N681386/87 Single Programmable Extended Codec/SLCC 1. DESCRIPTION The N681386/87, implements a single channel FXS telephone line interface optimized for short loop applications. It integrates SLCC (Subscriber Line Control Circuit) functionality with a programmable CODEC and a DC/DC controller. The SLCC supports internal ringing up to 90 VPK (5 REN at 4k ft) ideal for Customer Premise Equipment (CPE). The CODEC can be configured for -law, A-law or 16-bit linear PCM encoding. It also supports a comprehensive set of signaling capabilities required to supervise and control the telephone lines. These include tone generation, ring tones, DTMF detection/ generation as well as FSK generation. An on-chip Pulse Width Modulation (PWM) driver allows control of an inductor based DC/DC converter. Programmable impedance and trans-hybrid balancing allow for worldwide deployment. 2. FEATURES Complete BORSCHT functions Internal balanced and unbalanced ringing up to 90 VPK (5 REN up to 4k ft) Integrated Power Management Options Integrated DC/DC controller regulates battery voltage to minimize power dissipation in all operating modes Programmable external battery switching Programmable linefeed characteristics Narrowband Codec (N681386) Wideband and Narrowband codec (N681387) Optional integrated (N681622) or discrete Subscriber Line Feed Circuit APPLICATIONS Ringing Frequency, Amplitude, and Cadence Trapezoidal and Sinusoidal waveforms Two wire AC impedance, and trans-hybrid balance Constant Current feed (20 to 41) mA Ring Trip and Loop Closure Thresholds Ground Key Detection Programmable signal generation and detection DTMF generation/ detection and Tone generation Frequency Shift Keying (FSK) Enhanced Caller ID generation (Type I and Type II) Loop test and diagnostics support Integrated loopback modes Real-time linefeed monitoring On-chip temperature sensor Line Card Diagnostics Support Digital interfaces PCM: G.711 -Law, A-Law and 16-bit linear GCI and SPI bus Programmable audio path gains Both PCM Master and Slave modes supported On-chip PLL for flexible clocking options including 1.0 MHz and 2.0 MHz BCLK operation Operating voltage: 3.3V Preliminary Datasheet Rev1.0 Page 1 of 164 Residential VoIP Gateways / Routers/ IP-PBX Fiber to the Premise/Home (FTTP/H) Wireless Local Loop Optical Network Terminals (ONT) Analog Telephone Adapter (ATA) Voice enabled DSL/Cable Modems Integrated Access Devices Set Top Boxes Ordering Information Part Number Temp Range (oC) Package Package Material N681386DG N681387DG -40 to 85 48-LQFP Pb-Free N681386YG N681387YG -40 to 85 48-QFN Pb-Free N681622YG -40 to 85 20-QFN Pb-Free ! WARNING ! HIGH VOLTAGE WARNING USE EXTREME CAUTION High voltage sources could cause serious injury or death if not used in accordance with design and/or user specifications, if they are used by untrained or unqualified personnel. Before testing Nuvoton's products read and understand all instructions, and safety procedures as in industry standard safe practices. January 2010 N681386/87 Single Programmable Extended Codec/SLCC 37 24 PCMR NC 38 23 NC 39 22 FS BCLK WBAND 40 21 PCMT SCM 41 20 VDDL VDD3 SDA 42 19 SDB 43 18 GND3 TVE 44 17 DCP BAT 45 16 DCN RVE 46 15 SDO TIN 47 14 TPP 48 13 SDI VDD1 PIN CONFIGURATION SCLK 3. Figure 1: N681386/87 Pin Configuration Preliminary Datasheet Rev1.0 Page 2 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC Figure 2: N681622 Subscriber Line Feed Circuit (SLFC) Pin Configuration Preliminary Datasheet Rev1.0 Page 3 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 4. PIN DESCRIPTION 4.1. N681386/87 Pin Description Pin Name Pin No. VDD1 1 RIP Functionality A/D Pin Type Line-driver 3.3 V supply A P 2 Positive RING Driver current source & Voltage sense A I/O RIN 3 Negative RING Driver current source A O TVB 4 Positive TIP Driver Base Voltage Control A O GND 5 Line-driver ground supply A G RVB 6 Positive RING Driver Base Voltage Control A O RAC 7 RING Voice Band Input A I TAC 8 TIP Voice Band Input A I NC 9 No connect TEST 10 For internal testing only. Needs to be tied to ground during normal operation D I INTb 11 Interrupt. Maskable interrupt. Open drain output for wired-or operation D O CSb 12 Chip Select. When inactive, SCLK and SDI are ignored and SDO is high impedance. When active, serial port is operational D I SCLK 13 Serial port bit clock. Controls serial data on SDO and latches data on SDI D I SDI 14 Serial port data in. Serial port control data D I SDO 15 Serial port data out. Serial port control data D O DCN 16 DC/DC converter Control for external NPN BJT D O DCP 17 DC/DC Converter Control for external PNP BJT D O GND3 18 Logic I/O ground supply D G VDDL 19 Logic supply voltage. This pin should not be connected up to an external supply. Use only as shown in application diagram. D I/O VDD3 20 3.3 V Logic I/O supply D P PCMT 21 Serial PCM Transmit data D O FS 22 8 or 16 kHz Frame Sync D I/O BCLK 23 PCM Bit Clock. Also used as internal PLL reference clock D I PCMR 24 Serial PCM Receive data D I DSY 25 SPI Daisy Chain Enable D I XBAT 26 External Battery Supply Enable. Disables DC/DC Controller when set high D I RESETb 27 Reset. Active Low. Hardware reset used to place all control registers in default state. D I Preliminary Datasheet Rev1.0 Page 4 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC Pin Name Pin No. DCH 28 DCL Functionality A/D Pin Type DC/DC Converter Current Sense Higher input Voltage A I 29 DC/DC Converter Current Sense Lower input Voltage A I VDD2 30 3.3 V Analog AC path and reference Supply Voltage A P GND2 31 Analog AC path and reference Supply ground A P IREF 32 Current Reference A I/O VREF2 33 Precision Reference Voltage A I/O VREF1 34 Mid Supply Reference Voltage A I/O CT 35 External Capacitor TIP A I/O CR 36 External Capacitor RING A I/O NC 37 No Connect NC 38 No Connect WBAND 39 Wideband enable (only on N681387) D I SDA 40 Subscriber Loop Differential sense signal A from linefeed circuit A I SCM 41 Subscriber Common Mode sense signal from linefeed circuit A I SDB 42 Subscriber Loop Differential sense signal B from linefeed circuit A I TVE 43 TIP line-driver emitter voltage sense A I BAT 44 Battery voltage monitoring A I RVE 45 RING line-driver emitter voltage sense A I TIN 46 Negative TIP Driver current source A O TPP 47 Positive TIP Driver current source & Voltage sense A I/O VDD1 48 Line-driver 3.3 V supply A P Table 1: N681386/87 Pin Description Preliminary Datasheet Rev1.0 A Analog O Output D Digital I Input G Ground P Power Page 5 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 4.2. N681622 Pin Description Pin Name Pin No. RIP 1 TVB Functionality Type Pin Type Ring Driver Pull up Current from 34.8 Ohm resistor LV I/O 2 Tip Pull-Up Driver control voltage LV I TPP 3 Tip Driver Pull up Current from 34.8 Ohm resistor LV I/O RVB 4 Ring Pull-Up Driver control voltage LV I GND 5 Supply ground (0V) LV G VDD 6 3.3V Supply LV P SDB 7 Subscriber differential signal B LV O SDA 8 Subscriber differential signal A LV O TIN 9 Tip DC Pull-Down current LV I RIN 10 Ring DC Pull-Down current LV I SDR 11 Subscriber differential Ring input HV I/O NC 12 Not connected CR 13 Ring Pull-Down filter capacitor HV I/O CT 14 Tip Pull-Down filter capacitor HV I/O VBAT 15 Battery Supply Voltage HV P RING 16 Ring terminal HV O NC 17 Not connected TIP 18 Tip terminal HV O NC 19 Not connected SDT 20 Subscriber differential Tip input HV I/O Table 2: N681622 Pin Description Preliminary Datasheet Rev1.0 LV Low Voltage O Output HV High Voltage I Input G Ground P Power Page 6 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 5. BLOCK DIAGRAM Figure 3: N681386/87 Block Diagram Preliminary Datasheet Rev1.0 Page 7 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 6. TABLE OF CONTENTS 1. DESCRIPTION ........................................................................................................................................... 1 2. FEATURES ................................................................................................................................................ 1 3. PIN CONFIGURATION .............................................................................................................................. 2 4. PIN DESCRIPTION .................................................................................................................................... 4 4.1. N681386/87 PIN DESCRIPTION ............................................................................................................... 4 4.2. N681622 PIN DESCRIPTION .................................................................................................................... 6 5. BLOCK DIAGRAM...................................................................................................................................... 7 6. TABLE OF CONTENTS ............................................................................................................................. 8 7. LIST OF FIGURES ................................................................................................................................... 15 8. LIST OF TABLES ..................................................................................................................................... 17 9. ABSOLUTE MAXIMUM RATINGS ........................................................................................................... 18 9.1. SINGLE PROGRAMMABLE EXTENDED CODEC/SLCC (N681386/87) ................................................. 18 9.2. SUBSCRIBER LINE FEED CIRCUIT (N681622) ..................................................................................... 18 10. OPERATING CONDITIONS ..................................................................................................................... 19 10.1. SINGLE PROGRAMMABLE EXTENDED CODEC/SLCC (N681386/87) ................................................. 19 10.2. SUBSCRIBER LINE FEED CIRCUIT (N681622) ..................................................................................... 19 11. ELECTRICAL CHARACTERISTICS......................................................................................................... 20 11.1. GENERAL PARAMETERS (N681386/87) ................................................................................................ 20 11.2. SUPPLY PARAMETERS DISCRETE SOLUTION (N681386/87 AND DISCRETE LINE DRIVER) ......... 20 11.3. SUPPLY PARAMETERS SLFC SOLUTION (N681386/87 AND N681622) ............................................. 21 11.4. MONITORING A/D PARAMETERS.......................................................................................................... 22 11.5. ANALOG SIGNAL LEVEL AND GAIN PARAMETERS ............................................................................ 22 11.6. 2-WIRE TO 4-WIRE CONVERSION PARAMETERS ............................................................................... 23 11.7. 2-WIRE PARAMETERS ........................................................................................................................... 23 11.8. LINEFEED CHARACTERISTICS ............................................................................................................. 23 11.9. ANALOG DISTORTION AND NOISE PARAMETERS ............................................................................. 24 12. FUNCTIONAL DESCRIPTION ................................................................................................................. 25 12.1. BORSCHT FUNCTIONALITY .................................................................................................................. 26 12.1.1. BATTERY FEED ...................................................................................................................................... 26 12.1.1.1. LINEFEED STATES OF OPERATION ..................................................................................................... 28 12.1.1.1.1. OPEN STATE ........................................................................................................................................... 28 12.1.1.1.2. ACTIVE, IDLE AND ON-HOOK TRANSMISSION STATES ..................................................................... 28 12.1.1.1.3. TIP OPEN STATE .................................................................................................................................... 28 12.1.1.1.4. RING OPEN STATE ................................................................................................................................. 29 12.1.1.1.5. RINGING STATE...................................................................................................................................... 29 12.1.1.1.6. CALIBRATION STATE ............................................................................................................................. 29 12.1.1.2. OPERATION MODES .............................................................................................................................. 29 Preliminary Datasheet Rev1.0 Page 8 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 12.1.1.3. AUTOMATIC TRANSITIONS ................................................................................................................... 29 12.1.1.3.1. POWER ALARM AUTOMATIC REACT ...................................................................................................29 12.1.1.3.2. SETTING RING AUTOMATIC .................................................................................................................. 29 12.1.1.3.3. SETTING LOOP CLOSURE DETECT AUTOMATIC REACT .................................................................. 30 12.1.1.4. POLARITY REVERSAL............................................................................................................................ 32 12.1.1.4.1. HARD POLARITY REVERSAL ................................................................................................................ 32 12.1.1.4.2. SOFT POLARITY REVERSAL ................................................................................................................. 32 12.1.1.5. WINK FUNCTION POLARITY REVERSAL ..............................................................................................33 12.1.2. OVER-VOLTAGE PROTECTION ............................................................................................................. 33 12.1.2.1. THERMAL OVERLOAD ........................................................................................................................... 34 12.1.2.2. TEMPERATURE MONITOR .................................................................................................................... 35 12.1.3. RINGING .................................................................................................................................................. 35 12.1.3.1. TONE GENERATION ............................................................................................................................... 36 12.1.3.2. RING SIGNAL GENERATION .................................................................................................................. 39 12.1.3.2.1. SINUSOIDAL RINGING ........................................................................................................................... 41 12.1.3.2.2. TRAPEZOIDAL RINGING ........................................................................................................................ 42 12.1.3.2.3. RINGING DC OFFSET AND COMMON MODE BIAS .............................................................................. 43 12.1.3.2.4. LINEFEED CONSIDERATIONS DURING RINGING ............................................................................... 44 12.1.3.3. INTERNAL UNBALANCED RINGING ...................................................................................................... 44 12.1.3.4. RING TRIP DETECTION.......................................................................................................................... 45 12.1.4. SUPERVISION (SIGNALING) .................................................................................................................. 47 12.1.4.1. LOOP CLOSURE DETECTION................................................................................................................ 47 12.1.4.2. GROUND KEY DETECTION .................................................................................................................... 49 12.1.4.3. CALLER ID AND FSK GENERATION ...................................................................................................... 50 12.1.4.4. DTMF GENERATOR ................................................................................................................................ 51 12.1.4.5. DTMF DETECTION .................................................................................................................................. 53 12.1.5. CODEC .................................................................................................................................................... 54 12.1.6. HYBRID .................................................................................................................................................... 54 12.1.6.1. AC PATH .................................................................................................................................................. 54 12.1.6.1.1. NARROWBAND TRANSMIT PATH ......................................................................................................... 54 12.1.6.1.2. NARROWBAND RECEIVE PATH ............................................................................................................ 54 12.1.6.1.3. ANALOG TRANSHYBRID BALANCING ..................................................................................................55 12.1.6.1.4. IMPEDANCE MATCHING ........................................................................................................................ 56 12.1.6.1.5. DAC/ADC AUTOMUTE ............................................................................................................................ 57 12.1.7. TESTING .................................................................................................................................................. 58 12.1.7.1. LOOP BACK TESTS ................................................................................................................................ 58 12.1.7.2. DIAGNOSTICS SUPPORT ...................................................................................................................... 59 12.1.8. POWER INTERFACE...............................................................................................................................59 Preliminary Datasheet Rev1.0 Page 9 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 12.1.8.1. DC/DC CONVERSION (INDUCTOR) ....................................................................................................... 60 12.1.8.2. EXTERNAL BATTERY SWITCHING........................................................................................................ 62 12.2. DIGITAL INTERFACE .............................................................................................................................. 