be used if the device is in reset while VDD and
VDDQ are changed for DDR3 operation (see Figure 0).
Recommended DC Operating Conditions - DDR3 (1.5V) operation
Symbol Parameter Rating Units Notes
Min. Typ. Max.
VDD Supply Voltage 1.425 1.5 1.575 V 1,2,3
VDDQ Supply Voltage for Output 1.425 1.5 1.575 V 1,2,3
Notes:
1. If minimum limit is exceeded, input levels shall be governed by DDR3L specifications.
2. Under 1.5V operation, this DDR3L device operates to the DDR3 specifications under the same speed timings as
defined for this device.
3. Once initialized for DDR3 operation, DDR3L operation may only be used if the device is in reset while VDD and
VDDQ are changed for DDR3L operation (see Figure 0).
Rev. 0.1 / Aug. 2011 22
Figure 0 - VDD/VDDQ Voltage Switch Between DDR3L and DDR3
NOTE 1: From time point Td until Tk NOP or DES commands must be applied
between MRS and ZQCL commands.
Ta
CK,CK#
RESET#
Tb Tc Td Te Tf Tg Th Ti Tj Tk
MRS1) 1)MRS MRS
CKE
DONT CARE
READ MRS
T = 500us
COMMAND
ODT
BA
RTT
MR3 MR1 MR0READ MR2
READ Static LOW in case RTT_Nom is enabled at time Tg, otherwise static HIGH or LOW
VDD, VDDQ (DDR3)
VDD, VDDQ (DDR3L)
ZQCL VALID
VALID
VALID
VALID
Tmin = 200us
Tmin = 10ns
Tmin = 10ns tCKSRX
Tmin = 10ns
tIS
tIS tIS
tXPR tMRD tMRD tMRD tMOD tZQinit
tDLLK
TIME BREAK
Rev. 0.1 / Aug. 2011 23
AC & DC Input Measurement Levels
AC and DC Logic Input Levels for Single-Ended Signals
AC and DC Input Levels for Single-Ended Command and Address Signals
Notes:
1. For input only pins except RESET
, Vref = VrefCA (DC).
2. Refer to "Overshoot and Undershoot Specifications" on page 36.
3. The ac peak noise on VRef may not allow VRef to deviate from VRefCA(DC) by more than +/-1% VDD (for
reference: approx. +/- 15 mV).
4. For reference: approx. VDD/2 +/- 15 mV.
5. VIH(dc) is used as a simplified symbol for VIH.CA(DC100)
6. VIL(dc) is used as a simplified symbol for VIL.CA(DC100)
7. VIH(ac) is used as simplified symbol for VIH.CA(AC175), VIH.CA(AC150), VIH.CA(AC135), and
VIH.CA(AC125); VIH.CA(AC175) value is used when Vref + 0.175V is referenced, VIH.CA(AC150) value is
used when Vref + 0.150V is referenced, VIH.CA(AC135) value is used when Vref + 0.135V is referenced,
and VIH.CA(AC125) value is used when Vref + 0.125V is referenced.
8. VIL(ac) is used as simplified symbol for VIL.CA(AC175), VIL.CA(AC150), VIL.CA(AC135), and
VIL.CA(AC125); VIL.CA(AC175) value is used when Vref - 0.175V is referenced, VIL.CA(AC150) value is
used when Vref - 0.150V is referenced, VIL.CA(AC135) value is used when Vref - 0.135V is referenced, and
VIL.CA(AC125) value is used when Vref - 0.125V is referenced.
9. Vref is measured relative to VDD at the same point, time and same device.
Single Ended AC and DC Input Levels for Command and ADDress
Symbol Parameter
DDR3L-800/1066/1333
Unit Notes
Min Max
VIH.CA(DC100) DC input logic high Vref + 0.100 VDD V 1, 5
VIL.CA(DC100) DC input logic low VSS Vref - 0.100 V 1, 6
VIH.CA(AC175) AC input logic high Vref + 0.175 Note2 V 1, 2, 7
VIL.CA(AC175) AC input logic low Note2 Vref - 0.175 V 1, 2, 8
VIH.CA(AC150) AC Input logic high Vref + 0.150 Note2 V 1, 2, 7
VIL.CA(AC150) AC input logic low Note2 Vref - 0.150 V 1, 2, 8
VIH.CA(AC135) AC input logic high - - V 1, 2, 7
VIL.CA(AC135) AC input logic low - - V 1, 2, 8
VIH.CA(AC125) AC Input logic high - - V 1, 2, 7
VIL.CA(AC125) AC input logic low - - V 1, 2, 8
VRefCA(DC)Reference Voltage for
ADD, CMD inputs 0.49 * VDD 0.51 * VDD V 3, 4, 9
Rev. 0.1 / Aug. 2011 24
AC and DC Input Levels for Single-Ended Signals
DDR3 SDRAM will support two Vih/Vil AC levels for DDR3-800 and DDR3-1066s specified in table below.
DDR3 SDRAM will also support corresponding tDS values (Table 41 on page 120 and Table 47on page 145
in “DDR3L Device Operation”) as well as derating tables Table 44 on page 139 in “Device Operation”
depending on Vih/Vil AC levels.
Notes:
1. Vref = VrefDQ (DC).
2. Refer to "Overshoot and Undershoot Specifications" on page 36.
3. The ac peak noise on VRef may not allow VRef to deviate from VRefDQ(DC) by more than +/-1% VDD (for
reference: approx. +/- 15 mV).
4. For reference: approx. VDD/2 +/- 15 mV.
5. VIH(dc) is used as a simplified symbol for VIH.DQ(DC100)
6. VIL(dc) is used as a simplified symbol for VIL.DQ(DC100)
7. VIH(ac) is used as simplified symbol for VIH.DQ(AC175), VIH.DQ(AC150), and VIH.DQ(AC135);
VIH.DQ(AC175) value is used when Vref + 0.175V is referenced, VIH.DQ(AC150) value is used when Vref
+ 0.150V is referenced, and VIH.DQ(AC135) value is used when Vref + 0.135V is referenced.
8. VIL(ac) is used as simplified symbol for VIL.DQ(AC175), VIL.DQ(AC150), and VIL.DQ(AC135);
VIL.DQ(AC175) value is used when Vref - 0.175V is referenced, VIL.DQ(AC150) value is used when Vref -
0.150V is referenced, and VIL.DQ(AC135) value is used when Vref - 0.135V is referenced.
9. Vref is measured relative to VDD at the same point, time and same device.
Single Ended AC and DC Input Levels for DQ and DM
Symbol Parameter
DDR3L-800/1066 DDR3L-1333
Unit Notes
Min Max Min Max
VIH.DQ(DC100) DC input logic high Vref + 0.100 VDD Vref + 0.100 VDD V 1
VIL.DQ(DC100) DC input logic low VSS Vref - 0.100 VSS Vref - 0.100 V 1
VIH.DQ(AC175) AC input logic high Vref + 0.175 Note2 - - V 1, 2, 7
VIL.DQ(AC175) AC input logic low Note2 Vref - 0.175 - - V 1, 2, 8
VIH.DQ(AC150) AC Input logic high Vref + 0.150 Note2 Vref + 0.150 Note2 V 1, 2, 7
VIL.DQ(AC150) AC input logic low Note2 Vref - 0.150 Note2 Vref - 0.150 V 1, 2, 8
VIH.CA(AC135)AC input logic high----V1, 2, 7
VIL.CA(AC135)AC input logic low----V1, 2, 8
VRefDQ(DC)Reference Voltage
for DQ, DM inputs 0.49 * VDD 0.51 * VDD 0.49 * VDD 0.51 * VDD V 3, 4, 9
Rev. 0.1 / Aug. 2011 25
Vref Tolerances
The dc-tolerance limits and ac-noise limits for the reference voltages VRefCA and VRefDQ are illustrated in
figure below. It shows a valid reference voltage VRef (t) as a function of time. (VRef stands for VRefCA and
VRefDQ likewise).