63 12.2.1. CLOCK GENERATION ............................................................................................................................ 63 12.2.2. PCM INTERFACE .................................................................................................................................... 64 12.2.2.1. WIDEBAND AND NARROWBAND OPERATION .................................................................................... 65 12.2.2.2. TOGGLING BETWEEN WIDEBAND AND NARROWBAND .................................................................... 66 12.2.2.3. PCM INTERFACE IN WIDEBAND OPERATION ..................................................................................... 66 12.2.2.3.1. PCM INTERFACE 8KHZ FRAME SYNC.................................................................................................. 66 12.2.2.3.2. PCM INTERFACE 16KHZ FRAME SYNC ................................................................................................67 12.2.2.4. PLL & PRESCALER IN WIDEBAND OPERATION .................................................................................. 67 12.2.3. SERIAL PERIPHERAL INTERFACE (SPI)............................................................................................... 68 12.2.4. READ/WRITE SEQUENCE (8-BIT OR 16-BIT) ........................................................................................69 12.2.5. SPI DAISY CHAIN .................................................................................................................................... 71 12.2.6. SPI BURST MODE ................................................................................................................................... 72 12.2.7. SPECIAL READ SEQUENCE FOR 12-BIT WIDE REGISTER ................................................................ 73 12.2.7.1. 12-BIT READ SEQUENCE ....................................................................................................................... 73 12.3. POWER-ON RESET ................................................................................................................................ 74 12.4. INTERRUPT HANDLING ......................................................................................................................... 75 13. GENERAL DESCRIPTION FOR N681622 (LINEFEED CIRCUIT)........................................................... 76 13.1. FUNCTIONAL DESCRIPTION FOR N681622 (LINEFEED CIRCUIT) ..................................................... 76 14. REGISTER DESCRIPTION ...................................................................................................................... 77 14.1. PCM CONTROL REGISTERS ................................................................................................................. 82 14.1.1. PCM CONTROL REGISTER .................................................................................................................... 82 14.1.2. RECEIVE/TRANSMIT TIMESLOT (WIDEBAND AND NARROWBAND) ................................................. 82 14.1.3. PLL STATUS REGISTER......................................................................................................................... 83 14.1.4. PCM FREQUENCY SETTING REGISTER .............................................................................................. 84 14.1.5. SILICON VERSION ID REGISTER (READ ONLY) .................................................................................. 85 14.1.6. DEVICE VERSION ID REGISTER (READ ONLY) ................................................................................... 85 14.1.7. TIMESLOT (WIDEBAND) ......................................................................................................................... 85 14.2. FSK REGISTERS ..................................................................................................................................... 86 14.2.1. FSK CONTROL REGISTER ..................................................................................................................... 86 14.2.2. FSK TRANSMIT REGISTER .................................................................................................................... 86 14.2.3. FSK STATUS REGISTER (READ ONLY) ................................................................................................ 87 14.2.4. FSK LCR REGISTER ............................................................................................................................... 87 14.2.5. FSK TCR REGISTER ............................................................................................................................... 88 14.3. DIAGNOSTIC REGISTERS ..................................................................................................................... 89 14.3.1. DIAGNOSTIC CONTROL 0 ...................................................................................................................... 89 Preliminary Datasheet Rev1.0 Page 10 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 14.3.2. DIAGNOSTIC CONTROL 1 ...................................................................................................................... 89 14.3.3. DIAGNOSTIC CONTROL 2, 3, 4. AND 5 ................................................................................................. 90 14.3.4. DIAGNOSTIC CONTROL 6 AND 7 (READ ONLY) .................................................................................. 91 14.3.5. DIAGNOSTIC CONTROL 8 (READ ONLY) ..............................................................................................92 14.3.6. DIAGNOSTIC FIFO 0 AND FIFO1 (READ ONLY) ................................................................................... 92 14.4. SYSTEM REGISTERS ............................................................................................................................. 93 14.4.1. PCM HPF (HIGH PASS FILTER) ............................................................................................................. 93 14.4.2. LOOP BACK CONTROL REGISTER ....................................................................................................... 93 14.4.3. POWER ON ............................................................................................................................................. 94 14.4.4. LINEFEED TRIM ...................................................................................................................................... 95 14.5. INTERRUPT REGISTERS ....................................................................................................................... 96 14.5.1. INTERRUPT VECTOR LOW (READ ONLY) ............................................................................................ 96 14.5.2. INTERRUPT STATUS REGISTER 1........................................................................................................ 96 14.5.3. INTERRUPT ENABLE REGISTER 1........................................................................................................ 97 14.5.4. INTERRUPT STATUS REGISTER 2........................................................................................................ 97 14.5.5. INTERRUPT ENABLE REGISTER 2........................................................................................................ 98 14.5.6. INTERRUPT STATUS REGISTER 3........................................................................................................ 98 14.5.7. INTERRUPT ENABLE REGISTER 3........................................................................................................ 99 14.6. DTMF DETECTION REGISTER............................................................................................................. 100 14.6.1. DTMF CONTROL 1 ................................................................................................................................ 100 14.6.2. DTMF CONTROL 2 ................................................................................................................................ 101 14.6.3. DTMF CONTROL 3 ................................................................................................................................ 101 14.6.4. DTMF STATUS (READ ONLY) .............................................................................................................. 102 14.6.5. DTMF THRESHOLD .............................................................................................................................. 102 14.6.6. DTMF PRESENT DETECT TIME ........................................................................................................... 102 14.6.7. DTMF ABSENT DETECT TIME ............................................................................................................. 103 14.6.8. DTMF ACCEPT TIME ............................................................................................................................ 103 14.6.9. DTMF RECEIVE DATA STATUS ........................................................................................................... 104 14.6.10. DTMF ROW FREQUENCY .................................................................................................................... 104 14.6.11. 14/15 DTMF COLUMN FREQUENCY.................................................................................................... 105 14.7. LINE REGISTERS .................................................................................................................................. 106 14.7.1. AC PATH GAIN ...................................................................................................................................... 106 14.7.2. HYBRID BALANCE ................................................................................................................................ 106 14.7.3. COMMON RINGING BIAS ADJUST DURING RINGING ...................................................................... 107 14.7.4. LINE AUTOMATIC MANUAL CONTROL ............................................................................................... 107 14.7.5. LINEFEED STATUS ............................................................................................................................... 108 14.7.6. LOOP CURRENT LIMIT ......................................................................................................................... 108 14.7.7. RING TRIP DETECT STATUS/ LOOP CLOSURE STATUS (READ ONLY) ......................................... 109 Preliminary Datasheet Rev1.0 Page 11 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 14.7.8. LOOP CLOSURE DEBOUNCE .............................................................................................................. 110 14.7.9. RING TRIP DEBOUNCE INTERVAL...................................................................................................... 110 14.7.10. PWM PERIOD ........................................................................................................................................ 110 14.7.11. DC/DC CONTROLLER CONTROL ........................................................................................................ 111 14.7.12. ON-HOOK VOLTAGE ............................................................................................................................ 111 14.7.13. GROUND MARGIN VOLTAGE .............................................................................................................. 112 14.7.14. HIGH BATTERY VOLTAGE ................................................................................................................... 112 14.7.15. LOW BATTERY VOLTAGE .................................................................................................................... 112 14.7.16. LOOP CLOSURE DETECT/RING TRIP DETECT COEFFICIENT ......................................................... 113 14.7.17. LOOP CLOSURE DETECT THRESHOLD WITHOUT / WITH HYSTERESIS ....................................... 113 14.7.18. RING TRIP DETECT THRESHOLD ....................................................................................................... 114 14.7.19. OFFSET VOLTAGE ............................................................................................................................... 114 14.7.20. DC/DC TIME ON .................................................................................................................................... 114 14.7.21. DAC/ADC AUTOMUTE FUNCTION ....................................................................................................... 115 14.8. GROUND KEY DETECTION .................................................................................................................. 116 14.8.1. LINEFEED CONTROL ........................................................................................................................... 116 14.8.2. GROUND KEY DETECT HIGH/LOW THRESHOLD .............................................................................. 116 14.8.3. GROUND KEY DETECT DEBOUNCE TIME ......................................................................................... 117 14.8.4. GROUND KEY DETECT FILTER COEFFICIENT LOW/ HIGH .............................................................. 117 14.8.5. DC RING TRIP DEBOUNCE FILTER COEFFICIENT LOW ................................................................... 117 14.8.6. DC RING TRIP CURRENT THRESHOLD .............................................................................................. 118 14.8.7. DC RING TRIP DEBOUNCE TIME ........................................................................................................ 118 14.8.8. EXTERNAL BATTERY SWITCH OUTPUT CONFIGURATION 1 .......................................................... 119 14.8.9. DC/DC HEAVY CURRENT CONVERTER ............................................................................................. 119 14.8.10. DC/DC TARGET VOLTAGE (READ ONLY) ........................................................................................... 120 14.9. MONITORING REGISTERS .................................................................................................................. 121 14.9.1. MONITOR CURRENT FOR RING TRIP AND LOOP CLOSURE ........................................................... 121 14.9.2. MONITOR CURRENT FOR RING TRIP AND LOOP CLOSURE ........................................................... 121 14.10. LINE CONTROL REGISTERS ............................................................................................................... 122 14.10.1. VOLTAGE REGISTERS ......................................................................................................................... 122 14.10.1.1. BATTERY VOLTAGE SENSE (READ ONLY) ........................................................................................ 122 14.10.1.2. TIP/RING VOLTAGE SENSE (READ ONLY) ......................................................................................... 122 14.10.1.3. TIP/RING TRANSISTOR 3 EMITTER VOLTAGE SENSE (READ ONLY) ............................................. 122 14.11. TRANSISTOR CURRENT REGISTERS (TIP/RING TRANSISTOR 1/2/3 CURRENT SENSE) ............. 123 14.12. LOOP SUPERVISION ............................................................................................................................ 124 14.12.1. LONGITUDINAL CURRENT .................................................................................................................. 124 14.12.2. LOOP VOLTAGE SENSE (READ ONLY) ............................................................................................. 124 14.12.3. TIP, RING, AND LOOP CURRENT (READ ONLY) ................................................................................ 125 Preliminary Datasheet Rev1.0 Page 12 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 14.12.4. POLARITY.............................................................................................................................................. 125 14.12.5. COMMON MODE VOLTAGE ................................................................................................................. 126 14.12.6. TIP EMITTER VOLTAGE FOR TRANSISTORS QT1 SENSE (READ ONLY) ....................................... 126 14.12.7. TIP VOLTAGE FOR TRANSISTOR QT1 SENSE (READ ONLY) .......................................................... 126 14.12.8. RING EMITTER VOLTAGE FOR TRANSISTOR QT1 SENSE (READ ONLY) ...................................... 127 14.12.9. RING VOLTAGE FOR TRANSISTOR QT1 SENSE (READ ONLY) ....................................................... 127 14.12.10. TEMPERATURE SENSE (READ ONLY) ............................................................................................... 127 14.12.11. BAND GAP VOLTAGE ........................................................................................................................... 127 14.12.12. PEAK TO PEAK LOOP VOLTAGE (READ ONLY)................................................................................. 128 14.12.13. PEAK TO PEAK LOOP CURRENT (READ ONLY) ................................................................................ 128 14.13. POWER ALARM LPF POLE REGISTERS ............................................................................................. 129 14.13.1. POWER ALARM COUNTER .................................................................................................................. 129 14.13.2. POWER ALARM LOW PASS FILTER POLE FOR TRANSISTORS 1/2/3 ............................................ 129 14.13.3. POWER ALARM THRESHOLD FOR TRANSISTOR 1-3 ....................................................................... 130 14.14. IMPEDANCE MATCHING 1/2 ................................................................................................................ 130 14.14.1. TEMPERATURE ALARM THRESHOLD ................................................................................................ 131 14.14.2. LOOP CLOSURE MASK COUNT .......................................................................................................... 131 14.14.3. COARSE CALIBRATION INTERNAL RESISTOR ................................................................................. 131 14.14.4. OSCILLATOR 2 RINGING PHASE DELAY ............................................................................................ 131 14.15. CALIBRATION ....................................................................................................................................... 132 14.16. DC OFFSET REGISTERS ..................................................................................................................... 133 14.16.1. DC OFFSET (RING, TIP, AND VBAT) ................................................................................................... 133 14.16.2. PWM COUNT (READ ONLY) ................................................................................................................. 133 14.17. TONE GENERATION REGISTERS ....................................................................................................... 134 14.17.1. OSCILLATOR CONTROL ...................................................................................................................... 134 14.17.2. RING CONTROL .................................................................................................................................... 134 14.17.3. OSCILLATOR 1 AND 2 INITIAL CONDITION LOW/HIGH ..................................................................... 134 14.17.4. OSCILLATOR 1 AND 2 COEFFICIENT LOW/HIGH .............................................................................. 135 14.18. OSCILLATOR 1 AND 2 ACTIVE/ INACTIVE TIME LOW/HIGH ............................................................. 135 14.19. GENERAL TONE GENERATION ........................................................................................................... 136 14.19.1. RING OFFSET ....................................................................................................................................... 136 14.19.2. ADC/DAC DIGITAL GAIN....................................................................................................................... 136 14.19.3. PWM DC/DC FINE TUNING .................................................................................................................. 137 14.19.4. PWM DC/DC FINE TUNING SKIP PERIOD ........................................................................................... 137 14.19.5. PWM DC/DC FINE TUNING .................................................................................................................. 138 14.19.6. IMPEDANCE MATCH REGISTER ......................................................................................................... 139 14.19.6.1. IMPEDENCE MATCHING COEFFICIENT RAM .................................................................................... 139 14.19.6.2. IMPEDANCE MATCHING DELAY COUNT ............................................................................................ 139 Preliminary Datasheet Rev1.0 Page 13 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 14.19.6.3. IMPEDANCE MATCHING COEFFICIENT RAM CONTROL .................................................................. 139 14.19.6.4. PCM SCALING ....................................................................................................................................... 140 14.19.6.5. RESERVED REGISTERS ...................................................................................................................... 140 14.19.6.6. FILTER BYPASS .................................................................................................................................... 140 15. TIMING DIAGRAM ................................................................................................................................. 141 15.1. PCM TIMING DIAGRAM FOR NON-GCI ...............................................................................................141 15.2. PCM TIMING DIAGRAM FOR GCI ........................................................................................................ 142 15.3. SPI TIMING DIAGRAM .......................................................................................................................... 144 16. DIGITAL I/O ............................................................................................................................................ 150 16.1.1. -LAW ENCODE DECODE CHARACTERISTICS ................................................................................. 150 16.2. A-LAW ENCODE DECODE CHARACTERISTICS ................................................................................. 151 16.3. -LAW / A-LAW CODES FOR ZERO AND FULL SCALE ...................................................................... 151 16.3.1. -LAW / A-LAW CODES FOR 0DBM0 OUTPUT (DIGITAL MILLIWATT) .............................................. 152 16.4. 16-BIT LINEAR PCM CODES FOR ZERO AND FULL SCALE .............................................................. 152 16.5. 16-BIT LINEAR PCM CODES FOR 1 KHZ DIGITAL MILLIWATT.......................................................... 152 17. TYPICAL APPLICATION CIRCUITS ...................................................................................................... 153 17.1. DC/DC APPLICATION ........................................................................................................................... 153 17.2. DISCRETE LINE DRIVER ...................................................................................................................... 154 17.3. DC DC .................................................................................................................................................... 155 17.4. TRIPLE BATTERY SWITCH APPLICATION .......................................................................................... 156 17.5. N681386/87 DCDC APPLICATION USE WITH SLFC N681622 ............................................................ 157 17.6. N681622 LINEFEED CIRCUIT ............................................................................................................... 158 18. PACKAGE SPECIFICATION .................................................................................................................. 159 18.1. LQFP-48 (10X10X1.4MM FOOTPRINT 2.0MM) .................................................................................... 159 18.2. QFN-48................................................................................................................................................... 160 18.3. QFN 20L 4X4 MM2, PITCH:0.50 MM...................................................................................................... 161 19. ORDERING INFORMATION .................................................................................................................. 162 20. VERSION HISTORY .............................................................................................................................. 163 Preliminary Datasheet Rev1.0 Page 14 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 7. LIST OF FIGURES Figure 1: N681386/87 Pin Configuration ........................................................................................................................ 2 Figure 2: N681622 Subscriber Line Feed Circuit (SLFC) Pin Configuration .................................................................. 3 Figure 3: N681386/87 Block Diagram ............................................................................................................................ 7 Figure 4: AC signal Path .............................................................................................................................................. 25 Figure 5: DC Feed Regions ......................................................................................................................................... 26 Figure 6: Line Loop Control .......................................................................................................................................... 27 Figure 7: Example State Diagram ................................................................................................................................ 30 Figure 8: Block Diagram Oscillator 1 ............................................................................................................................ 38 Figure 9: Zero Crossing for Tone Generation .............................................................................................................. 39 Figure 10: Trapezoidal Ringing .................................................................................................................................... 42 Figure 11: Positive DC offset for Trapezoidal Ringing.................................................................................................. 43 Figure 12: Programming VCMR voltage for Trapezoidal Ringing ................................................................................... 43 Figure 13: Unbalanced Ringing on TIP ........................................................................................................................ 44 Figure 14: RING Trip Detection Mechanism ................................................................................................................ 45 Figure 15: Loop Closure Detector Block Diagram ........................................................................................................ 47 Figure 16: Ground Key Detection Circuitry ................................................................................................................... 49 Figure 17: The Architecture of Linear FSK Waveform Generator................................................................................. 50 Figure 18: DTMF Detector - Functional Block Diagram ................................................................................................ 53 Figure 19: Characteristic Line Impedance .................................................................................................................... 56 Figure 20: Diagnostics Support Block Diagram ............................................................................................................ 59 Figure 21: Voltage Tracking in Forward Active State ................................................................................................... 61 Figure 22: Dynamic Battery Target .............................................................................................................................. 61 Figure 23: Three Voltage External Battery switching ................................................................................................... 62 Figure 24: Two Battery Supply Control Circuit ............................................................................................................. 62 Figure 25: Wideband 8kHz Frame Sync PCM interface ............................................................................................... 66 Figure 26: Wideband 16kHz Frame Sync PCM interface ............................................................................................. 67 Figure 27: Register write operation through a 8-bit SPI port ........................................................................................ 70 Figure 28: Register read operation through a 8-bit SPI port ......................................................................................... 70 Figure 29: Register write operation through a 16-bit SPI port ...................................................................................... 70 Figure 30: Register read operation through a 16-bit SPI port ....................................................................................... 70 Figure 31: Three Chip Daisy Chain connection ............................................................................................................ 71 Figure 32: Device/Register Address for Three Device Daisy Chain application ........................................................... 71 Figure 33: DATA for Three Device Daisy Chain application ......................................................................................... 72 Figure 34: Burst mode operation (BST=1) ................................................................................................................... 72 Figure 35: SPI 12-bits Read sequence ........................................................................................................................ 74 Figure 36: N681622 Equivalent Internal diagram ......................................................................................................... 76 Figure 37: PCM Timing for Non-GCI .......................................................................................................................... 141 Preliminary Datasheet Rev1.0 Page 15 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC Figure 38: GCI PCM Timing ....................................................................................................................................... 142 Figure 39: SPI Timing (Non-Daisy Chain Mode) ........................................................................................................ 144 Figure 40: In-band Transmit Frequency Response .................................................................................................... 145 Figure 41: In-band Receive Frequency Response ..................................................................................................... 145 Figure 42: Transmit Group Delay Distortion ............................................................................................................... 146 Figure 43: Receive Group Delay Distortion ................................................................................................................ 146 Figure 44: 2-Wire to PCM Signal to Distortion Mask (A-Law) .................................................................................... 147 Figure 45: 2-Wire to PCM Signal to Distortion Mask (-Law) ..................................................................................... 147 Figure 46: Wideband In-band Transmit Frequency Response ................................................................................... 148 Figure 47: Wideband Transmit Group Delay Distortion .............................................................................................. 148 Figure 48: Wideband Receive Group Delay Distortion ............................................................................................... 149 Figure 49: Typical Application Block Diagram ............................................................................................................ 153 Figure 50: Discrete Line-driver ................................................................................................................................... 154 Figure 51: Inductor based circuit 12V supply ............................................................................................................. 155 Figure 52: Triple Battery based Switch 1 ................................................................................................................... 156 Figure 53: N681386/87 Pro-X Application diagram to be used with N681622 ........................................................... 157 Figure 54: N681622 Linefeed circuit .......................................................................................................................... 158 Preliminary Datasheet Rev1.0 Page 16 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 8. LIST OF TABLES Table 1: N681386/87 Pin Description............................................................................................................................. 5 Table 2: N681622 Pin Description.................................................................................................................................. 6 Table 3: Programmable Ranges for DC Line Feed ...................................................................................................... 26 Table 4: Linefeed States .............................................................................................................................................. 28 Table 5: Operation Modes ............................................................................................................................................ 29 Table 6: Associated Registers for Linefeed Control ..................................................................................................... 30 Table 7: TIP and RING Voltage Targets ...................................................................................................................... 31 Table 8: Registers Associated with Line Monitoring - Measured ................................................................................. 31 Table 9: Registers Associated with Line Monitoring - Calculated ................................................................................ 31 Table 10: Registers for Polarity Reversal ..................................................................................................................... 33 Table 11: PWM DC/DC Power Alarm Counter ............................................................................................................. 34 Table 12: Registers Associated with Thermal Overload............................................................................................... 34 Table 13: Associated Registers for Oscillator Control (Oscillator 1 Example) .............................................................. 36 Table 14: Example Register settings for Oscillator m................................................................................................... 37 Table 15: Registers for RING Generation .................................................................................................................... 40 Table 16: Example Ringer Register settings ................................................................................................................ 41 Table 17: Registers for RING Trip Detection ................................................................................................................ 46 Table 18: Recommended RING Trip Values for Ringing.............................................................................................. 46 Table 19: Loop Closure Detection Registers ................................................................................................................ 48 Table 20: Ground Key Detection Registers .................................................................................................................. 49 Table 21: Registers for FSK Generation ...................................................................................................................... 51 Table 22: DTMF frequency mapping ............................................................................................................................ 51 Table 23: Digital Gain Adjust Coefficients and Attenuation weightings ........................................................................ 55 Table 24: Examples of Resistive Impedance Matching ................................................................................................ 56 Table 25: Examples of Complex Impedance Matching ................................................................................................ 57 Table 26: Registers for Automute................................................................................................................................. 57 Table 27: Registers associated with DC/DC Conversion ............................................................................................. 60 Table 28: Example Standard Interface modes ............................................................................................................. 64 Table 29: Wideband or Narrowband Hardware Selection ............................................................................................ 65 Table 30: PLL and Prescaler in Wideband ................................................................................................................... 