VRef (DC) is the linear average of VRef (t) over a very long period of time (e.g. 1 sec). This average has to
meet the min/max requirements in the table ?$paratext>? on page 31. Furthermore VRef (t) may tempo-
rarily deviate from VRef (DC) by no more than +/- 1% VDD.
Illustration of VRef(DC) tolerance and VRef ac-noise limits
The voltage levels for setup and hold time measurements VIH(AC), VIH(DC), VIL(AC), and VIL(DC) are depen-
dent on VRef.
“VRef” shall be understood as VRef(DC), as defined in figure above.
This clarifies that dc-variations of VRef affect the absolute voltage a signal has to reach to achieve a valid
high or low level and therefore the time to which setup and hold is measured. System timing and voltage
budgets need to account for VRef(DC) deviations from the optimum position within the data-eye of the input
signals.
This also clarifies that the DRAM setup/hold specification and derating values need to include time and
voltage associated with VRefac-noise. Timing and voltage effects due to ac-noise on VRef up to the speci-
fied limit (+/- 1% of VDD) are included in DRAM timings and their associated deratings.
VDD
VSS
VDD/2
VRef(DC)
VRef ac-noise
voltage
time
VRef(DC)max
VRef(DC)min
VRef(t)
Rev. 0.1 / Aug. 2011 26
AC and DC Logic Input Levels for Differential Signals
Differential signal definition
Definition of differential ac-swing and “time above ac-level” tDVAC
time
Differential Input Voltage(i.e.DQS - DQS#, CK - CK#)
V
IL.DIFF.AC.MAX
V
IL.DIFF.MAX
0
V
IL.DIFF.MIN
V
IL.DIFF.AC.MIN
t
DVAC
half cycle
t
DVAC
Rev. 0.1 / Aug. 2011 27
Differential swing requirements for clock (CK - CK) and strobe (DQS-DQS)
Notes:
1. Used to define a differential signal slew-rate.
2. For CK - CK use VIH/VIL (ac) of AADD/CMD and VREFCA; for DQS - DQS, DQSL, DQSL, DQSU, DQSU use VIH/VIL
(ac) of DQs and VREFDQ; if a reduced ac-high or ac-low levels is used for a signal group, then the reduced level
applies also here.
3. These values are not defined; however, the single-ended signals Ck, CK, DQS, DQS, DQSL, DQSL, DQSU, DQSU
need to be within the respective limits (VIH (dc) max, VIL (dc) min) for single-ended signals as well as the limita-
tions for overshoot and undershoot. Refer to "Overshoot and Undershoot Specifications" on page 36.
Differential AC and DC Input Levels
Symbol Parameter
DDR3L-800, 1066, 1333
Unit Notes
Min Max
VIHdiff Differential input high + 0.200 Note 3 V 1
VILdiff Differential input logic low Note 3 - 0.200 V 1
VIHdiff (ac) Differential input high ac 2 x (VIH (ac) - Vref) Note 3 V 2
VILdiff (ac) Differential input low ac Note 3 2 x (VIL (ac) - Vref) V 2
Allowed time before ringback (tDVAC) for CK - CK and DQS - DQS
Slew Rate [V/ns]
tDVAC [ps]
@ |VIH/Ldiff (ac)| = 350mV
tDVAC [ps]
@ |VIH/Ldiff (ac)| = 300mV
min max min max
> 4.0 75 - 175 -
4.0 57 - 170 -
3.0 50 - 167 -
2.0 38 - 163
1.8 34 - 162 -
1.6 29 - 161 -
1.4 22 - 159 -
1.2 13 - 155 -
1.0 0 - 150 -
< 1.0 0 - 150 -
Rev. 0.1 / Aug. 2011 28
Single-ended requirements for differential signals
Each individual component of a differential signal (CK, DQS, DQSL, DQSU, CK, DQS, DQSL, of DQSU) has
also to comply with certain requirements for single-ended signals.
CK and CK have to approximately reach VSEHmin / VSELmax (approximately equal to the ac-levels (VIH
(ac) / VIL (ac)) for ADD/CMD signals) in every half-cycle.
DQS, DQSL, DQSU, DQS, DQSL have to reach VSEHmin / VSELmax (approximately the ac-levels (VIH (ac)
/ VIL (ac)) for DQ signals) in every half-cycle preceding and following a valid transition.
Note that the applicable ac-levels for ADD/CMD and DQs might be different per speed-bin etc. E.g., if
VIH.CA(AC150)/VIL.CA(AC150) is used for ADD/CMD signals, then these ac-levels apply also for the single-
ended signals CK and CK.
Single-ended requirements for differential signals.
Note that, while ADD/CMD and DQ signal requirements are with respect to Vref, the single-ended compo-
nents of differential signals have a requirement with respect to VDD / 2; this is nominally the same. the
transition of single-ended signals through the ac-levels is used to measure setup time. For single-ended
components of differential signals the requirement to reach VSELmax, VSEHmin has no bearing on timing,
but adds a restriction on the common mode characteristics of these signals.
VDD or VDDQ
VSEHmin
VDD/2 or VDDQ/2
VSEH
VSELmax
VSS or VSSQ
CK or DQS
VSEL
time
Rev. 0.1 / Aug. 2011 29
Notes:
1. For CK, CK use VIH/VIL (ac) of ADD/CMD; for strobes (DQS, DQS, DQSL, DQSL, DQSU, DQSU) use VIH/VIL (ac)
of DQs.
2. VIH (ac)/VIL (ac) for DQs is based on VREFDQ; VIH (ac)/VIL (ac) for ADD/CMD is based on VREFCA; if a reduced
ac-high or ac-low level is used for a signal group, then the reduced level applies also here.
3. These values are not defined; however, the single-ended signals Ck, CK, DQS, DQS, DQSL, DQSL, DQSU, DQSU
need to be within the respective limits (VIH (dc) max, VIL (dc) min) for single-ended signals as well as the limita-
tions for overshoot and undershoot. Refer to "Overshoot and Undershoot Specifications" on page 36.
Single-ended levels for CK, DQS, DQSL, DQSU, CK, DQS, DQSL or DQSU
Symbol Parameter
DDR3L-800, 1066, 1333
Unit Notes
Min Max
VSEH Single-ended high level for strobes (VDD / 2) + 0.175 Note 3 V1,2
Single-ended high level for Ck, CK (VDD /2) + 0.175 Note 3 V1,2
VSEL Single-ended low level for strobes Note 3 (VDD / 2) = 0.175 V1,2
Single-ended low level for CK, CK Note 3 (VDD / 2) = 0.175 V1,2
Rev. 0.1 / Aug. 2011 30
Differential Input Cross Point Voltage
To guarantee tight setup and hold times as well as output skew parameters with respect to clock and
strobe, each cross point voltage of differential input signals (CK, CK and DQS, DQS) must meet the
requirements in table below. The differential input cross point voltage VIX is measured from the actual
cross point of true and complement signals to the midlevel between of VDD and VSS
Vix Definition
Notes:
1. Extended range for VIX is only allowed for clock and if single-ended clock input signals CK and CK are
monotonic with a single-ended swing VSEL / VSEH of at least VDD/2 +/-250 mV, and when the differential
slew rate of CK - CK is larger than 3 V/ns.
2. Refer to the table ?$paratext>? on page 29 for VSEL and VSEH standard values.
Cross point voltage for differential input signals (CK, DQS)
Symbol Parameter
DDR3L-800, 1066, 1333
Unit Notes
Min Max
VIX
Differential Input Cross Point Voltage
relative to VDD/2 for CK, CK
-150 150 mV
-175 175 mV 1
VIX
Differential Input Cross Point Voltage
relative to VDD/2 for DQS, DQS -150 150 mV
VDD
VSS
VDD/2
VIX
VIX
VIX
CK, DQS
CK, DQS
Rev. 0.1 / Aug. 2011 31
Slew Rate Definitions for Single-Ended Input Signals
See 7.5 “Address / Command Setup, Hold and Derating” on page 137 in “DDR3 Device Operation” for sin-
gle-ended slew rate definitions for address and command signals.