67 Table 31: Device Address Bit pattern ........................................................................................................................... 68 Table 32: 12-bit byte Selection ..................................................................................................................................... 69 Table 33: Interrupt Registers ....................................................................................................................................... 75 Preliminary Datasheet Rev1.0 Page 17 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 9. ABSOLUTE MAXIMUM RATINGS 9.1. Single Programmable Extended Codec/SLCC (N681386/87) Condition Value Junction temperature 1500C Storage temperature range -650C to +1500C LQFP-48 Thermal Resistance, typical 76 oC/W QFN-48 Thermal Resistance, typical 27.1 oC/W Voltage applied to any pin (VSS - 0.3V) to (VDD + 0.3V) Input current applied to any digital input pin +/- 10 mA ESD (Human Body Model) 2000 V VDD - VSS -0.5V to +3.63V Power Dissipation 0.7W 1. Stresses above those listed may cause permanent damage to the device. Exposure to the absolute maximum ratings may affect device reliability. Functional operation is not implied at these conditions. 9.2. Subscriber Line Feed Circuit (N681622) Parameter Symbol Value Unit VDD Supply Voltage VDD -0.5 - 5 V VBAT Supply Voltage VBAT -104 V Input Voltage HV IO VINHV (VBAT-0.3) to (VDD+0.3) V Input Voltage LV IO VINLV -0.3 to (VDD+0.3) V JESD22 Class 1C V ESD, HBM Operating Temperature ** TA -40 - 100 C Storage Temperature TS -40 - 150 C Thermal Resistance QFN20 Rthja 45 C/W Power Dissipation Pmax 0.9 W ** When the dice temperature reaches over 130C, the device reliability may be adversely affected. Preliminary Datasheet Rev1.0 Page 18 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 10. OPERATING CONDITIONS 10.1. Single Programmable Extended Codec/SLCC (N681386/87) Condition Symbol Min TA Supply voltage (VDD) VDD Ground voltage (VSS) VSS Industrial operating temperature Typ Max Unit -40 +85 C 3.13 3.47 V 0 V Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability of the device. 10.2. Subscriber Line Feed Circuit (N681622) Parameter Symbol Min TA -40 Supply voltage (VDD) VDD 3.13 VBAT Supply Voltage VBAT -100 Industrial operating temperature Preliminary Datasheet Rev1.0 Page 19 of 164 Typ Max Unit 85 C 3.3 3.47 V - -9 V January 2010 N681386/87 Single Programmable Extended Codec/SLCC 11. ELECTRICAL CHARACTERISTICS 11.1. GENERAL PARAMETERS (N681386/87) 0 0 VDD=3.13 V to 3.47 V; VSS=0 V; TA = -40 C to +85 C; Symbol Parameters Conditions Min (2) Typ (1) Max (2) Units VIL Logic Input LOW Voltage -0.3 -- 0.8 V VIH Logic Input HIGH Voltage 2 -- 3.6 V VT Threshold point VOL Logic Output LOW Voltage VOH Logic Output HIGH Voltage IIL Input HIGH & LOW Leakage Current IOZ Tri-state Leakage Current CIN Digital Input Capacitance COUT Digital Output Capacitance 1.41 INTB,FS,PCMT,SDO: IOL = 4 mA DCP, DCN: IOL = 16 mA FS,PCMT,SDO: IOH = 4mA DCP, DCN: IOH = 16 mA VSS10k typical I ILIM ILOOP (mA) DCFeed Figure 5: DC Feed Regions Register Address Parameter Programmable Range Step Size Default Value Unit LCL 0x45 ILIM 20 - 41 3 20 mA OHV 0x4C VOH 0 to -93.5 1.484 -47.488 V GMV 0x4D VGM 0 to -93.5 1.484 -2.968 V Table 3: Programmable Ranges for DC Line Feed Preliminary Datasheet Rev1.0 Page 26 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC The control circuit for TIP or RING is illustrated in Figure 5 and utilizes a three transistor discrete Linefeed circuit. Transistors Q1 and Q2 drive the voltages on the subscriber loop while transistor Q3 provides additional isolation. The Line Driver DC feedback loop is completed via DC isolation resistors RVBAT and RVE to the chip. TIP and RING signals are derived from the common mode and differential mode signal block. This information is, in turn, used to exercise control over the external transistors. Voice band signals are passed over a decoupling capacitor in the AC feedback loop. TIP or RING VDD Discrete Linefeed Sigma/Delta DAC Q1 Q2 I OUT + - Q3 + Sigma/Delta ADC OTA OTA + RQE RB3 AC Loop VBAT DC Loop RVBAT Common Mode Mode Common Differential Mode Mode Differential Signals Signals LineFeed ADC RVE Mux Mux LineFeed DAC On- chip LLC-v1 Figure 6: Line Loop Control Control and monitoring of these transistors is done both individually and in groups. For example, TIP and RING Linefeed circuits each have a Q1 transistor. Both share the same register to set their Power Alarm Threshold values. But each TIP and RING transistor has a separate Power Alarm Interrupt bit in the interrupt register. The control circuit for TIP and RING whenN681622 is utilized follows the same general principles. Preliminary Datasheet Rev1.0 Page 27 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 12.1.1.1. LINEFEED STATES OF OPERATION The N681386/87 can operate in eleven states, as shown below. State LS Settings MSB LSB Description Open 0 0 0 0 TIP and RING tri-state Forward Active 0 0 0 1 VTIP > VRING Forward ON-HOOK Transmission 0 0 1 0 VTIP > VRING; audio signal paths powered on TIP Open 0 0 1 1 TIP tri-stated, RING active; used for ground start Ringing 0 1 0 0 Ringing waveform applied to TIP and RING Reverse Active 0 1 0 1 VRING > VTIP Reverse ON-HOOK Transmission 0 1 1 0 VRING > VTIP; audio signal paths powered on RING Open 0 1 1 1 RING tri-stated, TIP active Forward Idle 1 0 0 1 VTIP > VRING Reverse Idle 1 1 0 1 VRING > VTIP Calibration 1 1 1 0 VTIP = VRING~Vbat+2 Table 4: Linefeed States 12.1.1.1.1. OPEN STATE Current to the external linefeed circuitry is shut off, effectively making TIP and RING tri-stated and it can also be used for fault condition detection. DC output impedance is 150K ohm. 12.1.1.1.2. ACTIVE, IDLE AND ON-HOOK TRANSMISSION STATES Active, Idle and ON-HOOK Transmission states all have both Forward and Reverse incarnations In Forward state TIP is the more positive lead In Reverse state RING is the more positive lead In Idle states the external linefeed circuitry is ON but the audio signal paths are not powered up. In both Active states the external linefeed circuitry is ON and the audio signal paths are powered up. In both ON-HOOK Transmission states audio signal paths are powered up to allow ON-HOOK transmission. The Forward and Reverse incarnations of the Active, Idle and ON-HOOK Transmission states are determined solely by setting the LS register. Fpr automatic transitions Forward and Reverse incarnations are determined by the VOH polarity in OHV:SB[6] address location (0x4C). 12.1.1.1.3. TIP OPEN STATE All control currents to the external circuitry associated with TIP are shut off. Linefeed is provided to RING. Preliminary Datasheet Rev1.0 Page 28 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 12.1.1.1.4. All control currents to the external circuitry associated with RING are shut off and keeps TIP active. 12.1.1.1.5. RING OPEN STATE RINGING STATE Drives the ringing waveforms onto the loop 12.1.1.1.6. CALIBRATION STATE Calibration state is used to compensate or correct for external component imperfections. It should be performed following the system power up. This state is enabled by setting LS:LS[3:0] address (0x44) to `1110'. The line should be on-hook during calibration. RING or TIP must not be connected to ground during the calibration. All automatic linefeed transitions should be disabled when performing calibration. After calibration is completed, the Linefeed state should be reset to a normal operating state and the automatic Linefeed transitions can be enabled again. Calibration state is not applicable to SLFC. For a more detailed explanation, please refer to the Calibration Application note. Please note that Calibration state is not applicable to Subscriber Line Feed Circuit (SLFC). 12.1.1.2. OPERATION MODES The N681386/87 can operate under two battery supply operation modes. The modes are selected with a pin XBAT as illustrated below. Operation Mode On-Chip DC/DC Controller External Battery Supplies XBAT Pin 0V 3.3V Per Channel DC/DC On Off VBAT Switch [DCN/DCP Line state dependent Control] Off On Table 5: Operation Modes 12.1.1.3. AUTOMATIC TRANSITIONS In addition, some automatic state transitions may also be enabled: 12.1.1.3.1. POWER ALARM AUTOMATIC REACT Setting LAMC:PAA[2] address (0x43) bit will make the channel automatically enter the Open state upon the occurrence of a power alarm. 12.1.1.3.2. SETTING RING AUTOMATIC Setting LAMC:RGA[1] address (0x43) bit makes the channel automatically enter the Active state from the Ringing State upon RING Trip Detect Preliminary Datasheet Rev1.0 Page 29 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 12.1.1.3.3. SETTING LOOP CLOSURE DETECT AUTOMATIC REACT Setting LAMC:LCDA[0] address (0x43) bit makes the channel automatically enter the Active state from the ON-HOOK Transmission, Idle, TIP Open, and RING Open states upon Loop Closure Detect. Furthermore, the channel will transition from Active to Idle state if the Loop Closure Detect circuitry indicates a loop closure is no longer present, and back to Active state upon a reoccurrence of Loop Closure Detect. When the above automatic transitions do occur, LS:LS[3:0] address (0x44) will be updated automatically to reflect the newly entered state. In all cases the shadow linefeed status bits, LS:SLS[3:0] address (0x44) reflect the actual linefeed status. This includes switching between `Ringing' during the ring burst and `ON-HOOK Transmission' during the cadence. This RING/cadence transition is not considered an automatic transition and LS:LS[3:0] address (0x44) will continue to reflect Ringing state. The following example state diagram illustrates LS:SLS[3:0] address (0x44) states including automatic transitions, RING/Cadence transition and several possible transitions solely governed by software. Any State PA_Auto SW Open Open SW Any State Idle SW SW LC_Auto (F/R) ! LC_Auto Any State SW TIP Open LC_Auto Active (F/R) SW On Hook Transmission (F/R) LC_Auto Ring Cadence & LS[3:0] = Ringing LC_Auto Any State SW Any State SW RING Open RT_Auto SW Ring Burst & LS[3:0] = Ringing SW Ringing LC_Auto = RTLC:LCD = 1 & LAMC:LCDA= 1 ! LC_Auto = RTLC:LCD= 0 & LAMC:LCDA= 1 RT_Auto = RTLC:RTD = 1 & LAMC:RGA= 1 PA_Auto = Power Alarm Event & LAMC:PAA = 1 F/R = Forward / Reverse n = 1, 2 Calibration LFSDS Figure 7: Example State Diagram Register LS LAMC Bit(s) Address Parameter Description / Range LS[3:0] 0x44 Programmed Linefeed Status SLS[7:4] 0x44 Shadow Linefeed Status Reflects actual state PAA[2] 0x43 Power Alarm Automatic React Enable/Disable RGA[1] 0x43 RING Automatic Enable/Disable LCDA[0] 0x43 Loop Closure Detect Automatic React Enable/Disable Eleven states Table 6: Associated Registers for Linefeed Control Preliminary Datasheet Rev1.0 Page 30 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC The device continuously monitors voltages on the line driver, driving them to target voltages appropriate to the actual linefeed state as summarized below. Linefeed State TIP Target RING Target High Z High Z Open Forward Active VTIP > VRING Forward ON-HOOK Transmission VTIP > VRING TIP Open Ringing High Z Active RING Signal RING Signal Reverse Active VTIP < VRING Reverse ON-HOOK Transmission VTIP < VRING RING Open Active High Z Forward Idle VTIP > VRING Reverse Idle VTIP < VRING Table 7: TIP and RING Voltage Targets The device monitors the currents in the external transistors and makes these values available in registers. These registers and the internal A/D are updated at a rate of 800 Hz or every 1.25 msec. Other useful voltages and currents are calculated internally and made available in registers. Register Bits(s) Address Parameter Description / Range BATV VB[7:0] 0x80 Battery Voltage 0V to -94.6V in 0.371V steps SCM SCM[11:0] 0x92 Common Mode Voltage +93.5V to -93.5V in 0.023 V steps QT3V QT3V[7:0] 0x83 Transistor QT3 Emitter Voltage 0V to -94.6V in 0.371V steps QR3V QR3V[7:0] 0x84 Transistor QR3 Emitter Voltage 0V to -94.6V in 0.371V steps QT3I QT3I[11:0] 0x85 Transistor QT3 Current 0A to 78.54 mA in 19.2 A steps QR3I QT3I[11:0] 0x86 Transistor QR3 Current 0A to 78.54 mA in 19.2 A steps Table 8: Registers Associated with Line Monitoring - Measured Register Bit(s) Address Parameter Description / Range LPV VLP[11:0] 0x8D Loop Voltage +93.5V to -93.5V in 0.023 V steps QT1I QT1I[11:0] 0x87 Transistor QT1 Current 0A to 78.54 mA in 19.2 A steps QT2I QT2I[11:0] 0x88 Transistor QT2 Current 0A to 9.95 mA in 2.5 A steps QR1I QR1I[11:0] 0x89 Transistor QR1 Current 0A to 78.54 mA in 19.2 A steps QR2I QR2I[11:0] 0x8A Transistor QR2 Current 0A to 9.95 mA in 2.5 A steps LGI ILG[11:0] 0x8C Longitudinal Current +77.62 mA to -77.62 mA in 19uA TIPI ITLP[11:0] 0x8E TIP Current +77.62 mA to -77.62 mA in 19uA RINGI IRLP[11:0] 0x8F RING Current +77.62 mA to -77.62 mA in 19uA LPI ILP[11:0] 0x90 Loop Current +77.62 mA to -77.62 mA in 19uA Table 9: Registers Associated with Line Monitoring - Calculated In addition the following loop voltages and currents are derived from the above measurements and reported separately. Preliminary Datasheet Rev1.0 Page 31 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 12.1.1.4. POLARITY REVERSAL The Linefeed states which have Forward or Reverse incarnation (Active, Idle and ON-HOOK Transmission states) can have the polarity reversed two different ways. In addition, the line (TIP or RING) which is at VOH can be collapsed towards ground by using the wink function. Hard polarity reversal Soft polarity reversal 12.1.1.4.1. HARD POLARITY REVERSAL Hard polarity is achieved by abruptly reversing the voltage between TIP and RING without any ramp-rate control. This is achieved by simply changing the linefeed register from Forward to Reverse incarnation or vice versa. A Hard polarity reversal will be performed provided that soft polarity reversal is not enabled APG:PREN[6] address (0x40) bit to 0. The sign bit (OHV:SB[6]) is used to determine the polarity of the line when going from Idle to Active States. If the new polarity is to be retained in future Idle to Active transitions, it is recommended that this bit be also changed appropriately when polarity is reversed. 12.1.1.4.2. SOFT POLARITY REVERSAL Soft polarity is achieved by reversing the voltage between TIP and RING with ramp-rate control. Soft polarity reversal is enabled by setting APG:PREN[6] = "1" address (0x40). The ramp rate at which the reversal will occur is selected in APG:RAMP[8] address (0x40). The Ramp is triggered by toggling WINK bit APG:PREN[6] = "1" address (0x40). Soft polarity reversal can be used from Forward Active to Reverse Active or vice versa. The table below illustrates the sequence of events for a Forward to Reverse soft polarity reversal. For Reverse to Forward Polarity Reversal step 2 would involve TIP and step 4 would involve RING. Step(s) Register Name Bit(s) 1 APG PRE[6] Bit State 1 Enables soft polarity reversal Step Description 2 APG VOHZ[5] 1 Wink line (RING towards 0V) 3 Use Line state register to reverse the line from Forward to Reverse 4 APG VOHZ[5] 0 Un-wink line (TIP side towards VOH) 5 APG PRE[6] 0 Disable soft polarity reversal Note that the negative going ramp rate can be limited by the settling speed of the DCDC converter. Setting the minimum on time (0x57) to 0x0B before the ramp and back to the initialization value after the ramp will prevent this Addr 0x40 Name APG D7 RAMP D6 PREN D5 VOHZ D4 RES D3 D2 ARX[1:0] D1 D0 ATX[1:0] Default 0x00 The sign bit (OHV:SB[6]) is used to determine the polarity of the line during an automatic transition into idle, Active, and On-Hook transition states. If the new polarity is to be retained in future automatic transitions, it is recommended that OHV:SB[6] be also changed appropriately when polarity is reversed. Preliminary Datasheet Rev1.0 Page 32 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC The ramp rate for steps 2 and 4 above is determined by the Ramp Rate bit APG:RAMP[7]. 12.1.1.5. WINK FUNCTION POLARITY REVERSAL A Wink function is used for the `message waiting' lamp in telephone sets. For this function to take place no Linefeed state change is necessary. The Wink function is a variation of Soft Polarity Reversal but without any Linefeed state change. In this case Soft Polarity reversal is enabled as before (APG:PREN[6] address (0x40) bit to "1", with APG:RAMP[7] address (0x40) selecting the ramp rate). Now the OHV:VOHZ[5] address (0x4C) bit can be used to directly ramp the RING line towards 0V or back to VRING. For example, in Forward Idle mode VTIP is at VGM and VRING is VGM+VOH. If VOHZ bit is set to "1" the Ring Voltage will ramp towards 0V. If the bit is toggled it will eventually return to the nominal VRING setting. The user has full control of the Wink function cadence. Register Bit(s) Address Parameter APG VOHZ[5] 0x40 Wink Function (Smooth transition to VOH=0V) APG PRE[6] 0x40 Soft Polarity Reversal Enable APG RAMP[7] 0x40 Soft Polarity Reversal Ramp Rate LS LS[3:0] 0x44 Linefeed Status OHV SB[6] 0x4C Polarity Reversal Status (Sign) Programmable Range 0 = Return to previous VOH 1 = Ramp to 0V 0 = Disabled 1 = Enabled 0 = 1.5 V/125 s 1 = 3.0 V/125 s 0 = Forward 1 = Reverse Table 10: Registers for Polarity Reversal 12.1.2. OVER-VOLTAGE PROTECTION It is a common requirement for electronic circuits to have to withstand some degree of over-voltage and/or reverse voltage on the power-supply lines. Integrated circuits are designed to operate from a nominal 3.3V power supply. Some kind of protection circuit is therefore needed to prevent voltages greater than the maximum allowable from being applied to the IC pins. The N681386/87 device needs to be protected from surges and AC power shorts. This should be implemented using external components and a variety of commercial approaches are typically employed. However, N681386/87 device has on-chip voltage and line monitoring capabilities which allow the system to report line faults, crossovers, and other line conditions in order to facilitate remote service. It also has sense inputs can be configured such that blown fuse can be detected. The on-chip DC/DC controller is equipped with three protection shutdown mechanisms. It detects a) DCDC output voltage (VBAT) 10% above full scale or b) DCDC supply voltage (VDDC) too low or c) DCDC supply current (IVDDC) too high; A counter is tracking the three cases of DC/DC power alarm. The counter will automatically reset upon being read, allowing the user to monitor the number of power alarms within a specific time period. This register is a read ONLY register resets upon a read command. Preliminary Datasheet Rev1.0 Page 33 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC Register APG Bit(s) Address PALT[7:0] Parameter 0x9F Power Alarm Counter Programmable Range Increment on every rising edge of LOW VDC or HIGH IDC; clip at 255; Table 11: PWM DC/DC Power Alarm Counter 12.1.2.1. THERMAL OVERLOAD In addition to voltage and current monitoring described in section 6.1.1.1 "Linefeed States of Operation", N681386/87 continuously monitors the power dissipation of each external transistor in the Linefeed circuitry. After Low Pass Filtering, the power dissipation is compared against thresholds which are listed in Table 10. The threshold and the Low Pass Filter pole are both programmable