See 7.6 “Data Setup, Hold and Slew Rate Derating” on page 144 in “DDR3 Device Operation” for single-
ended slew rate definition for data signals.
Slew Rate Definitions for Differential Input Signals
Input slew rate for differential signals (CK, CK and DQS, DQS) are defined and measured as shown in table
and figure below.
Notes:
The differential signal (i.e. CK-CK and DQS-DQS) must be linear between these thresholds.
Differential Input Slew Rate Definition for DQS, DQS and CK, CK
Differential Input Slew Rate Definition
Description
Measured
Defined by
Min Max
Differential input slew rate for rising edge
(CK-CK and DQS-DQS)VILdiffmax VIHdiffmin [VIHdiffmin-VILdiffmax] / DeltaTRdiff
Differential input slew rate for falling edge
(CK-CK and DQS-DQS)VIHdiffmin VILdiffmax [VIHdiffmin-VILdiffmax] / DeltaTFdiff
Rev. 0.1 / Aug. 2011 32
AC & DC Output Measurement Levels
Single Ended AC and DC Output Levels
Table below shows the output levels used for measurements of single ended signals.
Notes:
1. The swing of ±0.1 x VDDQ is based on approximately 50% of the static single ended output high or low
swing with a driver impedance of 40 and an effective test load of 25 to VTT = VDDQ / 2.
Differential AC and DC Output Levels
Table below shows the output levels used for measurements of single ended signals.
Notes:
1. The swing of ±0.2 x VDDQ is based on approximately 50% of the static differential output high or low
swing with a driver impedance of 40 and an effective test load of 25 to VTT = VDDQ/2 at each of the
differential outputs.
Single-ended AC and DC Output Levels
Symbol Parameter
DDR3L-800, 1066,
1333
Unit Notes
VOH(DC) DC output high measurement level (for IV curve linearity) 0.8 x VDDQ V
VOM(DC) DC output mid measurement level (for IV curve linearity) 0.5 x VDDQ V
VOL(DC) DC output low measurement level (for IV curve linearity) 0.2 x VDDQ V
VOH(AC) AC output high measurement level (for output SR) VTT + 0.1 x VDDQ V1
VOL(AC) AC output low measurement level (for output SR) VTT - 0.1 x VDDQ V1
Differential AC and DC Output Levels
Symbol Parameter
DDR3L-800, 1066,
1333
Unit Notes
VOHdiff (AC) AC differential output high measurement level (for output SR) + 0.2 x VDDQ V1
VOLdiff (AC) AC differential output low measurement level (for output SR) - 0.2 x VDDQ V1
Rev. 0.1 / Aug. 2011 33
Single Ended Output Slew Rate
When the Reference load for timing measurements, output slew rate for falling and rising edges is defined
and measured between VOL(AC) and VOH(AC) for single ended signals are shown in table and figure below.
Notes:
1. Output slew rate is verified by design and characterisation, and may not be subject to production test.
Single Ended Output slew Rate Definition
Description: SR; Slew Rate
Q: Query Output (like in DQ, which stands for Data-in, Query-Output)
se: Single-ended Signals
For Ron = RZQ/7 setting
Note 1): In two cases, a maximum slew rate of 6V/ns applies for a single DQ signal within a byte lane.
Case 1 is a defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high
to low or low to high) while all remaining DQ signals in the same byte lane are static (i.e. they stay at either high or low).
Case 2 is a defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high
to low or low to high) while all remaining DQ signals in the same byte lane switching into the opposite direction (i.e. from
low to high of high to low respectively). For the remaining DQ signal switching in to the opposite direction, the regular
maximum limite of 5 V/ns applies.
Single-ended Output slew Rate Definition
Description
Measured
Defined by
From To
Single-ended output slew rate for rising edge VOL(AC) VOH(AC) [VOH(AC)-VOL(AC)] / DeltaTRse
Single-ended output slew rate for falling edge VOH(AC) VOL(AC) [VOH(AC)-VOL(AC)] / DeltaTFse
Output Slew Rate (single-ended)
DDR3L-800 DDR3L-1066 DDR3L-1333 Units
Parameter Symbol Min Max Min Max Min Max
Single-ended Output Slew Rate SRQse 2.5 52.5 52.5 5V/ns
Delta TFse
Delta TRse
vOH(AC)
vOl(AC)
V
Single Ended Output Voltage(l.e.DQ)
Single Ended Output Slew Rate Definition
Rev. 0.1 / Aug. 2011 34
Differential Output Slew Rate
With the reference load for timing measurements, output slew rate for falling and rising edges is defined
and measured between VOLdiff (AC) and VOHdiff (AC) for differential signals as shown in table and figure
below.
Differential Output slew Rate Definition
Differential Output Slew Rate Definition
Description
Measured
Defined by
From To
Differential output slew rate for rising edge VOLdiff (AC) VOHdiff (AC) [VOHdiff (AC)-VOLdiff (AC)] / DeltaTRdiff
Differential output slew rate for falling edge VOHdiff (AC) VOLdiff (AC) [VOHdiff (AC)-VOLdiff (AC)] / DeltaTFdiff
Notes:
1. Output slew rate is verified by design and characterization, and may not be subject to production test.
Differential Output Slew Rate
DDR3L-800 DDR3L-1066 DDR3L-1333 Units
Parameter Symbol Min Max Min Max Min Max
Differential Output Slew Rate SRQdiff 5 10 5 10 5 10 V/ns
Description: SR; Slew Rate
Q: Query Output (like in DQ, which stands for Data-in, Query-Output)
se: Single-ended Signals
For Ron = RZQ/7 setting
Rev. 0.1 / Aug. 2011 35
Reference Load for AC Timing and Output Slew Rate
Figure below represents the effective reference load of 25 ohms used in defining the relevant AC timing
parameters of the device as well as output slew rate measurements.
It is not intended as a precise representation of any particular system environment or a depiction of the
actual load presented by a production tester. System designers should use IBIS or other simulation tools to
correlate the timing reference load to a system environment. Manufacturers correlate to their production
test conditions, generally one or more coaxial transmission lines terminated at the tester electronics.