and should be set according to the characteristics of the individual transistor as follows. The Low Pass Filter pole for QT1 and QR1 is given by the equation: 1 13 Q1C[12 : 0] = 1 - x2 800 x TTC Where TTC is the thermal time constant of the external transistor. The threshold should be programmed according to the maximum power dissipation of the external transistor. If the threshold is exceeded a power alarm event is deemed to have occurred. An associated interrupt may be enabled. An automatic state transition into Open state may be enabled by setting Power Alarm Automatic React (LAMC:PAA[2]) address (0x43)). Register Bit(s) Address PALPQ1 PALPQH1 PALPQH2 PALPQ2 PALPQH1 PALPQH2 PALPQ3 PALPQH2 PALPQH2 Q1C[7:0] Q1C[11:8] Q1C[12] Q2C[7:0] Q2C[11:8] Q2C[12] Q2C[7:0] Q3C[11:8] Q3C[12] 0xA1 0xA3 0xA4 0xA0 0xA3 0xA4 0xA2 0xA3 0xA4 PATHQ1 Q1TH[7:0] PATHQ2 PATHQ3 Parameter Description / Range PA Low Pass Filter Pole for QT1 and QR1 See Register Description PA Low Pass Filter Pole for QT2 and QR2 See Register Description PA Low Pass Filter Pole for QT3 and QR3 See Register Description 0xA6 PA Threshold for QT1 and QR1 0 to 7.7 W in 30.4 mW steps Q2TH[7:0] 0xA5 PA Threshold for QT2 and QR2 0 to 0.97 W in 3.8 mW steps Q3TH[7:0] 0xA7 PA Threshold for QT3 and QR3 0 to 7.7 W in 30.4 mW steps INT1 0x26 Power Alarm Interrupt Enable/Disable IE1 0x27 Power Alarm Interrupt Enable Enable/Disable 0x43 Power Alarm Automatic React Enable/Disable LAMC PAA[2] Table 12: Registers Associated with Thermal Overload Preliminary Datasheet Rev1.0 Page 34 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 12.1.2.2. TEMPERATURE MONITOR The device contains an on-chip temperature sensor that senses the temperature inside the package. The sensor is read through TEMP:TS[7:0] register (0x99) which is READ ONLY register. The temperature T in C is given by the following equation. T = TS[7 : 0] - 67 For example TEMP:TS[7:0] = 0x23, (35 decimal) indicates a temperature T=-32C and TEMP:TS[7:0]=0xCD (205 decimal) indicates T=138C. Similarly threshold temperatures TTH can be set in register THAT:THAT[7:0] address (0xAA). The TTH is calculated by the following equation. TTH = TATH[7 : 0] - 67 By enabling the temperature sensor interrupt in IE3:TMPE[0] address (0x2B), an interrupt will be generated if the temperature reaches this threshold. This facilitates control of the temperature should the device get close to the junction temperature. Note that there is no filtering associated with this temperature alarm since the package has an intrinsic thermal time constant. It is recommended that the temperature alarm threshold be set to 125C. The actual, TINT, internal temperature can be estimated by the following equation. TINT = TA + RJ x P TA - Ambient Temperature, RJ - Thermal Resistance, P - Power Dissipation For example, the maximum power dissipation for the QFN device is 0.7 W. The thermal resistance of the 48-pin QFN package is 27.1C/W. So at TA=85C, the estimated internal temperature would be: TINT = 85 + 27.1 * 0.7 = 104 C 12.1.3. RINGING There is a built-in RING generator that can generate balanced sinusoidal or trapezoidal ringing without the need for external components. Both trapezoidal and sine wave ringing signals can be generated. The Frequency, Amplitude, DC offset and ringing cadence of the ringing signal are programmable. In the case of trapezoidal waveforms the crest factor is also programmable. The choice of sinusoidal or trapezoidal will depend on requirements of the end user; sinusoids are required in many parts of the world to minimize cross talk between the many tip/ring pairs in a typical wiring bundle from the central office, whereas a trapezoid will deliver more power to the phone due to its low crest factor. As Ringing utilizes the Tone Generation block, we will first examine this function. Preliminary Datasheet Rev1.0 Page 35 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 12.1.3.1. TONE GENERATION There are two tone generators Oscillator1 (OS1), and Oscillator2 (OS2). These can be used to generate signals such as dial tone, busy tone, and various test tones which can be sent either on the transmit or receive paths. Each tone generator has a similar architecture and contains a two-pole oscillator circuit with a sample rate of 8 kHz. Register Bit(s) OS1ICL OS1ICH O1IC[15:0] OS1CL OS1CH O1C[15:0] OS1ATL OS1ATH O1ON[15:0] OS1ITL OS1ITH O1OFF[15:0] RMPC TOR[3] OSN IE2 Address 0xC2 0xC3 0xC6 0xC7 0xCA 0xCB 0xCE 0xCF Parameter Description / Range Oscillator 1 Amplitude Coefficient Sets Amplitude Oscillator 1 Frequency Coefficient Sets Frequency Oscillator 1 Active Timer 0 to 8 sec Oscillator 1 Inactive Timer 0 to 8 sec 0xC1 Tone Route Towards D/A or A/D O1E[0] O2E[1] 0xC0 0xC0 Oscillator Control Control O1AE[0] O1IE[1] O2AE[2] O2IE[3] 0x29 0x29 0x29 0x29 Interrupt Mask / Enable Control 0x24 0x28 Interrupt Vector Low Register Interrupt Status Status INTV IINT2 Table 13: Associated Registers for Oscillator Control (Oscillator 1 Example) For a desired frequency ft the oscillator coefficient for Oscillator m, OmC[15:0], can be calculated with the following equations. The following equations can be used for both Narrowband and Wideband. The resulting hexadecimal coefficients are inputs to registers OSmCH and OSmCL. 2 * * ft O1C [15 : 0] = COS 16 kHz Preliminary Datasheet Rev1.0 15 * 2 Page 36 of 164 2 * * ft O 2C [17 : 0] = COS 16 kHz 17 * 2 January 2010 N681386/87 Single Programmable Extended Codec/SLCC The initial condition for Oscillator m, OSmICL[15:0], can be calculated using the following equation. The following equations can be used for both Narrowband and Wideband. 2 * * ft * 215 OmIC [15 : 0] = A * sin 16 kHz (m: 1 , 2) "A" is calculated as the ratio of desired peak amplitude, APK, with a peak D/A output of 1.5779 VPK. APK cannot exceed 1.2 VPK. The resulting hexadecimal coefficient is input to registers OSmICH and OSmICL. A = Frequency (Hz) 697 0x7B3C APK (Volts) 0.31 770 0x7A37 852 0x78E7 O1C[15:0] A PK 1.5779 0x06C5 Frequency (Hz) 697 0.31 0x0775 770 0.31 0x0839 852 O1IC[15:0] 941 0x775C 0.31 0x090B 941 1209 0x71D8 0.55 0x145B 1209 1336 0x6EC9 0.55 0x164E 1336 1477 0x6B11 0.55 0x1868 1477 1633 0x6692 0.55 0x1AA4 1633 O2C[17:0] 1ECF0 1E8C5 1E39B 1DD70 1C75E 1BB22 1AC43 19A48 APK (Volts) 0.31 O2IC[15:0] 0x06C5 0.31 0x0775 0.31 0x0839 0.31 0x090B 0.55 0x145B 0.55 0x164E 0.55 0x1868 0.55 0x1AA4 Table 14: Example Register settings for Oscillator m Preliminary Datasheet Rev1.0 Page 37 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC OS1AT 16-Bit Modulo Counter OS1IT IT Expire IE2:O1AE INT Logic AT Expire INT2:O1I O1EN Zero Cross Logic INT Logic INT2:O1A 8 kHz Clock OSNC:O1ZC Zero Cross Load Logic Register Load IE2:O1E Enable Two-pole Resonance Oscillator OS1C 8 kHz Clock OS1IC Signal Routing RMPC:TR To TX Path To RX Path OSC1S Figure 8: Block Diagram Oscillator 1 Each tone generator contains two timers, one for setting the active period and the other for the inactive period. Each period can be programmed between 0 seconds (timer disabled) to 8 seconds in 125s increments. In addition, interrupts can be enabled on the expiration of either timer. The device has programmable cadence where the signal is generated during the active period and suspended during the inactive period. One-shot control of the oscillation can be achieved by controlling OSN:O1E[0] and OSN:O2E[1] address (0xC0) together with the active timer and the interrupt for durations up to 8 seconds. For longer durations or for direct software control of the oscillation, enabling the active timer by setting it to any non-zero value while simultaneously disabling the inactive timer completely will put the oscillator under direct control of the OSN:OmE bit. Zero crossing detect can be enabled by setting the OSN:OmZC bit for the corresponding tone generator. Setting this bit will ensure that each oscillator pulse will end without a DC component as illustrated below. Preliminary Datasheet Rev1.0 Page 38 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC cadence tone cadence tone Figure 9: Zero Crossing for Tone Generation Oscillator 2 is also specifically used to generate the Ringing signal and is unavailable for other functions during ringing. FSK generation does not utilize either one of the tone generation oscillators. 12.1.3.2. RING SIGNAL GENERATION The N681386/87 supports balanced and unbalanced Ringing up to 90 VPK (5 REN up to 4 kft, 4REN up to 4.5 kft, 3 REN up to 8 kft). Oscillator 2 from the Tone Generation block is used to generate the Ringing waveform. However, programming the waveform, sinusoidal or trapezoidal, involves some slight modifications to the procedures described for Tone Generation. The active and inactive timers of oscillator 2 can be programmed between 0 seconds (timer disabled) and 8 secs in 125us increments. A Ring phase delay can also be programmed in the OS2RPD:O2RPD[7:0] address (0xAD). All other oscillator operations are standard and follow the description in the tone generation section. Interrupts can be enabled on the expiration of either timer, so that, for instance, Caller ID can be inserted between tones. Cadence is activated when a non-zero value is programmed into both the active and inactive timers. In this case, these timers effectively govern the transitions in and out of the Ringing state as described in Linefeed States of Operation in Section 6.1.1.1. When the Ring Automatic bit LAMC:RGA[1] address (0x43) is set, the oscillator is automatically enabled when the Ringing state is entered and disabled when exited. If the Ring Automatic bit is enabled the transition from Ringing to Active state (Forward or Reverse) occurs automatically upon Ring Trip Detect. The oscillator enable and ring enable bits are automatically updated accordingly OSN:O2E[1] address (0xC0) and RMPC:R1EN[5] address (0xC1). One-shot control of the oscillation can be achieved by controlling OSN:O2E[1] address (0xC0) together with the active timer and the active timer interrupt for durations up to 8 seconds. For longer durations or for direct software control of the oscillation, enabling the active timer by setting it to any non-zero value, while simultaneously disabling the inactive timer completely, will put the oscillator under complete direct control of the OSN:O2E[1] address (0xC0) bit. Zero crossing detect can be enabled by setting the OSN:O2ZC[3] address (0xC0). Setting this bit will ensure that Preliminary Datasheet Rev1.0 Page 39 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC the RING signal will end without a DC component. It is recommended that settings be reprogrammed only when the oscillator is disabled. Register Name Register Name RMPC TRAP[7] OS2CL OS2CH O2C[17:0] OS2ICL OS2ICH O2IC[15:0] OS2RPD OS2RPD[7:0] OSN O2E[1] OS2ATL OS2ATH OS2ITL OS2ITH O2ON[15:0] O2OFF[15:0] Address 0xC1 Parameter Description / Range Ringing Waveform Sine/Trapezoid Ringing Frequency 15 to 100 Hz for Sine Trapezoid Ramp Slope Ringing Amplitude 0 to 93.5 V Trapezoid tRISE / tPEAK 0xAD Ringing Phase Delay 0 to 32 ms 0xC0 Ringing Oscillator Enable Enable/Disable Ringing Oscillator Active Timer 0V to 8 seconds Ringing Oscillator Inactive Timer 0V to 8 seconds 0xC8 0xC9 0xDC 0xC4 0xC5 0xCC 0xCD 0xD0 0xD1 Ringing Oscillator Zero Cross Enable Linefeed Status Control (Initiates Ringing State) OSN O2ZC[5] 0xC0 LS LS[3:0] 0x44 VBHV VBATH[5:0] 0x4E VBATH High Battery Voltage /2 0V to -93.5V in 1.484V steps VCMR VCMR[5:0] 0x42 VCMR Common Ringing Bias Adjust During Ringing 0V to -93.5V in 1.484V steps ROFFS ROS[5:0] 0xDC Ringing DC voltage offset 0V to +47.488 V in 1.484V steps IE2 0x29 Interrupt Enable Controls INTV INT2 0x24 0x28 Interrupt Status Enable/Disable Ringing State = 0100b Table 15: Registers for RING Generation Preliminary Datasheet Rev1.0 Page 40 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 12.1.3.2.1. SINUSOIDAL RINGING Sinusoidal Ringing is selected by setting RMPC:TRAP[7] address (0xC1) to LOW. For a desired frequency fR is calculated and programmed as before (see section Tone Generation). The oscillator initial condition for oscillator 2 is set in register O2IC[15:0] address (0xC4 - 0xC5) according to the following equation. Description Equation Desired frequency fR The resulting hexadecimal coefficient is input to registers OS2CH and OS2C and ROFFS Oscillator initial condition for oscillator 2 The resulting hexadecimal coefficient is input to registers OS2ICH and OS2ICL A is calculated from the desired peak amplitude, APK, in volts 2 * * f R * 217 O2C [17 : 0] = COS 8 kHz 2 * * f R * 215 O2IC [15 : 0] = A * sin 8 kHz A = A PK 96 Note that A is calculated differently for Tone Generation. Finally the precise phase position where the sinusoidal ringing signal begins transmitting can be controlled by programming a transmission or phase delay of up to 31.8 ms into OS2RPD:O2RPD[7:0] address (0xAD). If the zero-crossing feature is enabled signal transmission will end at the equivalent phase position. Target Frequency (Hz) Frequency (Hz) O2C[17:0] 10 11.12 1FFFB 11 11.12 1FFFB 12 12.18 1FFFA 13 13.15 1FFF9 14 14.07 1FFF8 15 15.73 1FFF6 16 16.49 1FFF5 17 17.22 1FFF4 18 18.60 1FFF2 19 19.27 1FFF1 20 20.51 1FFEF 25 25.37 1FFE6 50 50.26 1FF9A Table 16: Example Ringer Register settings Preliminary Datasheet Rev1.0 Page 41 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 12.1.3.2.2. TRAPEZOIDAL RINGING Trapezoidal Ringing is selected by writing RMPC:TRAP[7] = 1 address (0xC1). Three parameters are required to specify a Trapezoidal RING Signal and they as follows: * * * Desired frequency ft (period T) Desired amplitude APK Crest factor, CF Three values are programmed across O2C[17:0] and O2IC[15:0] to describe the waveform. VTIP-RING tPK APK Time tRISE T = 1/fT TR_v1 Figure 10: Trapezoidal Ringing Description Equation 1 = 0.375 * T * 1 - t RISE 2 CF Calculated rise time (tRISE) The rise time, expressed as an integer number of periods of 8 kHz, OS2ICL The resulting hexadecimal coefficient is input to registers OS2ICL O2IC[7 : 0] = t RISE * 8 kHz ( t PK = (0.5 * T ) - 2 * t RISE Calculated peak time (tPK) The peak time, expressed as an integer number of periods of 8 kHz, OS2ICH The resulting hexadecimal coefficient is input to registers OS2ICH O2IC[15 : 8] = t PK * 8 kHz Calculated ramp rate is specified in O2C[15:0] Oscillator 2 has 18-bit register. The resulting hexadecimal coefficient is written to registers ROFFS:O2C[7:6], OS2CL and OS2CH Precise position where the trapezoidal signal begins transmitting. If the zero-crossing feature is enabled signal transmission will end at the equivalent phase position. Preliminary Datasheet Rev1.0 Page 42 of 164 ) O2C[15 : 0] = A PK 96 15 *2 t RISE * 8 kHz OS2RPD = transmission or phase delay of up to 32 ms January 2010 N681386/87 Single Programmable Extended Codec/SLCC 12.1.3.2.3. RINGING DC OFFSET AND COMMON MODE BIAS A Ringing DC offset voltage VROFF can be defined by setting ROFFS:ROS[5:0] VROFF 96 ROS[5 : 0] = 6 * 2 Ringing DC Offset is enabled when ROFFS:ROS[5:0] contains a non-zero value. VROFF is added to, or subtracted from, the AC ringing signal depending on the setting. Similarly a Common Ringing Bias voltage VCMR can be defined by setting the VCMR Register. time 0V VTIP VTIP APEAK APEAK VROFF VBATH/2 VROFF VRING VRING APEAK VBATH VROFF = 0 VROFF > 0 RG Volts Figure 11: Positive DC offset for Trapezoidal Ringing time 0V VTIP VTIP APEAK VBATH/2 VCMR VRING VRING APEAK VBATH VCMR = 0 VCMR > 0 Volts CMR Figure 12: Programming VCMR voltage for Trapezoidal Ringing Preliminary Datasheet Rev1.0 Page 43 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 12.1.3.2.4. LINEFEED CONSIDERATIONS DURING RINGING To maintain proper biasing of the external bipolar transistors the generated Ringing signal should stay between the Ringing voltage rails (GNDA and VBATH). If the ringing signal approaches the rails the signal will distort. Furthermore excessive power dissipation in the external transistors will also occur. This can be prevented if VBATH is programmed such that: VBATH 12.1.3.3. > 2 x APEAK + VROFF + VCMR INTERNAL UNBALANCED RINGING An unbalanced ringing waveform can be generated by the N681386/87. This feature is enabled by setting GMV:UBR[7] address (0x4D) to "1". The Ringing signal is only applied to the RING lead and the TIP lead remains at the programmed VGM voltage. The Ringing signal is programmed as described in section 9.1.3.1. A DC offset can be used to provide DC current for Ring Trip Detection (section 9.1.3.2.3). Positive VROFF values will cause the DC offset point to move closer to ground. The internal unbalanced Ringing waveform is shown below. Figure 13: Unbalanced Ringing on TIP The DC offset value should be set to less than half the ringing amplitude or the ringing signal will be clipped. Reverse unbalanced Ringing waveform can be achieved by setting the GMV:UBR[7] address (0x4D) bit to 1 (the TIP lead oscillates while the RING lead stays constant). In this mode, the polarity of VROFF must also be reversed. Preliminary Datasheet Rev1.0 Page 44 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 12.1.3.4. RING TRIP DETECTION The Ring Trip Detection mechanism is used to recognize an off-hook event during Ringing. The N681386/87 monitors the Loop current through the Loop current circuitry (available at LPI:ILP[11:0] address (0x90)). If the shadow Linefeed state LS:SLS[7:4] address (0x44)indicates a Ringing state the loop current can used to evaluate whether a Ring Trip event has occurred under two alternative methods - AC path or DC path. Figure 14: RING Trip Detection Mechanism For the AC path the AC component of the loop current is determined by passing it first through a full-wave rectifier to remove the DC component and then through a Low Pass Filter for smoothing. The resulting value is compared to the AC path Ring Trip Threshold in register RTTA:ARTT[5:0] address (0x55). A subsequent debounce filter is programmed with an AC Path debounce interval from register RTDBA:ARTDI[7:0] address (0x48). If this interval is satisfied, a valid Ring Trip is judged to have occurred. However, RTLC:RTDUA[3] address (0x46) bit records the unfiltered status of the AC path Ring Trip Detect without regard to the debounce interval. For the DC path the DC component of the loop current is determined by passing it first through a Low Pass Filter to remove the AC component and then though a rectifier to ensure a positive value. The resulting value then compared against the DC path Ring Trip Threshold in register RTTD:DRTT[5:0] address (0x67) and tested against the DC path debounce interval from register RTDBD:DRTDI[7:0] address (0x68). If this interval is satisfied, a valid Ring Trip is judged to have occurred. However, RTLC:RTDUD[4] address (0x46) bit records the unfiltered status of the DC path Ring Trip Detect without regard to the debounce interval. If a RingTrip is judged to have occurred either on the AC path or on the DC path RTLC:RTD[1] address (0x46) bit is set. If enabled, a Ring Trip Interrupt will occur. If LAMC:RGA[1] address (0x43) is set the channel will automatically transition into the Active state (Forward or Reverse) upon a valid Ring Trip Detect. Preliminary Datasheet Rev1.0 Page 45 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC In general, only one detection path should be utilized at one time by maximizing the Ring