Reference Load for AC Timing and Output Slew Rate
DUT DQ
DQS
DQS
VDDQ
25 Ohm
VTT = VDDQ/2
CK, CK
Rev. 0.1 / Aug. 2011 36
Overshoot and Undershoot Specifications
Address and Control Overshoot and Undershoot Specifications
Address and Control Overshoot and Undershoot Definition
AC Overshoot/Undershoot Specification for Address and Control Pins
Parameter DDR3L-800 DDR3L-
1066
DDR3L-
1333 Units
Maximum peak amplitude allowed for overshoot area. (See Figure below) 0.4 0.4 0.4 V
Maximum peak amplitude allowed for undershoot area. (See Figure below) 0.4 0.4 0.4 V
Maximum overshoot area above VDD (See Figure below) 0.67 0.5 0.4 V-ns
Maximum undershoot area below VSS (See Figure below) 0.67 0.5 0.4 V-ns
(A0-A15, BA0-BA3, CS, RAS, CAS, WE, CKE, ODT)
See figure below for each parameter definition
Maximum Amplitude
Overshoot Area
VDD
VSS
Maxim um Am plitude
Undershoot Area
Time (ns)
Address and Control Overshoot and Undershoot Definition
Volts
(V)
Rev. 0.1 / Aug. 2011 37
Clock, Data, Strobe and Mask Overshoot and Undershoot Specifications
Clock, Data, Strobe and Mask Overshoot and Undershoot Definition
AC Overshoot/Undershoot Specification for Clock, Data, Strobe and Mask
Parameter DDR3L-
800
DDR3L-
1066
DDR3L-
1333 Units
Maximum peak amplitude allowed for overshoot area. (See Figure below) 0.4 0.4 0.4 V
Maximum peak amplitude allowed for undershoot area. (See Figure below) 0.4 0.4 0.4 V
Maximum overshoot area above VDD (See Figure below) 0.25 0.19 0.15 V-ns
Maximum undershoot area below VSS (See Figure below) 0.25 0.19 0.15 V-ns
(CK, CK, DQ, DQS, DQS, DM)
See figure below for each parameter definition
Maximum Amplitude
Overshoot Area
VDDQ
VSSQ
M axim um Am plitude
Undershoot Area
Time (ns)
Clock, Data Strobe and Mask Overshoot and Undershoot Definition
Volts
(V)
Rev. 0.1 / Aug. 2011 38
Refresh parameters by device density
Refresh parameters by device density
Parameter RTT_Nom Setting 512Mb 1Gb 2Gb 4Gb 8Gb Units Notes
REF command ACT or
REF command time tRFC 90 110 160 260 350 ns
Average periodic
refresh interval tREFI 0 C TCASE 85 C7.87.87.87.87.8us
85 C TCASE 95 C3.93.93.93.93.9us1
Rev. 0.1 / Aug. 2011 39
Standard Speed Bins
DDR3 SDRAM Standard Speed Bins include tCK, tRCD, tRP, tRAS and tRC for each corresponding bin.
DDR3L-800 Speed Bins
For specific Notes See "Speed Bin Table Notes" on page 42.
Speed Bin DDR3L-800E
Unit Notes
CL - nRCD - nRP 6-6-6
Parameter Symbol min max
Internal read command to first data
t
AA 15 20 ns
ACT to internal read or write delay time
t
RCD 15 ns
PRE command period
t
RP 15 ns
ACT to ACT or REF command period
t
RC 52.5 ns
ACT to PRE command period
t
RAS 37.5 9 * tREFI ns
CL = 5 CWL = 5
t
CK(AVG) Reserved ns 1, 2, 3, 4
CL = 6 CWL = 5
t
CK(AVG) 2.5 3.3 ns 1, 2, 3
Supported CL Settings 6
n
CK
Supported CWL Settings 5
n
CK
Rev. 0.1 / Aug. 2011 40
DDR3L-1066 Speed Bins
For specific Notes See "Speed Bin Table Notes" on page 42.
Speed Bin DDR3L-1066F
Unit Note
CL - nRCD - nRP 7-7-7
Parameter Symbol min max
Internal read command to
first data
t
AA 13.125 20 ns
ACT to internal read or
write delay time
t
RCD 13.125 ns
PRE command period
t
RP 13.125 ns
ACT to ACT or REF
command period
t
RC 50.625 ns
ACT to PRE command
period
t
RAS 37.5 9 * tREFI ns
CL = 5 CWL = 5
t
CK(AVG) Reserved ns 1, 2, 3, 4, 5
CWL = 6
t
CK(AVG) Reserved ns 4
CL = 6 CWL = 5
t
CK(AVG) 2.5 3.3 ns 1, 2, 3, 5
CWL = 6
t
CK(AVG) Reserved ns 1, 2, 3, 4
CL = 7 CWL = 5
t
CK(AVG) Reserved ns 4
CWL = 6
t
CK(AVG) 1.875 < 2.5 ns 1, 2, 3, 4
CL = 8 CWL = 5
t
CK(AVG) Reserved ns 4
CWL = 6
t
CK(AVG) 1.875 < 2.5 ns 1, 2, 3
Supported CL Settings 6, 7, 8
n
CK
Supported CWL Settings 5, 6
n
CK
Rev. 0.1 / Aug. 2011 41
DDR3L-1333 Speed Bins
For specific Notes See "Speed Bin Table Notes" on page 42.
Speed Bin DDR3L-1333H
Unit Note
CL - nRCD - nRP 9-9-9
Parameter Symbol min max
Internal read command
to first data
t
AA
13.5
(13.125)8 20 ns
ACT to internal read or
write delay time
t
RCD
13.5
(13.125)8 —ns
PRE command period
t
RP
13.5
(13.125)8 —ns
ACT to ACT or REF
command period
t
RC
49.5
(49.125)8 —ns
ACT to PRE command
period
t
RAS 36 9 * tREFI ns
CL = 5 CWL = 5
t
CK(AVG) Reserved ns 1,2, 3,4, 6
CWL = 6, 7
t
CK(AVG) Reserved ns 4
CL = 6
CWL = 5
t
CK(AVG) 2.5 3.3 ns 1, 2, 3, 6
CWL = 6
t
CK(AVG) Reserved ns 1, 2, 3, 4, 6
CWL = 7
t
CK(AVG) Reserved ns 4
CL = 7
CWL = 5
t
CK(AVG) Reserved ns 4
CWL = 6
t
CK(AVG)
1.875 < 2.5 ns 1, 2, 3, 4, 6
Reserved
CWL = 7
t
CK(AVG) Reserved ns 1, 2, 3, 4
CL = 8
CWL = 5
t
CK(AVG) Reserved ns 4
CWL = 6
t
CK(AVG) 1.875 < 2.5 ns 1, 2, 3, 6
CWL = 7
t
CK(AVG) Reserved ns 1, 2, 3, 4
CL = 9 CWL = 5, 6
t
CK(AVG) Reserved ns 4
CWL = 7
t
CK(AVG) 1.5 <1.875 ns 1, 2, 3, 4
CL = 10
CWL = 5, 6
t
CK(AVG) Reserved ns 4
CWL = 7
t
CK(AVG)
1.5 <1.875 ns 1, 2, 3
Reserved ns
Supported CL Settings 6, 8, (7), 9, (10)
n
CK
Supported CWL Settings 5, 6, 7
n
CK
Rev. 0.1 / Aug. 2011 42
Speed Bin Table Notes
Absolute Specification (TOPER; VDDQ = VDD = 1.35V +/- 0.075 V);
Notes:
1. The CL setting and CWL setting result in tCK(AVG).MIN and tCK(AVG).MAX requirements. When making
a selection of tCK (AVG), both need to be fulfilled: Requirements from CL setting as well as requirements
from CWL setting.
2. tCK(AVG).MIN limits: Since CAS Latency is not purely analog - data and strobe output are synchronized
by the DLL - all possible intermediate frequencies may not be guaranteed. An application should use the
next smaller JEDEC standard tCK (AVG) value (2.5, 1.875, 1.5, or 1.25 ns) when calculating CL [nCK] =
tAA [ns] / tCK (AVG) [ns], rounding up to the next ‘Supported CL.
3. tCK(AVG).MAX limits: Calculate tCK (AVG) = tAA.MAX / CLSELECTED and round the resulting tCK (AVG)
down to the next valid speed bin (i.e. 3.3ns or 2.5ns or 1.875 ns or 1.25 ns). This result is tCK(AVG).MAX
corresponding to CLSE LECTED.
4. ‘Reserved’ settings are not allowed. User must program a different value.
5. Any DDR3-1066 speed bin also supports functional operation at lower frequencies as shown in the table
which are not subject to Production Tests but verified by Design/Characterization.
6. Any DDR3-1333 speed bin also supports functional operation at lower frequencies as shown in the table
which are not subject to Production Tests but verified by Design/Characterization.