Trip Threshold value of the unwanted path. Register RTTA RTTD Bit(s) Address Parameter Description / Range RTDBA RTDBD ARTT[5:0] DRTT[5:0] ARTDI[7:0] DRTDI[7:0] RTDFCLD DCHA RTDFCLD DCHD ARTDFC[7:0] ARTDFC[11:8] DRTDFC[7:0] DRTDFC[11:8] 0x55 0x67 0x48 0x68 0x51 0x52 0x65 0x66 INT1 RT[0] 0x26 RING Trip Interrupt Pending Status IE1 RTE[0] 0x27 RING Trip Interrupt Enable Enable/Mask RTLC RTD[1] 0x46 RING Trip Loop Closure Detect Status Status LS SLS[3:0] 0x44 Linefeed Status Control Ringing Shadow Status LAMC RGA[1] 0x43 Enable Oscillators and Transitions Automatically Control RING Trip Threshold AC & DC 0 to 80 mA in 1.27 mA steps RING Trip Detect Debounce Interval 0 to 159 milliseconds RING Trip Filter Coefficient For Digital LPF Table 17: Registers for RING Trip Detection The cutoff frequency, fLP, of the Digital LPF is programmed in the Ring Trip Filter coefficient RTDFCA[11:0] and RTDFCD[11:0]: f RTDFCD[11 : 0] = 1 - 2 * * LP 800Hz f RTDFCA[11 : 0] = 1 - 2 * * LP 800Hz 12 *2 12 *2 Values for RTDFCA, RTDFCD, RTTA, RTTD, RTDBD and RTDBA vary according to the programmed ringing frequency. The following table can be used for reference. Ringing Frequency RTDFCD[11:0] RTDFCA[11:0] RTTA RTTD RTDBD RTDBA Hz Decimal Hex Decimal Hex Decimal Hex 16.667 3561 0x0DE9 34 mA 3600 15 ms 0x0C 20 3453 0x0D7D 34 mA 3600 12.5 ms 0x0A 30 3132 0x0C3C 34 mA 3600 8.75 ms 0x07 40 2810 0x0AFA 34 mA 3600 7.5 ms 0x06 50 2489 0x09B9 34 mA 3600 5 ms 0x04 60 2167 0x0877 34 mA 3600 5 ms 0x04 Table 18: Recommended RING Trip Values for Ringing Preliminary Datasheet Rev1.0 Page 46 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 12.1.4. SUPERVISION (SIGNALING) 12.1.4.1. LOOP CLOSURE DETECTION The recognition of an off-hook event outside Ringing is controlled by the Loop Closure Detect mechanism. Figure 16 shows the functional block. Figure 15: Loop Closure Detector Block Diagram Loop current monitoring circuitry provides a Loop Current value which can be read at LPI:ILP[11:0] address (0x90) register. If the shadow linefeed state LS:SLS[7:4] address (0x44) indicates any state other than Open or Ringing state, the Loop Current value is fed to a digital Low Pass Filter to remove unwanted AC components. The cutoff frequency, fLP, of the Digital LPF is programmed in the Loop Closure Detect Filter coefficient LCDCL:LCDC[11:0] address (0x50). f LCDC[11 : 0] = 1 - 2 * * LP 800Hz * 2 12 The resulting value is compared to a Loop Current Detect Threshold value in register LCT[5:0] address (0x53). However if the transition is an off-hook to an on-hook transition with hysteresis is enabled LCTHY:LCHYEN[6]=1 address (0x54), the threshold value in LCTHY:LCTOFF[5:0] address (0x54) is used in the comparison. A subsequent debounce filter is programmed with a debounce interval from register LCDB:LCDI[7:0] address (0x47). In addition, a special mask counter LCMCNT:LCMCNT[7:0] address (0xAB) can be enabled using RTLC:LCM[6] address (0x46) to guard against detects due to transients on the line, which can occur with reactive ringers. The RTLC:LCDU[2] address (0x46) bit records the unfiltered status of Loop Closure Detect without regard to the debounce interval or the Mask count. If the interval is satisfied a valid Loop Closure is judged to have occurred and the RTLC:LCD[0] address (0x46) bit is set. An interrupt can be enabled when the Loop Closure Interrupt occurred. Preliminary Datasheet Rev1.0 Page 47 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC Register Bit(s) Address Parameter Description / Range LCT LCT[5:0] 0x53 Loop Closure Threshold Current Based: 0-80 mA @ 1.27 mA Voltage based: 0-93.5V @ 1.484V LPI ILP[11:0] 0x90 Loop Closure Current Based: 0-78.74 mA @ 1.25 mA LCTHY LCHYEN[6] 0x54 Enable Hysteresis When hysteresis enabled only opposite transition governed by LCT. Current Based: 0-80 mA @ 1.27 mA Voltage based: 0-93.5V @ 1.484V LCTHY LCTOFF[5:0] 0x54 Loop Closure Threshold Off-Hook to ON-HOOK state Enable Hysteresis LCDB LCDI[7:0] 0x47 Loop Closure Detect Debounce Interval 0 to 159 milliseconds LCDCL DCH LCDC[7:0] LCDC[11:8] 0x50 0x52 Loop Closure Filter Coefficient For Digital LPF INT1 LC[1] 0x26 Loop Closure Interrupt Pending Status IE1 LCE[1] 0x27 Loop Closure Interrupt Enable Enable/Mask RTLC LCD[0] 0x46 Loop Closure Detect Status Status / Enable Voltage-based Loop Closure LCMC LCMCNT[7:0] 0xAB Loop Closure Detect Mask Counter 0 to 319 ms in 1.25 ms steps LAMC LCDA[0] 0x43 Enable Automatic Transitions Control Table 19: Loop Closure Detection Registers If LAMC:LCDA[1] address (0x43) is set the channel will automatically transition from the Idle (Forward or Reverse), ON-HOOK Transmission (Forward or Reverse) as well as TIP Open or RING Open into the Active (Forward or Reverse) state upon a valid Loop Closure Detect. Voltage based Loop Closure Detect can also be enabled by setting bit RTLC:VBLC[5] address (0x46). In this case the input signal is the Loop Voltage and the thresholds are interpreted as voltages. All other functionality is the same. Preliminary Datasheet Rev1.0 Page 48 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 12.1.4.2. GROUND KEY DETECTION Ground Key Detect (GKD) senses a DC current imbalance between the TIP and RING terminals when the RING terminal is connected to ground. This feature is commonly associated with PBX signaling. The feature is enabled in all states except Ringing. Figure below shows the functional blocks for ground key detector. LGI Input Input Signal Signal Processor Processor Digital Digital LPF LPF + LS Debounce Debounc Filter e Filter Interrupt Interrupt Logic Logic GKDE GDKFC Ground Ground Key Key Threshold Threshold GKDDT GDKIE GKDH GKDL Figure 16: Ground Key Detection Circuitry Ground Key Detection is enabled by setting the GKDFCH:GKDEN[7] address (0x64). The input to the GKD circuitry is the longitudinal current, which is available in register LGI:ILG[11:0] address (0x8C). If the shadow linefeed state LS:SLS[7:4] address (0x44) indicates a non-Ringing state, the longitudinal current is fed to a programmable Digital Low Pass Filter to remove any unwanted AC components. If fLP is the desired cutoff frequency LPF the Low Pass Filter Coefficient GFDFC:FCGKD[11:0] address (0x63) is calculated using the following equation: f FCGKD[11 : 0] = 1 - 2 * * LP * 2 12 800Hz A typical value of 10 (CKDFC:FCGKD[11:0] = 00A) is sufficient to filter out any unwanted ac artifacts while allowing the dc information to pass through the filter. Register Bit(s) Addr Parameter INT3 GKDE[3] 0x2A Ground Key Interrupt Pending IE3 GKDIE[3] 0x2B GKDDT DTGKD[7:0] 0x62 LGI ILG[11:0] GKDH HGKD[5:0] Range Increment Resolution Yes/No N/A N/A Yes/No N/A N/A 0 to 320ms 1.25ms 1.25ms 0x8C Ground Key Interrupt Enable Ground Key Detect Debounce Interval Longitudinal Current 0x60 Ground Key Threshold (enabled) 0 to 80 mA 1.27mA 1.27mA Monitor only 500uA GKDL LGKD[5:0] 0x61 Ground Key Threshold (released) 0 to 80 mA 1.27mA 1.27mA GKDFC FCGKD[11:0] 0x63 Ground Key Filter Coefficient 0 to 4000h N/A N/A Table 20: Ground Key Detection Registers Preliminary Datasheet Rev1.0 Page 49 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC The resulting value from the Low Pass Filter is compared to a Ground Key Detect High Threshold GKDH:HGKD[5:0] address (0x60) value. Hysteresis is enabled automatically by programming a second threshold GKDL:LGKD[5:0] address (0x61) to detect when the Ground Key is released. The output of the comparator is connected to a programmable debounce filter. It can be programmed with a debounce interval GKDDT address (0x62). 12.1.4.3. CALLER ID AND FSK GENERATION The N681386/87 provides an optimized Frequency-shift keying (FSK) generator for sending Caller ID information. Both Bell 202 and ITU-T V.23 standard FSK are supported. The FSK generation supports both Type I and Type II Caller ID with ability to generate CPE Alerting Signals (CAS tones) of 2130 Hz and 2750 Hz. The linear FSK waveform generator provides a mechanism to generate the linear code of FSK with continuous phase. FSKTD FSKC FSK FIFO PY P PY P PY P PY P PY P PY P PY P PY P PY P FSKS:FF FSKS:FEP INT Logic INT1:FSC FSKS:SRE IE1:FSKE FSKC:SPEC Bell Freq0 V23 Freq0 MUX Bell Freq1 FSK Data V23 Freq1 FSK Signal Generator FSK Signal FSK:LCR P: Package bit PY: Parity bit Figure 17: The Architecture of Linear FSK Waveform Generator Preliminary Datasheet Rev1.0 Page 50 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC As the above figure illustrates, an 8-byte FIFO substantially reduces CPU intervention in generating FSK. Transmitted FSK data is placed in the FIFO by writing to the FSKTD:FSK[7:0] address (0x11) register. The writing process can be controlled by the status bits in the FSKS address (0x12) register which inform on the FIFO's current status. FSK transmission is initiated by asserting FSKC:TX[3] address (0x10). The FSK transmit data is clocked out of the FIFO one byte at a time beginning with the LSB. If package mode is enabled a `start bit' (Space) will automatically be amended to the head of the FSK transmit data. Furthermore, one or two `stop bits' (Mark) are added to the end of the FSK transmit data, depending on the setting of FSKC:STOP[2] address (0x10). If package mode is not enabled the FSK transmit data is transmitted as it appears in the FSK FIFO. There is one FSK generation engine available inside the N681386/87. An FSK interrupt is generated if the FIFO is empty. The gain of the FSK signal can also be adjusted using FSKLCR:GAIN[3:0] address (0x13) register. Register Bit(s) Address FSKC Parameter Description / Range 0x10 FSK Control Register Control FSKTD FSK[7:0] 0x11 FSK Transmit Data Binary signal to be transmitted FSKS FF[2] FEP[0] 0x12 FSK Status Register FIFO and Shift Register Status FSKLCR GAIN[3:0] 0x13 FSK Gain See Register Description FSKTCR FSKR[1] 0x14 FSK Route Route FSK Data INT2 FSKI[7] 0x28 Interrupt Status Registers Status IE2 FSKIE[7] 0x29 Interrupt Enable Register Enable/Mask Table 21: Registers for FSK Generation 12.1.4.4. DTMF GENERATOR In Dual Tone Multi Frequency (DTMF) two tones are used to generate a DTMF digit. One tone is chosen from four possible row tones, and one tone is chosen from four possible column tones. The sum of these two tones constitutes Row Frequency one of 16 possible DTMF digits. Hz 697 770 852 941 Column frequency 1209 1 4 7 * 1336 2 5 8 0 1477 3 6 9 # 1633 A B C D Table 22: DTMF frequency mapping DTMF tone generation can be achieved by using both oscillator 1 and oscillator 2. The table below illustrates the oscillator coefficient and initial condition which are required for the standard DTMF tone frequencies. For timing Preliminary Datasheet Rev1.0 Page 51 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC integrity both oscillators should be enabled simultaneously. Tones can be directed either towards the line or the PCM interface by programming the RMPC:TRAP[7] bit address (0xC1). Frequency (Hz) APK (Volts) 697 O1C[15:0] or O2C[17:2] OmIC[15:0] Decimal Hex Decimal Hex 0.31 31548 7B3C 1733 06C5 770 0.31 31281 7A31 1909 0775 852 0.31 30951 78E7 2105 0839 941 0.31 30556 775C 2315 090B 1209 0.55 29144 71D8 2930 0B72 1336 0.55 28361 6EC9 3211 0C8B 1477 0.55 27409 6B11 3513 0DB9 1633 0.55 26258 6692 3834 0EFA Table 22: DTMF frequency settings (APK values for line impedance =600 ) For a desired frequency fD the oscillator coefficient for Oscillator m, O1C[15:0] or O2C[17:2], can be calculated with the following equation. The following equations can be used for both Narrowband and Wideband. The resulting hexadecimal coefficients are register data of OSmCH and OSmCL. 2**fD O1C[15 : 0] = cos 16kHz 15 *2 2**fD O 2C[17 : 0] = cos 16kHz 17 *2 The initial condition for Oscillator m, OSmICL[15:0], can be calculated using the following equation. equations can be used for both Narrowband and Wideband. 2 * * f D 15 OmIC[15 : 0] = A * sin *2 16 kHz The following (m: 1 , 2) Where A is calculated from the desired peak amplitude, APK, in volts in the following equation A = APK 1.5779 The resulting hexadecimal coefficient is input to registers OS2ICH and OS2ICL. Preliminary Datasheet Rev1.0 Page 52 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 12.1.4.5. DTMF DETECTION Dual Tone Multi Frequency (DTMF) tones consist of a low tone of 697Hz, 770Hz, 852Hz or 941Hz and high tone of 1209Hz, 1336Hz, 1477Hz or 1633Hz. The incoming signal is separated into high-group and low-group tones, and detected by high-group and low-group tone detectors respectively. When valid data is detected the result is pushed onto a FIFO which can be read by the host through the SPI interface. When DTMF detection is enabled channel data is scanned for DTMF tones. Three critical time periods associated with detection can be programmed. A signal must be present for a minimum of PDT (Present Detect Time) before tone detection is triggered. Once valid tone is triggered, the tone must be present for ACCT seconds. Once this is true, DTMFRDY is active and the received data is pushed onto the FIFO. When the tone is removed, no detection is triggered for ADT (Absent Detect Time) seconds. DTMFRXDATA is decoded from the row and column frequency according to Table 22. The sensitivity and precision of detection can also be programmed. When a DTMF tone is detected the N681386 can be configured to generate an interrupt to the host processor for service. Figure 18: DTMF Detector - Functional Block Diagram Row Frequency Column frequency 697 Hz 770 Hz 852 Hz 941 Hz 1209 Hz 1 0x01 hex 4 0x04 hex 7 0x07 hex * 0x0B hex 1336 Hz 2 0x02 hex 5 0x05 hex 8 0x08 hex 0 0x0A hex 1477 Hz 3 0x03 hex 6 0x06 hex 9 0x09 hex # 0x0C hex 1633 Hz A 0x0D hex B 0x0E hex C 0x0F hex D 0x00 hex Table 22: DTMF Tone Decoding Preliminary Datasheet Rev1.0 Page 53 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 12.1.5. CODEC The N681386/87 converts the analog transmit signal into a PCM code, either by using -Law, A-Law or linear PCM, and vice versa. A-Law, -Law and PCM encoding and decoding is performed according to the recommendations in the ITU-T G.711 specification. In the linear PCM mode a 16-bit 2s complement data format is used. Details of the Decode and Encode Characteristics are to be found in Section 11. 12.1.6. HYBRID 12.1.6.1. AC PATH The N681386/87 is used for digitizing and reconstructing the human voice. To digitize intelligible voice requires a signal to distortion ratio (S/D) of about 30 dB over a dynamic range of about 40 dB. N681386/87 meets this requirement by a large margin. The complete AC signal path block diagram is shown in Figure 3. 12.1.6.1.1. NARROWBAND TRANSMIT PATH The gain of this amplifier can be set by programming in APG:ATX[1:0] so that the signal takes advantage of the full range of the A/D. An anti-aliasing filter also precedes the A/D. The A/D produces a 16-bit linear PCM data stream sampled at 8 kHz. The A/D not only exceeds ITU G.712 and G.711 but also expands the voice-band cut-off frequency from a standard 3.4 kHz to 3.6 kHz for enhanced voice quality. High pass filter HXP implements the highpass attenuation requirements for signals below 65 Hz. The linear PCM data stream is then amplified by the A/D digital gain amplifier, programmable from -inf dB to 6 dB and allowing fine gain adjustments down to a resolution of 0.1 dB. When enabled, the DTMF decoder can access this data stream at this point. Finally, if companding is selected, A-law or -law compression reduces the data stream to 8 bits wide. The timeslot on the PCM interface can be configured with either 8-bit compressed or 16-bit uncompressed data in mind. 12.1.6.1.2. NARROWBAND RECEIVE PATH In the receive path, data taken from the PCM highway can be 16-bit uncompressed or A-law / -law 8-bit compressed. In the latter case it is first expanded to 16-bit data. The linear PCM data stream is then amplified by the D/A digital gain amplifier, programmable from -dB to 6 dB and allowing fine gain adjustments down to a resolution of 0.1 dB. The data stream is then put through an optional high pass filter to filter out signals below 65 Hz and a lowpass interpolation filter again with 3.6 KHz cutoff frequency for enhanced voice quality before being passed to the D/A. Finally, the analog signal is amplified by the Analog Receive Amplifier. The gain of this amplifier can be set by programming in APG:ARX[1:0] before the signal is output from the chip. The 12-bit digital gain blocks in both the transmit and receive paths provide 11 bits (1024 steps) for fine tuning the audio signals while the MSB can be used to invert the signal. To calculate the gain setting Y based on the desired dB setting X, the equation is: Y = 1024 x 10 Preliminary Datasheet Rev1.0 Page 54 of 164 (XdB 20 ) January 2010 N681386/87 Single Programmable Extended Codec/SLCC Conversely, to calculate the dB value of the gain based on known gain step values, the equation is: X dB = 20 x log 10 (Y 1024 ) The table below contains a sample of possible gain settings. dB - -24 -12 -6 0 6 Gain Off 1/8 1/4 1/2 1 2 Gain Setting (Y) 0x000 0x040 0x100 0x200 0x400 0x7FF Table 23: Digital Gain Adjust Coefficients and Attenuation weightings The device exceeds the maximum ITU requirements for frequency response, group delay distortion and signal to distortion as can be verified from the diagrams in Section 11. Audio signals larger than 0dBm0 can be processed without clipping in either compression scheme. The maximum PCM code generated for a sine wave is 3.17 dBm0 (law) or 3.14 dBm0 (A-law). The N681386/87 overload clipping limits are driven by the PCM encoding process. The presence of a high-pass filter transfer function ensures at least 30 dB of attenuation for signals below 65 Hz. The Low Pass Filter transfer function which attenuates signals above 3.6 kHz has to exceed the requirements specified by ITU G.714 and it is implemented as part of the A/D. The receive path transfer function requirement is very similar to the transmit path transfer function. We have added the high-pass filter portion as a user controlled option. Pass-band has been defined between 300 Hz to 3600 Hz. As the PCM data rate is 8 kHz, no frequencies greater than 4 kHz can be digitally encoded in the data stream. 12.1.6.1.3. ANALOG TRANSHYBRID BALANCING The N681386/87 provides fully programmable hybrid balancing to cancel transmit and receive signal echo on the fullduplex 2-wire pair. The hybrid balancing is performed at the internal 4-wire port. It is measured as the ratio of the un-cancelled return signal to the reference signal (digital-to-digital gain). Although the ITU standard recommends a hybrid balance below -18 dB within the voice band, care has been taken to reduce this further to -30 dB in order to avoid unacceptable voice quality for packet based networks. The Tran hybrid Balance is internally set to subtract a -6 dB level from the transmit path signal, corresponding to the ideal case when the impedance matching perfectly matches the subscriber loop. This level can be adjusted from - Preliminary Datasheet Rev1.0 Page 55 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 2.77 dB to +4.08 dB around this ideal setting by programming HB address (0x41). This register can also be used to disable the Tran hybrid balancing completely. It should also be noted that Tran hybrid Balance adjustments are independent of any other gain adjustment stages as the level shift occurs on the transmit path before any gain stages, as can be seen on Figure 3. 