7. Hynix DDR3 SDRAM devices support down binning to CL=7 and CL=9, and tAA/tRCD/tRP satisfy mini-
mum value of 13.125ns. SPD settings are also programmed to match. For example, DDR3 1333H devices
supporting down binning to DDR3-1066F should program 13.125 ns in SPD bytes for tAAmin (Byte 16),
tRCDmin (Byte 18), and tRPmin (Byte 20). DDR3-1600K devices supporting down binning to DDR3-1333H
or DDR3 1600F should program 13.125 ns in SPD bytes for tAAmin (Byte 16), tRCDmin (Byte 18), and tRP-
min (Byte 20). Once tRP (Byte 20) is programmed to 13.125ns, tRCmin (Byte 21,23) also should be pro-
grammed accordingly. For example, 49.125ns (tRASmin + tRPmin = 36 ns + 13.125 ns) for DDR3-1333H
and 48.125ns (tRASmin + tRPmin = 35 ns + 13.125 ns) for DDR3-1600K.
Rev. 0.1 / Aug. 2011 43
Environmental Parameters
Note:
1. Stress greater than those listed may cause permanent damage to the device. This is a stress rating only,
and device functional operation at or above the conditions indicated is not implied. Expousure to absolute
maximum rating conditions for extended periods may affect reliablility.
2. Up to 9850 ft.
3. The designer must meet the case temperature specifications for individual module components.
Symbol Parameter Rating Units Notes
TOPR Operating temperature See Note 3
HOPR Operating humidity (relative) 10 to 90 % 1
TSTG Storage temperature -50 to +100 oC1
HSTG Storage humidity (without condensation) 5 to 95 % 1
PBAR Barometric Pressure (operating & storage) 105 to 69 K Pascal 1, 2
Rev. 0.1 / Aug. 2011 44
IDD and IDDQ Specification Parameters and Test Conditions
IDD and IDDQ Measurement Conditions
In this chapter, IDD and IDDQ measurement conditions such as test load and patterns are defined. Figure
1. shows the setup and test load for IDD and IDDQ measurements.
IDD currents (such as IDD0, IDD1, IDD2N, IDD2NT, IDD2P0, IDD2P1, IDD2Q, IDD3N, IDD3P, IDD4R,
IDD4W, IDD5B, IDD6, IDD6ET, IDD6TC and IDD7) are measured as time-averaged currents with all
VDD balls of the DDR3 SDRAM under test tied together. Any IDDQ current is not included in IDD cur-
rents.
IDDQ currents (such as IDDQ2NT and IDDQ4R) are measured as time-averaged currents with all
VDDQ balls of the DDR3 SDRAM under test tied together. Any IDD current is not included in IDDQ cur-
rents.
Attention: IDDQ values cannot be directly used to calculate IO power of the DDR3 SDRAM. They can
be used to support correlation of simulated IO power to actual IO power as outlined in Figure 2. In
DRAM module application, IDDQ cannot be measured separately since VDD and VDDQ are using one
merged-power layer in Module PCB.
For IDD and IDDQ measurements, the following definitions apply:
”0” and “LOW” is defined as VIN <= VILAC(max).
”1” and “HIGH” is defined as VIN >= VIHAC(max).
“MID_LEVEL” is defined as inputs are VREF = VDD/2.
Timing used for IDD and IDDQ Measurement-Loop Patterns are provided in Table 1.
Basic IDD and IDDQ Measurement Conditions are described in Table 2.
Detailed IDD and IDDQ Measurement-Loop Patterns are described in Table 3 through Table 10.
IDD Measurements are done after properly initializing the DDR3 SDRAM. This includes but is not lim-
ited to setting
RON = RZQ/7 (34 Ohm in MR1);
Qoff = 0B (Output Buffer enabled in MR1);
RTT_Nom = RZQ/6 (40 Ohm in MR1);
RTT_Wr = RZQ/2 (120 Ohm in MR2);
TDQS Feature disabled in MR1
Attention: The IDD and IDDQ Measurement-Loop Patterns need to be executed at least one time
before actual IDD or IDDQ measurement is started.
Define D = {CS, RAS, CAS, WE}:= {HIGH, LOW, LOW, LOW}
Define D = {CS, RAS, CAS, WE}:= {HIGH, HIGH, HIGH, HIGH}
Rev. 0.1 / Aug. 2011 45
Figure 1 - Measurement Setup and Test Load for IDD and IDDQ (optional) Measurements
[Note: DIMM level Output test load condition may be different from above
Figure 2 - Correlation from simulated Channel IO Power to actual Channel IO Power supported
by IDDQ Measurement
VDD
DDR3L
SDRAM
VDDQ
RESET
CK/CK
DQS, DQS
CS
RAS, CAS, WE
A, BA
ODT
ZQ VSS VSSQ
DQ, DM,
TDQS, TDQS
CKE RTT = 25 Ohm
VDDQ/2
IDD IDDQ (optional)
Application specific
memory channel
environment
Channel
IO Power
Simulation
IDDQ
Simulation
IDDQ
Simulation
Channel IO Power
Number
IDDQ
Test Load
Correction
Rev. 0.1 / Aug. 2011 46
Table 1 -Timings used for IDD and IDDQ Measurement-Loop Patterns
Table 2 -Basic IDD and IDDQ Measurement Conditions
Symbol DDR3L-1066 DDR3L-1333 Unit
7-7-7 9-9-9
t
CK 1.875 1.5 ns
CL 7 9 nCK
n
RCD 79nCK
n
RC 27 33 nCK
n
RAS 20 24 nCK
n
RP 79nCK
n
FAW
1KB page size 20 20 nCK
2KB page size 27 30 nCK
n
RRD
1KB page size 4 4 nCK
2KB page size 6 5 nCK
n
RFC -512Mb 48 60 nCK
n
RFC-1 Gb 59 74 nCK
n
RFC- 2 Gb 86 107 nCK
n
RFC- 4 Gb 160 200 nCK
n
RFC- 8 Gb 187 234 nCK
Symbol Description
I
DD0
Operating One Bank Active-Precharge Current
CKE: High; External clock: On; tCK, nRC, nRAS, CL: see Table 1; BL: 8a); AL: 0; CS: High between ACT and
PRE; Command, Address, Bank Address Inputs: partially toggling according to Table 3; Data IO: MID-LEVEL;
DM: stable at 0; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,... (see Table 3); Output Buf-
fer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 3.
I
DD1
Operating One Bank Active-Precharge Current
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: see Table 1; BL: 8a); AL: 0; CS: High between ACT,
RD and PRE; Command, Address; Bank Address Inputs, Data IO: partially toggling according to Table 4; DM:
stable at 0; Bank Activity: Cycling with on bank active at a time: 0,0,1,1,2,2,... (see Table 4); Output Buffer and
RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 4.
Rev. 0.1 / Aug. 2011 47
I
DD2N
Precharge Standby Current
CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank
Address Inputs: partially toggling according to Table 5; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all
banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details:
see Table 5.
I
DD2NT
Precharge Standby ODT Current
CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank
Address Inputs: partially toggling according to Table 6; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all
banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: toggling according to Table 6;
Pattern Details: see Table 6.
I
DD2P0
Precharge Power-Down Current Slow Exit
CKE: Low; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank
Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks closed; Output Buf-
fer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Precharge Power Down Mode: Slow Exitc)
I
DD2P1
Precharge Power-Down Current Fast Exit
CKE: Low; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank
Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks closed; Output Buf-
fer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Precharge Power Down Mode: Fast Exitc)
I
DD2Q
Precharge Quiet Standby Current
CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank
Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks closed; Output Buf-
fer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0
I
DD3N
Active Standby Current
CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank
Address Inputs: partially toggling according to Table 5; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all
banks open; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see
Table 5.