12.1.6.1.4. IMPEDANCE MATCHING The device provides on-chip programmable two-wire impedance settings to meet a wide variety of worldwide two-wire return loss requirements. R2 C R1 Zline Figure 19: Characteristic Line Impedance Figure above illustrates the characteristic line impedance model implemented on-chip. Examples of the standard impedances which the N681386/87 supports are shown below. Country US PBX, Korea, Taiwan Standard Requirement Impedance Element (Unit) R1(Ohm) R2(Ohm) C(Farad) 600 Open Short 900 Open Short Table 24: Examples of Resistive Impedance Matching Pure Resistive Impedance Settings (for example 600 Ohm and 900 Ohm) can be selected in IM1:ZR1[3:0]. In this case Complex Impedance Matching should be disabled by setting IMCTRL:IMEN[2] to 1. Register ILIM:ZCPEN[6] address (0x23) allows magnitude of the AC signal to be increased to compensate for the additional loss at the high end of the audio frequency range. ILIM:ZCPEN[6] should be enabled for Pure Resistive Impedance Matching cases. Country Japan CO Requirement Impedance Element (Unit) R1(Ohm) R2(Ohm) C(Farad) 1u 600 Open Bellcore 900 Open 2.2u CTR21 270 750 150n China CO 200 680 100n China PBX 200 560 100n Japan PBX 100 1000 100n Preliminary Datasheet Rev1.0 Page 56 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC Requirement Impedance Element (Unit) R1(Ohm) R2(Ohm) C(Farad) 310n 370 620 Country India, New Zealand Germany (Legacy) 220 820 115n UK (Legacy) 320 1050 230n Australia 220 820 120n Table 25: Examples of Complex Impedance Matching Complex Impedance Settings are realized using the Impedance Matching Coefficients loaded into IMRAM 0xF3 using control functions in IMCTRL 0xF5. In this case IM1:ZR1[3:0] should be should be set to 0 (600 Ohm Setting). ILIM:ZCPEN[6] should be disabled for Complex Impedance Settings. 12.1.6.1.5. DAC/ADC AUTOMUTE When the selected input data source is equal to zero for 1024 consecutive sample cycles, a mute signal is asserted to the analog front end to mute the line output signal. The control output is de-asserted on the first non-zero sample. Automute is enabled by setting AUTOMT:AUTOMTEN[7] address (0x5E). Automute has the capability of selecting two different options such as either DAC and ADC data or only DAC data by AUTOMTSEL[6] address (0x5E). Register Bit(s) Address Parameter Description / Range AMT AMTEN[7] 0x5E Automute Enable 0 = Automute disabled (default) 1 = Automute enabled AMT AMTSEL[6] 0x5E Automute Select 0 = DAC data+ADC data (default) 1 = DAC data only Table 26: Registers for Automute Automute Threshold Modes AMTTHR[5:0] Linear u-Law A-law Preliminary Datasheet Rev1.0 Page 57 of 164 0 0 8 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 12.1.7. TESTING The N681386/87 includes extensive test and diagnostics features. Real-time DC linefeed measurements are available through the several voltages and current registers. GR-909 line test capabilities can also be supported. In addition five loop back test options, three digital loop backs (DLP1, DLP2 and DLP3) and two analog loop backs (ALP1, ALP2) are available. Figure 3, details the AC path architecture and also indicates the precise locations of the test loop backs. 12.1.7.1. LOOP BACK TESTS The full analog loop back LB:ALP2[4] address (0x21) allows the testing of almost all the circuitry of both transmit and receive paths. The compressed 8-bit/16-bit linear transmit data stream is fed back serially to the input of the receive path expander. The signal path starts with the analog signal at the input of the transmit path and ends with an analog signal at the output of the receive path. LB:ALP1[3] address (0x21) takes the digital stream at the output of the A/D in the transmit path and feeds it back to the input of the D/A in the receive path. As with LB:ALP2[4] address (0x21) the signal path starts with the analog signal at the input of the transmit path and ends with an analog signal at the output of the receive path. Full digital loop back LB:DLP1[0] address (0x21) tests practically all transmit and receive path circuitry. The analog signal at the output of the receive path is fed back to the input of the transmit path by way of the Trans-hybrid filter path. The Trans-hybrid balance may be set to unity gain so that the return signal is not attenuated. A switch in the receive path is opened when this loop is selected so that no signal appears on the line during this loop back. The signal path starts with 8-bit/16-bit PCM data input to the receive path and ends with 8-bit/16-bit PCM data at the output of the transmit path. The user can bypass the companding process and interface directly to the 16-bit data. LB:DLP2[1] address (0x21) takes the digital stream at the input of the D/A in the receive path and feeds it back to the output of the A/D in the transmit path. The signal path starts with 8-bit/16-bit PCM data input to the receive path and ends with 8-bit/16-bit PCM data at the output of the transmit path. This loop back option allows the testing of the digital signal processing circuitry of the N681386/87 independent of any analog signal processing activity. DLP3 loops the digital data stream just beyond the PCM interface, taking the 8-bit/16-bit output of the PCM receive interface and looping directly to the input of the PCM transmit interface. Preliminary Datasheet Rev1.0 Page 58 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 12.1.7.2. DIAGNOSTICS SUPPORT The N681386/87 provides a variety of registers which proved both voltages and current values from the line which are either measured or calculated (see tables 7 and 8). These registers are updated at a rate of 800 Hz or every 1.25 msec. Furthermore, the N681386/87 provides several mathematical and sampling resources to derive additional data useful in diagnostics (see illustration below). For example, peak to peak measurement results of the loop current and loop voltage is available in registers ILPP2P:LPIP2P[11:0] address (0x9C) and VLPP2P:LPVP2P[11:0] address (0x9B). These measured calculated and derived register values can be used to do GR-909 diagnostic tests. DCREN Figure 20: Diagnostics Support Block Diagram 12.1.8. POWER INTERFACE The N681386/87 utilizes low-cost external components for to perform the DC/DC conversion to the high voltages required for the subscriber line interface (SLIC). The external discrete circuitry is controlled by on on-chip pulse width modulation (PWM) driver. The battery voltage circuit and PWM driver provide a closed loop system for battery voltage regulation. Battery voltage, VBAT, is monitored and compared to an internal target and adjustments are made accordingly. The target voltage will change, depending on different architectures and such factors as the linefeed state. As illustrated in Preliminary Datasheet Rev1.0 Page 59 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC Figure 21 for example, if the device is operating in the constant voltage region the VBAT target is a combination of VOV, VOH and VGM. A combination of coarse and fine adjustments ensures rapid convergence on the target voltage. Two different DC/DC conversion architectures are supported and described in the following sections. Two different internal PLL master clocks (13.824 MHz, or 27.648 MHz) can be selected depending on the settings of PON:CDCC[7] address (0x22) and PLLS:PLLCM address (0x04). The width of the pulse generated by the PWM is programmed in PWMT:PT[7:0] address (0x49). A minimum off-time is programmable in the DDCC:DCOFF[7:0] address (0x4A) to allow sufficient time for stored energy to be transferred to the output capacitor. For reference monitoring the actual PWM pulse width can be checked in the read only PWCT:PWCT[7:0] address (0xB5) register. For example, if the PWCT indicates a maximum pulse width consistently, this might indicate an overload condition or a short circuit. The values for PWMT, DDCC and PWCT are based on multiples of the internal PLL master clock period. Register Bit(s) Address Parameter Description / Range PON CDCC[7] 0x22 Inductor Architecture PWMT PT[7:0] 0x49 Sets PWM Pulse Width for DC/DC converter Step size and initial value dependant on internal PLL clock selection DDCC DCOFF[7:0] 0x4A Sets PWM minimum Off time for DC/DC convertor Step size and initial value dependant on internal PLL clock selection PWCT PWCT[7:0] 0xB5 PWM Count Register For Reference (Read only) DCTR VTR[7:0] 0x77 DC/DC Target Voltage 0V to -93.5V in 1.484V increments OHV VOH[5:0] 0x4C VOH On-Hook Voltage 0V to -93.5V in 1.484V increments GMV VMV[5:0] 0x4D VGM Ground Margin Voltage 0V to -93.5V in 1.484V increments VBHV VBLV VBATH[5:0] VBATL[5:0] 0x4E 0x4F VBATH High Battery Voltage VBATH Low Battery Voltage 0V to -93.5V in 1.484V increments VOV VOV[3:0] 0x56 VOV Offset Voltage 0V to 24 V in 1.484 V increments BATV VB[7:0] 0x80 VBAT Battery Voltage 0V to -95.88V in 0.376 V increments Table 27: Registers associated with DC/DC Conversion 12.1.8.1. DC/DC CONVERSION (INDUCTOR) A current sensing input for the DC/DC converter provided. The PWM pulse will be muted during each PWM cycle if the current exceeds a predetermined threshold level. This prevents the external discrete transistors from damage due to overload conditions. Similarly, the supply voltage is also monitored. The PWM pulse will be muted during each PWM cycle if the supply voltage falls below a predetermined level. The PWM pulse will also be muted if the battery voltage exceeds 10% of the maximum value. If this threshold is too high, an external clamp can be added in the application. See application diagram. Preliminary Datasheet Rev1.0 Page 60 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC The Figure below illustrates how voltage regulation occurs in the Forward Active state. VOH I LIM R LOOP 0V VGM VTIP VO V BATL Constant V Region Constant I Region V:T R= 1 VOV:TR=0 VOH |V TIP - V RING| VOV V RING VOV V VBAT CIVR-v4 Figure 21: Voltage Tracking in Forward Active State The values for VGM, VOH and VOV are set in VCMR, OHV, and VOV registers respectively. When operating in the constant voltage region the VBAT is simply the sum of these three settings (VGM + VOH + VOV). If the Loop current attempts to exceed ILIM the constant current region is entered. In this case the values for VOV and VGM are maintained but the VOH is adjusted to track the RLOOP, which adjusts VBAT accordingly. If tracking is enabled, VOV:TR=1, tracking will continue below VBATL. Otherwise, tracking will stop and VBAT will not go lower than VBATL. A similar mechanism is implemented in the Reverse Active state. During the Ringing state, the VBAT must be increased to accommodate the ring signal. Conventionally VBAT is set to a fixed value of VBATH. However, the discrete linefeed circuit dissipates significant power particularly when a large REN load is applied. As an alternative the N681386/87 allows a dynamic battery target to be selected by setting the LCTHY:DBTR[7] address (0x54). In this case VBAT will dynamically track the actual ring signal, minimizing the power dissipation and improving efficiency during Ringing. Dynamic Battery Target is available only for DC/DC conversion architecture. time 0V VTIP VTIP V BATH /2 V RING V RING V BATH VBATH Volts Preliminary Datasheet Rev1.0 Figure 22: Dynamic Battery Target Page 61 of 164 Ring DC January 2010 N681386/87 Single Programmable Extended Codec/SLCC 12.1.8.2. EXTERNAL BATTERY SWITCHING The N681386/87 device can also operate from two or three external battery supplies. The external battery supply architecture can be enabled by pulling the XBAT Pin HIGH. This will also power down the on-chip PWM controllers. In this case the N681386/87 utilizes the DCPn and the DCNn pins to control the selection of externally supplied VBATR, VBATH and VBATL for VBAT by means of a external circuit such as the one illustrated below. V BAT VBATL V BATH DCP VBATR DC-to-DC Control DCN Figure 23: Three Voltage External Battery switching The VBAT voltage selection is dependent on the linefeed state and the relationship is programmable. The mapping of the DCNn pins output to the linefeed state can be uniquely programmed in the XBSDCN address (0x6A) register as illustrated in the table below. The XBSDCP address (0x6B) register serves the same purpose for the DCPn pins. The combination of DCNn, DCPn outputs and the external selection circuitry allows either VBATR, VBATH or VBATL to be selected in any state. When two external battery supplies are used (VBATH and VBATL) VBAT selection can be controlled by the one pin alone. Therefore, DCNn should be used to control the external battery switching. VBAT VBATL V BATH DC-to-DC Control DCN Figure 24: Two Battery Supply Control Circuit Preliminary Datasheet Rev1.0 Page 62 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 12.2. DIGITAL INTERFACE 12.2.1. CLOCK GENERATION The N681386/87 will generate the necessary internal clock frequencies from the BCLK input. BCLK must be synchronous to the 8 kHz frame sync clock and run at one of the following rates: Binary Clock Decimal Clock 256 kHz 1.000 MHz 512 kHz 2.000 MHz 768 kHz 4.000 MHz 1.024 MHz 8.000 MHz 1.152 MHz 1.536 MHz 1.544 MHz 2.048 MHz 4.096 MHz 8.192 MHz. The frame sync can either be supplied externally or it can be generated internally by the N681386/87, by setting the PCMFS:FSS[2] address (0x05) bit to "1". If frame sync is supplied externally (PCMFS:FSS=0), the ratio of the BCLK rate to the frame sync rate is determined via a counter clocked by BCLK which can be read at the PLLS:BCFS[4:1] address (0x04). This value is used to control the internal PLL, which multiplies BCLK appropriately to generate the internal clock frequency required to run the internal circuitry. If the frame sync is supplied internally (PCMFS:FSS=1), the user must set PCMFS:BF[3:0] to indicate BCLK so that an appropriate multiple is calculated to generate the required internal frequency. If the frame sync is generated internally its width can be selected by programming PCMFS:IFST[3] address (0x05). 1-bit clock long (for Short Frame Sync, GCI and IDL modes) 8-bit clocks long (for 8-bit Long Frame Sync mode) Preliminary Datasheet Rev1.0 Page 63 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 12.2.2. PCM INTERFACE N681386/87 supports a flexible PCM interface structure which can be configured to perform multiple industry standard PCM modes. Data is received serially through the PCMR pin and transmitted serially through the PCMT pin. Timeslots for data transmission and reception are independently configured using registers. Two registers, one for each direction combination, control the selection of the start point for the data timeslot: TTS[9:0]: Transmit Timeslot Start RTS[9:0]: Receive Timeslot Start The start point is defined in terms of a particular the BCLK period within the frame. Once the start of the timeslot is assigned the transfer will continue sequentially. For an 8-bit transfer the timeslot will run from the start point to the start point + 7 BCLK cycles. For a 16-bit transfer the timeslot will run from the start point to the start point + 15 BCLK cycles. By setting the specific timeslot start points, the N681386/87 can be programmed to support many industry standard PCM interfaces including many Long Frame Sync and Short Frame Sync variants, IDL2 8-bit, 10-bit, B1 and B2 channel timeslots. The table below illustrates this by showing how some standard interface modes may be programmed. Clocking mode BCLK PERIODS PER DATA BIT TTS [7:0] RTS [7:0] Long Frame Mode 1 0x00000 (slot 1) Short Frame Mode 1 0x00001 (slot 1) GCI Mode 2 0x00000 IDL Mode 1 0x00001 Table 28: Example Standard Interface modes However N681386/87 allows even more flexibility. It can support BCLK up to 8192 kHz, or up to 1024 BCLK periods per 125usec frame. Therefore 10-bit timeslot assignment registers have sufficient flexibility to assign any timeslot start point within the frame. Care should also be taken when dealing with a BCLK lower than 8192 kHz to ensure that the timeslot start point is within the boundary of the frame, including sufficient headroom for the complete timeslot. For example, if BCLK is 512 kHz there are 64 BCLK cycles within the frame. However, for all modes except Short Frame Sync the highest valid start position for 8-bit PCM data would be 56, sufficient for the full byte to be accommodated within the frame. For 16-bit data the highest start position would be 48. In Short Frame mode the LSB can be located up to the first BCLK of the next frame so the highest valid position is 56 for 8-bit or 48 for 16-bit. Preliminary Datasheet Rev1.0 Page 64 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC The PCMT pin is high impedance except for the duration of the PCM transmit. PCMT will return to high impedance either on the negative edge of BCLK during the LSB, or on the positive edge of BCLK following the LSB depending on the setting of PCMC:TRI[2] address (0x00). Tri-stating on the negative edge allows the transmission of data by multiple sources in adjacent timeslots without the risk of driver contention. 12.2.2.1. WIDEBAND AND NARROWBAND OPERATION Nuvoton's newest design in the Pro-X product line is a Narrowband and Wideband audio codec. The N681386 is limited to Narrowband audio codec communication, meaning 8kHz sampling and 8kHz frame sync with frame sync master mode capability. The Narrowband audio codec communication is compatible with the W681388, N681386, & W684386. The user could write to a reserved register that is used for Wideband operation on N681386 without any effect to the Narrowband operation. The N681387 is capable of both Narrowband and Wideband audio communication. The WBAND pin which is only available on N681387 selects the Narrowband and Wideband. When WBAND pin is LOW the device is in narrowband mode and when the WBAND pin is HIGH the devices is operating in Wideband mode. However, a register PCMFS:WBEN[1] address (0x05) also needs to be programmed to `1' in order to enable wideband operation. This supports two scenarios: 1) The user permanently ties the `WBAND' pin to VDD, while the PCMFS:WBEN[1] address (0x05) register is toggled to enable/disable Wideband 2) The user sets the register PCMFS:WBEN[1] address (0x05) to `1' and controls the WBAND pin to enable/disable the Wideband operation. The table below shows the modes of operation. WBANDPin WBEN[1] GND 0 GND 1 VDD 0 VDD FSRATE[5] FS Frequency 0 8kHz 0 8kHZ (1 FS with 2 Sample) 1 16kHz (1 FS with 1Sample) Band Operation (Filter & PCM) Narrow (Default) Narrow Narrow 1 Wide Table 29: Wideband or Narrowband Hardware Selection The Narrowband mode is limited to 8kHz sampling and frame sync of 8kHz. The Wideband mode of operation is limited to 16kHz sampling and an option of 8kHz or 16kHz frame sync. The user needs to write a register PLLS:FSRATE[5] address (0x04) to indicate whether 8kHz (`0') or 16kHz (`1') frame sync rate is being used. There is no frame sync master mode supported in wideband operation. Preliminary Datasheet Rev1.0 Page 65 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 12.2.2.2. TOGGLING BETWEEN WIDEBAND AND NARROWBAND It is not recommended to toggle between Wideband and Narrowband when 16kHz frame sync is used, since it could unlock the PLL. However, the architecture may allow it when the pin is toggled at the right time. For Wideband, using 8kHz frame sync, the user can toggle the WBAND pin or PCMFS:WBEN[1] address (0x05) register, while keeping the frame sync and bit clock running as is. The internal filter and PCM interface of the N681387 will switch to adjust to the Narrowband or Wideband mode of operation. This could lead to temporary glitches on the output while switching the filter. One could briefly mute the DAC and ADC path through the firmware code to prevent the glitches from being audible. 