I
DD3P
Active Power-Down Current
CKE: Low; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank
Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks open; Output Buffer
and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0
Symbol Description
Rev. 0.1 / Aug. 2011 48
I
DD4R
Operating Burst Read Current
CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: High between RD; Command, Address,
Bank Address Inputs: partially toggling according to Table 7; Data IO: seamless read data burst with different
data between one burst and the next one according to Table 7; DM: stable at 0; Bank Activity: all banks open,
RD commands cycling through banks: 0,0,1,1,2,2,...(see Table 7); Output Buffer and RTT: Enabled in Mode
Registersb); ODT Signal: stable at 0; Pattern Details: see Table 7.
I
DD4W
Operating Burst Write Current
CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: High between WR; Command, Address,
Bank Address Inputs: partially toggling according to Table 8; Data IO: seamless read data burst with different
data between one burst and the next one according to Table 8; DM: stable at 0; Bank Activity: all banks open,
WR commands cycling through banks: 0,0,1,1,2,2,...(see Table 8); Output Buffer and RTT: Enabled in Mode
Registersb); ODT Signal: stable at HIGH; Pattern Details: see Table 8.
I
DD5B
Burst Refresh Current
CKE: High; External clock: On; tCK, CL, nRFC: see Table 1; BL: 8a); AL: 0; CS: High between REF; Command,
Address, Bank Address Inputs: partially toggling according to Table 9; Data IO: MID_LEVEL; DM: stable at 0;
Bank Activity: REF command every nREF (see Table 9); Output Buffer and RTT: Enabled in Mode Registersb);
ODT Signal: stable at 0; Pattern Details: see Table 9.
I
DD6
Self-Refresh Current: Normal Temperature Range
T
CASE: 0 - 85 oC; Auto Self-Refresh (ASR): Disabledd);Self-Refresh Temperature Range (SRT): Normale); CKE:
Low; External clock: Off; CK and CK: LOW; CL: see Table 1; BL: 8a); AL: 0; CS, Command, Address, Bank
Address Inputs, Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: Self-Refresh operation; Output Buffer
and RTT: Enabled in Mode Registersb); ODT Signal: MID_LEVEL
I
DD6ET
Self-Refresh Current: Extended Temperature Range (optional)
T
CASE: 0 - 95 oC; Auto Self-Refresh (ASR): Disabledd);Self-Refresh Temperature Range (SRT): Extendede);
CKE: Low; External clock: Off; CK and CK: LOW; CL: see Table 1; BL: 8a); AL: 0; CS, Command, Address, Bank
Address Inputs, Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: Extended Temperature Self-Refresh
operation; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: MID_LEVEL
I
DD6TC
Auto Self-Refresh Current (optional)
T
CASE: 0 - 95 oC; Auto Self-Refresh (ASR): Enabledd);Self-Refresh Temperature Range (SRT): Normale); CKE:
Low; External clock: Off; CK and CK: LOW; CL: see Table 1; BL: 8a); AL: 0; CS, Command, Address, Bank
Address Inputs, Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: Auto Self-Refresh operation; Output Buf-
fer and RTT: Enabled in Mode Registersb); ODT Signal: MID_LEVEL
Symbol Description
Rev. 0.1 / Aug. 2011 49
a) Burst Length: BL8 fixed by MRS: set MR0 A[1,0]=00B
b) Output Buffer Enable: set MR1 A[12] = 0B; set MR1 A[5,1] = 01B; RTT_Nom enable: set MR1 A[9,6,2]
= 011B; RTT_Wr enable: set MR2 A[10,9] = 10B
c) Precharge Power Down Mode: set MR0 A12=0B for Slow Exit or MR0 A12 = 1B for Fast Exit
d) Auto Self-Refresh (ASR): set MR2 A6 = 0B to disable or 1B to enable feature
e) Self-Refresh Temperature Range (SRT): set MR2 A7 = 0B for normal or 1B for extended temperature
range
f) Read Burst Type: Nibble Sequential, set MR0 A[3] = 0B
I
DD7
Operating Bank Interleave Read Current
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, NRRD, nFAW, CL: see Table 1; BL: 8a),f); AL: CL-1; CS:
High between ACT and RDA; Command, Address, Bank Address Inputs: partially toggling according to Table
10; Data IO: read data burst with different data between one burst and the next one according to Table 10;
DM: stable at 0; Bank Activity: two times interleaved cycling through banks (0, 1,...7) with different address-
ing, wee Table 10; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern
Details: see Table 10.
Symbol Description
Rev. 0.1 / Aug. 2011 50
Table 3 - IDD0 Measurement-Loop Patterna)
a) DM must be driven LOW all the time. DQS, DQS are MID-LEVEL.
b) DQ signals are MID-LEVEL.
CK, CK
CKE
Sub-Loop
Cycle
Number
Command
CS
RAS
CAS
WE
ODT
BA[2:0]
A[15:11]
A[10]
A[9:7]
A[6:3]
A[2:0]
Datab)
toggling
Static High
00ACT 0 0 1 1 0 0 00 0 0 0 0 -
1,2 D, D 1 0 0 0 0 0 00 0 0 0 0 -
3,4 D, D 1111 0 0000 0 0 0 -
... repeat pattern 1...4 until nRAS - 1, truncate if necessary
nRAS PRE 0 0 1 0 0 0 00 0 0 0 0 -
... repeat pattern 1...4 until nRC - 1, truncate if necessary
1*nRC+0 ACT 0 0 1 1 0 0 00 0 0 F 0 -
1*nRC+1, 2 D, D 1 0 0 0 0 0 00 0 0 F 0 -
1*nRC+3, 4 D, D 1111 0 0000 0 F 0 -
... repeat pattern 1...4 until 1*nRC + nRAS - 1, truncate if necessary
1*nRC+nRAS PRE 0 0 1 0 0 0 00 0 0 F 0 -
... repeat pattern 1...4 until 2*nRC - 1, truncate if necessary
1 2*nRC repeat Sub-Loop 0, use BA[2:0] = 1 instead
2 4*nRC repeat Sub-Loop 0, use BA[2:0] = 2 instead
3 6*nRC repeat Sub-Loop 0, use BA[2:0] = 3 instead
4 8*nRC repeat Sub-Loop 0, use BA[2:0] = 4 instead
5 10*nRC repeat Sub-Loop 0, use BA[2:0] = 5 instead
6 12*nRC repeat Sub-Loop 0, use BA[2:0] = 6 instead
7 14*nRC repeat Sub-Loop 0, use BA[2:0] = 7 instead
Rev. 0.1 / Aug. 2011 51
Table 4 - IDD1 Measurement-Loop Patterna)
a) DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID-
LEVEL.
b) Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are
MID_LEVEL.
CK, CK
CKE
Sub-Loop
Cycle
Number
Command
CS
RAS
CAS
WE
ODT
BA[2:0]
A[15:11]
A[10]
A[9:7]
A[6:3]
A[2:0]
Datab)
toggling
Static High
00ACT001100000000 -
1,2 D, D 1 0 0 0 0 0 00 0 0 0 0 -
3,4 D, D 111100000000 -
... repeat pattern 1...4 until nRCD - 1, truncate if necessary
nRCD RD 0 1 0 1 0 0 00 0 0 0 0 00000000
... repeat pattern 1...4 until nRAS - 1, truncate if necessary
nRAS PRE001000000000 -
... repeat pattern 1...4 until nRC - 1, truncate if necessary
1*nRC+0 ACT 0 0 1 1 0 0 00 0 0 F 0 -
1*nRC+1,2 D, D 1 0 0 0 0 0 00 0 0 F 0 -
1*nRC+3,4 D, D 1111000000F0 -
... repeat pattern nRC + 1,...4 until nRC + nRCE - 1, truncate if necessary
1*nRC+nRCD RD 0 1 0 1 0 0 00 0 0 F 0 00110011
... repeat pattern nRC + 1,...4 until nRC + nRAS - 1, truncate if necessary
1*nRC+nRAS PRE 0 0 1 0 0 0 00 0 0 F 0 -
... repeat pattern nRC + 1,...4 until *2 nRC - 1, truncate if necessary
1 2*nRC repeat Sub-Loop 0, use BA[2:0] = 1 instead
2 4*nRC repeat Sub-Loop 0, use BA[2:0] = 2 instead
3 6*nRC repeat Sub-Loop 0, use BA[2:0] = 3 instead
4 8*nRC repeat Sub-Loop 0, use BA[2:0] = 4 instead
5 10*nRC repeat Sub-Loop 0, use BA[2:0] = 5 instead
6 12*nRC repeat Sub-Loop 0, use BA[2:0] = 6 instead
7 14*nRC repeat Sub-Loop 0, use BA[2:0] = 7 instead
Rev. 0.1 / Aug. 2011 52
Table 5 - IDD2N and IDD3N Measurement-Loop Patterna)
a) DM must be driven LOW all the time. DQS, DQS are MID-LEVEL.
b) DQ signals are MID-LEVEL.
Table 6 - IDD2NT and IDDQ2NT Measurement-Loop Patterna)
a) DM must be driven LOW all the time. DQS, DQS are MID-LEVEL.
b) DQ signals are MID-LEVEL.
CK, CK
CKE
Sub-Loop
Cycle
Number
Command
CS
RAS
CAS
WE
ODT
BA[2:0]
A[15:11]
A[10]
A[9:7]
A[6:3]
A[2:0]
Datab)
toggling
Static High
00D10000000000 -
1D10000000000-
2D1111 0 0 0 0 0 F 0 -
3D
1111 0 0 0 0 0 F 0 -
1 4-7 repeat Sub-Loop 0, use BA[2:0] = 1 instead
2 8-11 repeat Sub-Loop 0, use BA[2:0] = 2 instead
3 12-15 repeat Sub-Loop 0, use BA[2:0] = 3 instead
4 16-19 repeat Sub-Loop 0, use BA[2:0] = 4 instead
5 20-23 repeat Sub-Loop 0, use BA[2:0] = 5 instead
6 24-17 repeat Sub-Loop 0, use BA[2:0] = 6 instead
7 28-31 repeat Sub-Loop 0, use BA[2:0] = 7 instead
CK, CK
CKE
Sub-Loop
Cycle
Number
Command
CS
RAS
CAS
WE
ODT
BA[2:0]
A[15:11]
A[10]
A[9:7]
A[6:3]
A[2:0]
Datab)
toggling
Static High
00D10000000000 -
1D10000000000-
2D
1111 0 0 0 0 0 F 0 -
3D
1111 0 0 0 0 0 F 0 -
1 4-7 repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 1
2 8-11 repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 2
3 12-15 repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 3
4 16-19 repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 4
5 20-23 repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 5
6 24-17 repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 6
7 28-31 repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 7
Rev. 0.1 / Aug. 2011 53
Table 7 - IDD4R and IDDQ4R Measurement-Loop Patterna)
a) DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID-LEVEL.
b) Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are MID-LEVEL.
Table 8 - IDD4W Measurement-Loop Patterna)
a) DM must be driven LOW all the time. DQS, DQS are used according to WR Commands, otherwise MID-LEVEL.
b) Burst Sequence driven on each DQ signal by Write Command. Outside burst operation, DQ signals are MID-LEVEL.
CK, CK
CKE
Sub-Loop
Cycle
Number
Command
CS
RAS
CAS
WE
ODT
BA[2:0]
A[15:11]
A[10]
A[9:7]
A[6:3]
A[2:0]
Datab)
toggling
Static High
00RD 0 1 0 1 0 0 00 0 0 0 0 00000000
1D100000000000-
2,3 D,D 1111 0 0000 0 0 0 -
4 RD 0 1 0 1 0 0 00 0 0 F 0 00110011
5D1000000000F0-
6,7 D,D 1111 0 0000 0 F 0 -
1 8-15 repeat Sub-Loop 0, but BA[2:0] = 1
2 16-23 repeat Sub-Loop 0, but BA[2:0] = 2
3 24-31 repeat Sub-Loop 0, but BA[2:0] = 3
4 32-39 repeat Sub-Loop 0, but BA[2:0] = 4
5 40-47 repeat Sub-Loop 0, but BA[2:0] = 5
6 48-55 repeat Sub-Loop 0, but BA[2:0] = 6
7 56-63 repeat Sub-Loop 0, but BA[2:0] = 7
CK, CK
CKE
Sub-Loop
Cycle
Number
Command
CS
RAS
CAS
WE
ODT
BA[2:0]
A[15:11]
A[10]
A[9:7]
A[6:3]
A[2:0]
Datab)
toggling
Static High
00WR 0 1 0 0 1 0 00 0 0 0 0 00000000
1D100010000000-
2,3 D,D 1111 1 0000 0 0 0 -
4 WR 0 1 0 0 1 0 00 0 0 F 0 00110011
5D1000100000F0-
6,7 D,D 1111 1 0000 0 F 0 -
1 8-15 repeat Sub-Loop 0, but BA[2:0] = 1
2 16-23 repeat Sub-Loop 0, but BA[2:0] = 2
3 24-31 repeat Sub-Loop 0, but BA[2:0] = 3
4 32-39 repeat Sub-Loop 0, but BA[2:0] = 4
5 40-47 repeat Sub-Loop 0, but BA[2:0] = 5
6 48-55 repeat Sub-Loop 0, but BA[2:0] = 6
7 56-63 repeat Sub-Loop 0, but BA[2:0] = 7
Rev. 0.1 / Aug. 2011 54
Table 9 - IDD5B Measurement-Loop Patterna)
a) DM must be driven LOW all the time. DQS, DQS are MID-LEVEL.
b) DQ signals are MID-LEVEL.
CK, CK
CKE
Sub-Loop
Cycle
Number
Command
CS
RAS
CAS
WE
ODT
BA[2:0]
A[15:11]
A[10]
A[9:7]
A[6:3]
A[2:0]
Datab)
toggling
Static High
00REF 0 0 0 1 0 0 0 0 0 0 0 -
11.2 D, D 1 0 0 0 0 0 00 0 0 0 0 -
3,4 D, D 1111 0 0000 0 F 0 -
5...8 repeat cycles 1...4, but BA[2:0] = 1
9...12 repeat cycles 1...4, but BA[2:0] = 2
13...16 repeat cycles 1...4, but BA[2:0] = 3
17...20 repeat cycles 1...4, but BA[2:0] = 4
21...24 repeat cycles 1...4, but BA[2:0] = 5
25...28 repeat cycles 1...4, but BA[2:0] = 6
29...32 repeat cycles 1...4, but BA[2:0] = 7
2 33...nRFC-1 repeat Sub-Loop 1, until nRFC - 1. Truncate, if necessary.
Rev. 0.1 / Aug. 2011 55
Table 10 - IDD7 Measurement-Loop Patterna)
ATTENTION! Sub-Loops 10-19 have inverse A[6:3] Pattern and Data Pattern than Sub-Loops 0-9
a) DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID-LEVEL.
b) Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are MID-LEVEL.
CK, CK
CKE
Sub-Loop
Cycle
Number
Command
CS
RAS
CAS
WE
ODT
BA[2:0]
A[15:11]
A[10]
A[9:7]
A[6:3]
A[2:0]
Datab)
toggling
Static High
0 0 ACT 0 0 1 1 0 0 00 0 0 0 0 -
1RDA 0 1 0 1 0 0 00 1 0 0 0 00000000
2 D 1 0 0 0 0 0 00 0 0 0 0 -
... repeat above D Command until nRRD - 1
1
nRRD ACT 0 0 1 1 0 1 00 0 0 F 0 -
nRRD+1 RDA 0 1 0 1 0 1 00 1 0 F 0 00110011
nRRD+2 D 1 0 0 0 0 1 00 0 0 F 0 -
... repeat above D Command until 2* nRRD - 1
22*nRRD repeat Sub-Loop 0, but BA[2:0] = 2
33*nRRD repeat Sub-Loop 1, but BA[2:0] = 3
44*nRRD D 1 0 0 0 0 3 00 0 0 F 0 -
Assert and repeat above D Command until nFAW - 1, if necessary
5nFAW repeat Sub-Loop 0, but BA[2:0] = 4
6nFAW+nRRD repeat Sub-Loop 1, but BA[2:0] = 5
7nFAW+2*nRRD repeat Sub-Loop 0, but BA[2:0] = 6
8nFAW+3*nRRD repeat Sub-Loop 1, but BA[2:0] = 7
9nFAW+4*nRRD D 1 0 0 0 0 7 00 0 0 F 0 -
Assert and repeat above D Command until 2* nFAW - 1, if necessary
10
2*nFAW+0 ACT 0 0 1 1 0 0 00 0 0 F 0 -
2*nFAW+1 RDA 0 1 0 1 0 0 00 1 0 F 0 00110011
2&nFAW+2 D 1 0 0 0 0 0 00 0 0 F 0 -
Repeat above D Command until 2* nFAW + nRRD - 1
11
2*nFAW+nRRD ACT 0 0 1 1 0 1 00 0 0 0 0 -
2*nFAW+nRRD+1 RDA 0 1 0 1 0 1 00 1 0 0 0 00000000
2&nFAW+nRRD+2 D 1 0 0 0 0 1 00 0 0 0 0 -
Repeat above D Command until 2* nFAW + 2* nRRD - 1
12 2*nFAW+2*nRRD repeat Sub-Loop 10, but BA[2:0] = 2
13 2*nFAW+3*nRRD repeat Sub-Loop 11, but BA[2:0] = 3
14 2*nFAW+4*nRRD D 1 0 0 0 0 3 00 0 0 0 0 -
Assert and repeat above D Command until 3* nFAW - 1, if necessary
15 3*nFAW repeat Sub-Loop 10, but BA[2:0] = 4
16 3*nFAW+nRRD repeat Sub-Loop 11, but BA[2:0] = 5
17 3*nFAW+2*nRRD repeat Sub-Loop 10, but BA[2:0] = 6
18 3*nFAW+3*nRRD repeat Sub-Loop 11, but BA[2:0] = 7
19 3*nFAW+4*nRRD D 1 0 0 0 0 7 00 0 0 0 0 -
Assert and repeat above D Command until 4* nFAW - 1, if necessary
Rev. 0.1 / Aug. 2011 56
IDD Specifications (Tcase: 0 to 95oC)
* Module IDD values in the datasheet are only a calculation based on the component IDD spec.
The actual measurements may vary according to DQ loading cap.
16GB, 2G x 72 R-DIMM: HMT42GR7MFR4A
32GB, 4G x 72 R-DIMM: HMT84GR7MMR4A
Symbol DDR3L 1066 DDR3L 1333 Unit note
IDD0 2024 2024 mA
IDD1 2204 2204 mA
IDD2N 1664 1664 mA
IDD2NT 1844 1844 mA
IDD2P0 948 948 mA
IDD2P1 1020 1020 mA
IDD2Q 1664 1844 mA
IDD3N 1844 2024 mA
IDD3P 948 1128 mA
IDD4R 2654 2924 mA
IDD4W 2654 2834 mA
IDD5B 3734 3824 mA
IDD6 948 948 mA
IDD6ET 1020 1020 mA
IDD6TC 1020 1020 mA
IDD7 3734 4094 mA
Symbol DDR3L 1066 DDR3L 1333 Unit note
IDD0 2924 2924 mA
IDD1 3104 3104 mA
IDD2N 2564 2564 mA
IDD2NT 2924 2924 mA
IDD2P0 1668 1688 mA
IDD2P1 1812 1812 mA
IDD2Q 2564 2924 mA
IDD3N 2924 3284 mA
IDD3P 1668 2028 mA
IDD4R 3554 3824 mA
IDD4W 3554 3734 mA
IDD5B 4634 4724 mA
IDD6 1668 1688 mA
IDD6ET 1812 1812 mA
IDD6TC 1812 1812 mA
IDD7 4634 4994 mA
Rev. 0.1 / Aug. 2011 57
Module Dimensions
2Gx72 - HMT42GR7MFR4A
30.00
9.50
17.30
23.30
5.175
Detail C Detail D
2.10
±
0.15
47.00
71.00
2X3.00
±
0.10
Front
1
120
5.0
1
1
240 121
Back
133.35
128.95
Registering
Clock Driver
SPD
/
TS
4X3.00
±
0.10
1.27
±010
mm
Side
max
3.43mm max
0.20
2.50
±
0.20
1.00
0.80
±
0.05
Detail of Contacts C
1.50
±
0.10
Detail of Contacts D
0.3
±
0.15
0.3~0.1
5.00
3.80
2.50
2.50
±
0.20
3
±
0.1
1.20
±
0.15
0.4
13.60
14.90
Detail of Contacts A
Detail of Contacts B
Detail B
Detail A
Note:
1. tolerance on all dimensions unless otherwise stated.
0.13
Units: millimeters
Rev. 0.1 / Aug. 2011 58
2Gx72 - HMT42GR7MFR4A - Heat Spreader
121
Registering
Clock Driver
240
57.2
2.7
15.36
22.00
Front
30.20
120
Back
133.35
22.00
Registering
Clock Driver
127
1.27
±010
mm
Side
max
7.19mm max
1
133.75
14.214
2.786
6.35
42.7
20.9
10
33.4 33.4
3.69
5.39
6.3
7.36
46.46
80.54
2.15
7.74
119.64
8
36.7
Note:
1. tolerance on all dimensions unless otherwise stated.
2.In order to uninstall FDHS, please contact sales administrator.
0.13
Units: millimeters
Rev. 0.1 / Aug. 2011 59
4Gx72 - HMT84GR7MMR4A
30.00
9.50
17.30
23.30
5.175
Detail C Detail D
2.10
±
0.15
47.00
71.00
2X3.00
±
0.10
Front
1
120
5.0
1
1
240 121
Back
133.35
128.95
Registering
Clock Driver
SPD
/
TS
4X3.00
±
0.10
1.27
±010
mm
Side
max
3.43mm max
0.20
2.50
±
0.20
1.00
0.80
±
0.05
Detail of Contacts C
1.50
±
0.10
Detail of Contacts D
0.3
±
0.15
0.3~0.1
5.00
3.80
2.50
2.50
±
0.20
3
±
0.1
1.20
±
0.15
0.4
13.60
14.90
Detail of Contacts A
Detail of Contacts B
Detail B
Detail A
Note:
1. tolerance on all dimensions unless otherwise stated.
0.13
Units: millimeters
DDP
DDP
DDP
DDP
DDP
DDP
DDP
DDP
DDP
DDP
DDP
DDP
DDP
DDP
DDP
DDP
DDP
DDP
DDP
DDP
DDP
DDP
DDP
DDP
DDP
DDP
DDP
DDP
DDP
DDP
DDP
DDP
DDP
DDP
DDP
DDP
Rev. 0.1 / Aug. 2011 60
4Gx72 - HMT84GR7MMR4A - Heat Spreader
121
Registering
Clock Driver
240
57.2
2.7
16.96
24.40
Front
30.20
120
Back
133.35
24.40
Registering
Clock Driver
127
1.27
±010
mm
Side
max
7.19mm max
1
133.75
15.81
3.59
6.35
41.9
20.9
10
33.4 33.4
4.49
5.39
6.3
7.36
46.46
80.54
8.04
119.64
8
36.7
Note:
1. tolerance on all dimensions unless otherwise stated.
2.In order to uninstall FDHS, please contact sales administrator.
0.13
Units: millimeters
2.155