12.2.2.3. PCM INTERFACE IN WIDEBAND OPERATION 12.2.2.3.1. PCM INTERFACE 8KHZ FRAME SYNC During Wideband operation and 8kHz frame sync the PCM data will be transmitted and received as two samples per frame sync. The location of the MSB of each sample on the PCM bus with respect to the frame sync pulse is programmable through two independent time slot registers. The time slots need to be programmed such that they are 62.5usec apart. An internal data ready signal will be generated to synchronize with the filters to indicate the data is ready and to synchronize the sample rate. The approximate timing diagram is shown below. 125usec FS BCLK PCMT PCMR M S B L S B M S B Data Ready approximate 62.5usec L S B M S B L S B M S B TS1 62.5usec L S B M S B M S B TS2 Figure 25: Wideband 8kHz Frame Sync PCM interface Preliminary Datasheet Rev1.0 Page 66 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 12.2.2.3.2. PCM INTERFACE 16KHz FRAME SYNC During Wideband operation and 16kHz frame sync the PCM data will be transmitted and received as one sample per frame sync. The location of the MSB of each sample on the PCM bus with respect to the frame sync pulse is programmable through one time slot register. The second timeslot register is not used in this case. Below is shown the approximate timing diagram for this case. 62.5usec 62.5usec FS BCLK PCMT M S B PCMR M S B L S B M S B L S B M S B L S B M S B M S B TS1 TS1 Data Ready approximate L S B Figure 26: Wideband 16kHz Frame Sync PCM interface 12.2.2.4. PLL & PRESCALER IN WIDEBAND OPERATION The prescaler determines the external bit clock frequency based on the ratio of the frame sync and bit clock frequency. When the frame sync switches to 16kHz (Wideband) it needs a signal to indicate this change in order to determine the correct bit clock frequency. In wideband and narrowband mode using 8kHz frame sync it doesn't need to adjust. Therefore, the PLL & prescaler operation can be summarized by the following truth table: WBAND pin WBEN[1] FSRATE[5] GND `0' `0' PLLWBANDEN (switches prescaler) 0 GND `0' `1' 0 GND `1' `0' 0 GND `1' `1' 0 VDD `0' `0' 0 VDD `0' `1' 0 VDD `1' `0' 0 VDD `1' `1' 1 Table 30: PLL and Prescaler in Wideband Preliminary Datasheet Rev1.0 Page 67 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 12.2.3. SERIAL PERIPHERAL INTERFACE (SPI) The Serial Peripheral Interface (SPI) is one of the widely accepted communication interfaces implemented in Nuvoton's Pro-X portfolio. SPI is a software protocol allowing operation on a simple 4-wire bus where the data is transferred MSB first. The SPI interface consists of a clock (SCLK), chip select (CSb), serial data input (SDI), and serial data output (SDO) to configure all the internal register contents. SCLK is static, allowing the user to stop the clock and then start it again to resume operations where it left off. The SCLK can run any speed up to internal PLL master clock (13.824MHz, 24MHz, or 27.648MHz depending on selected architecture). In the case of a write, DATA is sent by the micro-controller. In the case of a read, DATA is read by the micro-controller. To write data to the chip the controller must follow the following sequence There are two different Read/Write architecture 8-bits Data Read/Write The 8-bits data Write consists of 8-bits of Device Address, 8-bits of Register Address, and 8-bits of DATA. The 8-bits data Read consists of 8-bits of Device Address, 8-bits of Register Address, and 8-bits of DATA. 16-bits Data Read/Write The 16-bits data Write consists of 8-bits of Device Address, 8-bits of Register Address, and 16-bits of DATA. The 16-bits data Read consists of 8-bits of Device Address, 8-bits of Register Address, and 16-bits of DATA. The first byte, Device Address, sent to the N681386/87 from the host controller, following a CSb going HIGH to LOW, contains read/write bit, the Device type Identifier bits (wideband and narrowband selection information), and the burst mode. The 8-bits of the Device Address are explained below. Name C7 C6 C5 C4 C3 C2 C1 C0 Device Address RW 0 0 0 0 CH XP BST Table 31: Device Address Bit pattern Bit Location Bit Description 0 Burst mode allows multiple consecutive registers to be written to or read using in a single sequence. The complete register address space (256 locations) can be read and written to using burst mode. Preliminary Datasheet Rev1.0 Page 68 of 164 Bit Name BST Bit Value 0 Disable 1 Enable January 2010 N681386/87 Single Programmable Extended Codec/SLCC Bit Location Bit Description Bit Name Bit Value 0 1 1 Control bit to select 12-Bits monitoring XP Bits[11-4] 2 This is a channel selection bit. In case of a single channel device this bit must be set to "0" CH 0 NA - - 3-6 7 Must be set to "0" for all operation - Read/Write control bit RW CH XP 0 0 0 1 Write Bits[3-0] Read Command Register Address (8-bits) 2nd byte of 12-Bits monitoring Table 32: 12-bit byte Selection 12.2.4. READ/WRITE SEQUENCE (8-BIT OR 16-BIT) The device is accessed via the SDI input with data clocked in on the rising edge of SCLK. DATA transfer is synchronized to the SCLK input. Data is clocked out onto SDO on the falling edges of SCLK. SCLK is the only reference of SDI and SDO pins. The SDO pin will go tri-state when goes CSb HIGH The first two pictures below illustrate the Read/Write Sequence for an 8-bit architecture. Both Read/Write sequences consist of three 8-bit transmissions, Device address, Register Address and Data. Each 8-bit transmission starts with the falling edge of the CSb line. At the end of every 8-bit transmission is complete the CSb transitions from LOW back to HIGH. After a valid Device Address and Register Address for Read, 8-bit Data is shifted out on the SDO line. The last two pictures below illustrate the Read/Write Sequence for a 16-bit architecture. Both Read/Write sequences consist of two 16-bit transmissions, the first 16-bit transmission consisting of Device address and Register Address bytes and the second 16-bit transmission consists of Data. Each 16-bit transmission starts with the falling edge of the CSb line. At the end of every 16-bit transmission CSb transitions from LOW back to HIGH. After a valid Device address and Register Address for Read, 16-bits of Data is shifted out on the SDO line. Since all the registers are 8bits long, the least significant byte of the 16-bit Data word should be ignored. If additional clocks are sent by the master the device will provide the same data when BST is LOW. The SPI state machine soft resets whenever CSb asserts during an operation on an SCLK cycle that is not a multiple of eight, including burst mode. This is a mechanism for the controller to force the state machine to a known state when the controller and the device are out of synchronization. Preliminary Datasheet Rev1.0 Page 69 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC Figure 27: Register write operation through a 8-bit SPI port Figure 28: Register read operation through a 8-bit SPI port Figure 29: Register write operation through a 16-bit SPI port Figure 30: Register read operation through a 16-bit SPI port Preliminary Datasheet Rev1.0 Page 70 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 12.2.5. SPI DAISY CHAIN When using multiple N681386/87 devices, SPI programming can be accomplished using a daisy chain architecture which allows all chips to share one CSb and one SCLK. To enable the daisy chain configuration, the DSY pin should be set HIGH. In this configuration the SDO pin will no longer tri-state in order to pass the serial data to the next device in the chain. An internal 16-bit shift register in each device facilitates the daisy chain. After CSb goes LOW, SDI is clocked into this shift register at each rising edge of SCLK. At each falling edge of SCLK the contents of the shift register are shifted to SDO. SDO can then be connected to the SDI of the next chip in the daisy chain sequence. Each device evaluates the data in the internal shift register at the rising edge of CSb. Figure 35 illustrates a three-device daisy chain arrangement. SDO CSb SDO Chip1 SDI SDO Chip2 SDI SDO Chip3 SDI SDI MicroController SCLK Figure 31: Three Chip Daisy Chain connection For daisy chain operation, the length for Device address, Register Address and CSb should be 16xD bits, where D is the total number of devices in the daisy chain. Figure below illustrates the Device address, and Register Address structure for three-device daisy chain architecture. Three 16-bit Device address and Register Address words are sent sequentially, the first word for the first device in the daisy chain, the second word for the second device, etc. Device addressing is still enabled during daisy chain mode. Therefore, if a command needs to be ignored an unmatched device address can be sent with the command. If a command needs to be ignored a NOP can be sent with the command by sending a `1' for any bit of C6 to C3. Figure 32: Device/Register Address for Three Device Daisy Chain application Figure below illustrates the DATA structure for three-device daisy chain architecture. Three 8-bit DATA bytes are sent sequentially, the first byte for the first device in the daisy chain, the second byte for the second device, etc. Preliminary Datasheet Rev1.0 Page 71 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC Figure 33: DATA for Three Device Daisy Chain application 12.2.6. SPI BURST MODE The N681386/87 also supports a burst mode which allows multiple consecutive registers to be written to or read using a single Device address and Register address with BST=1. The complete register address space (256 locations) can be read/ written to using burst mode. CSb 16Bit (8 Bit CMD+ 8 Bit Address) 8 Bit 8 Bit 8 Bit 8 Bit 8 Bit 8 Bit BST =1 Figure 34: Burst mode operation (BST=1) The data stored in memory at the next address can be read sequentially by continuing to provide clock pulses. The address is automatically incremented to the next higher address after each byte of data is shifted out. When the highest address is reached, the address counter rolls over to address (0x00) allowing the read cycle to be continued indefinitely. When the BST bit in Device address is set during a write operation the N681386/87 will accept multiple 8-bit DATA blocks which will be written to sequential address locations beginning with the address specified in Register address. The length of the burst is determined by the Chip Select (CSb). Note that if there is a location within the sequence without a register assignment a dummy byte should be sent at the corresponding location in the DATA sequence. Similarly during a burst read operation the device will output DATA as long as CSb is LOW. The device will output a dummy byte (0x00) when locations without register assignments are within the sequence. Register bits PCMC:BDAEN[3] address (0x00) and PCMC:BCEN[1] address (0x00) is be used to determine the broadcasting preferences. By default, after a reset, the device will accept all burst write commands without decoding bits C3 to C6. Once the PCMC:BCEN[1] address (0x00) bit is set, the device will only accept burst write data for the channel. Once the PCMC:BDAEN[3] address (0x00) bit is set, the device will only accept burst write data when C3 to C6 are `0'. Preliminary Datasheet Rev1.0 Page 72 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 12.2.7. SPECIAL READ SEQUENCE FOR 12-BIT WIDE REGISTER Although N681386/87 has 8-bit wide register map, it includes some additional register bits for accurate ADC monitoring. N681386/87 includes a special SPI Read feature. This read feature allows the user to read the 12-bits wide registers. It can be used in the 8-bits or 16-bits wide register data read mode. One important thing to remember is that BURST Mode cannot be use for 12-bit register read. 12.2.7.1. 12-BIT READ SEQUENCE Two separate read sequences I required to successfully read 12-bit register. Whether it is 8-bits or 16-bits wide register data N681386/87 still requires two byte read sequence. Selection of the second byte read is shown on one of the above table. 8-bits or 16-bits Data Read sequence for 12-bts ADC monitoring data Sequence Read 1st byte Read Device Address bits[2:1] - 00 binary Register Address any of the ADC monitoring registers The 8 bits[7:0] of the first read data are the bits[11:4] of the 12-bits register 2nd byte Read Device Address bits[2:1] - 01 binary Register Address any of the ADC monitoring registers The 4 MSB bits[7:4] of the second read data are the bits[3:0] of the 12-bits register Preliminary Datasheet Rev1.0 Page 73 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC CSb DEVICE ADDRESS DATA [7:0] ADDRESS SCLK SDI 1 2 3 4 5 6 7 1 8 2 3 4 5 6 7 Read 1 8 1 SDO CSb DEVICE ADDRESS 2 3 4 5 6 7 8 DATA [7:0] ADDRESS SCLK SDI 1 2 3 4 5 6 7 1 8 2 3 4 5 6 7 Read 2 8 1 SDO 12-bit Read data 11 10 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 0 Figure 35: SPI 12-bits Read sequence 12.3. POWER-ON RESET The following Power-on Reset procedure is recommended for the N681386/87. The Reset pin (RESETb) should be held LOW as power is applied. This allows logic levels to rise so that all output pins and all registers reach their default values while the system is in reset mode. This process should take less than 100 s if the external supply is settled. Clocking should be applied (BCLK and, if necessary, FS) Ensure CSb and SCLK are set HIGH before setting RESETb HIGH Wait at least 400s to ensure the PLL is locked. The status can be read in register PLLS:PL[0] address (0x04) Initialize all appropriate country specific registers and mode registers according to specific operating mode Preliminary Datasheet Rev1.0 Page 74 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 12.4. INTERRUPT HANDLING A number of events are capable of generating an interrupt. However, an interrupt signal is generated only if the bit corresponding to that particular interrupt event is enabled in the Interrupt Enable Register. In that case the corresponding bit is set in the Interrupt Status Register. An umbrella Interrupt Vector Register, INTV, indicates which Interrupt Status Registers have bits currently set. This vectoring allows an interrupt service routine to quickly determine which interrupt event has just occurred. Once the interrupt has been serviced the Interrupt Status Register can be cleared by writing a one to that respective bit. The Interrupt Vector Register INTV bits will be cleared when there are no pending interrupts in the corresponding Interrupt Status Registers Register Name INTV Address Parameter Description / Range 0x24 Interrupt Vector Register Vectors the interrupt location INT1 0x26 Interrupt Status Register 1 Power Alarms, RING Trip and Loop Closure Interrupts IE1 0x27 Interrupt Enable Register 1 Enables for Register 1 interrupts INT2 0x28 Interrupt Status Register 2 FSK, DTMF, RING and Oscillator Interrupts IE2 0x29 Interrupt Enable Register 2 for Enables for Register 2 interrupts INT3 0x2A Interrupt Status Register 3 Temperature Interrupts IE3 0x2B Interrupt Enable Register 3 Enables for Register 3 interrupts Table 33: Interrupt Registers Preliminary Datasheet Rev1.0 Page 75 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 13. GENERAL DESCRIPTION FOR N681622 (LINEFEED CIRCUIT) The N681622 is the first supporting chip of its kind in the Nuvoton's Pro-X line of products. It integrated the high voltage linefeed circuit. It can be used with N681386, N681387, N682386 and N682387. N681622 is designed to reduce substantial board space compared to the existing discrete implementation of the linefeed circuit. N681622 operates from a 3.3V supply voltages. The A small QFN20 package with exposed pad for thermal considerations allows for easy assembly and PCB design. 13.1. FUNCTIONAL DESCRIPTION FOR N681622 (LINEFEED CIRCUIT) The N681622 integrates the following six transistors of the discrete line driver: QT1, QT2, QT3, QR1, QR2, and QR3. In the following register description there are some references to currents or voltages for these individual transistors. For the N681622 the important transistors are QT1, QT3, QR1, QR3. The following diagram shows a virtual circuit showing the equivalent positions of the these transistors inside the N681622. Figure 36: N681622 Equivalent Internal diagram Preliminary Datasheet Rev1.0 Page 76 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 14. REGISTER DESCRIPTION Please refer to the SPI command description to read and write instruction. For maximal forward compatibility, it is recommended that "0" be written to reserved bits. "RES" in the register map means Reserved. ASYNC means the device does not require a clock to be able to read or write 12-Bits - specific register has 12-bits Addr (Dec) Addr (Hex) Name D7 D6 D5 D4 D3 D2 D1 D0 Default (Hex) R/W ASYNC /12Bit TRI RES EN 00 R/W ASYNC (D5-D0) PCM CONTROL REGISTERS 0 00 CMS[1:0] 1 01 TTLNB TTSNB[7:0] 00 R/W ASYNC 2 02 RTLNB RTSNB[7:0] 00 R/W ASYNC 3 03 TCH ASYNC 4 04 PLLS 5 05 PCMFS 6 06 SIREV SIREV[7:0] 00 R 7 07 DVID VER[7:0] C0 R 8 08 TTLWB TTSWB[7:0] 00 R/W ASYNC 9 09 RTLWB RTSWB[7:0] 00 R/W ASYNC 16 10 FSKC 00 R/W 17 11 FSKTD 00 R/W 18 12 FSKS 19 13 FSKLCR 20 14 FSKTCR PCMC BM RTSWB[9:8] PLLCM GCLK BDAEN TTSWB[9:8] CLK1544EN RTSNB[9:8] FSRATE TTSNB[9:8] BCFS[3:0] (RO) BCF[3:0] IFST FSS WBEN 50 R/W PL (RO) D9 R/W SRES 00 R/W FSK REGISTERS PE PEN PTYP POL TX STOP SPEC EN FSK[7:0] RES FF RES FEP GAIN[3:0] RES RES 03 R 00 R/W R/W FSKR FMT 00 RES DIAGEN 00 Diagnostics 21 15 DIAGCTRL0 FIFOIP 22 16 DIAGCTRL1 TRACNEG 23 17 DIAGCTRL2 24 18 DIAGCTRL3 25 19 DIAGCTRL4 26 1A DIAGCTRL5 27 1B DIAGCTRL6 28 1C DIAGCTRL7 29 1D DIAGCTRL8 30 1E DIAGFIFO0 31 1F DIAGFIFO1 DCREN ACLPFEN DCLPFEN ACSEL[2:0] FIFOEN SIGNED TRDCNEG DCSEL[2:0] 00 VHI[7:0] 00 SELT[2:0] RES VHI[11:8] 00 VLO[7:0] DCRDC DCRAC DCRRC 00 VOL[11:8] RES 00 TIMER[7:0] (RO) TMREN 00 TIMER[12:8] (RO) RES DCDP[11:0] (RO) 00 ACDP[11:0] (RO) 00 RO FIFO0[31:0] (RO) 00 RO FIFO1[31:0] (RO) 00 RO SYSTEM REGISTERS 32 20 PHF 33 21 LB 34 22 PON CDCC 35 23 ILIM ZCPINV DACFF[1:0] RES DACPOL ADCPOL RES ZCPEN RNGGAIN ADCFF[1:0] ALP2 ALP1 DLP3 DACPP RIPS TINS ILMGAIN RES ADCHP DACHP 80 R/W DLP2 DLP1 00 R/W ADCPP DCC 01 R/W CALTR1 CALTR0 00 R/W INTERUPT REGISTERS 36 24 INTV IR3C1 IR2C1 IR1C1 00 R/W 38 26 INT1 PAT3 PAR3 PAT1 PAR1 PAR2 PAT2 LC RT 00 R/W 39 27 IE1 PAT3E PAR3E PAT1E PAR1E PAR2E PAT2E LCE RTE 00 RO 40 28 INT2 FSKI DTMFI RI RA O2I O2A O1I O1A 00 R/W FSKIE DTMFIE RIE RAE O2IE O2AE O1IE RES 41 29 IE2 O1AE 00 R/W 42 2A INT3 RES GKDI RES TMP 00 R/W 43 2B IE3 RES GKDIE RES TMPE 00 R/W DTMF REGISTERS Preliminary Datasheet Rev1.0 Page 77 of 164 January 2010 ASYNC (D7,D5) ASYNC (D7-D1) N681386/87 Single Programmable Extended Codec/SLCC Addr (Dec) Addr (Hex) Name D7 D6 D0 Default (Hex) 48 30 DTMFCTRL1 DTMFEN ADCOSEL 49 31 DTMFCTRL2 00 R/W DTMFCLR 00 R/W 50 32 DTMFCTRL3 51 33 DTMFST 00 RO DTMFEMT 01 RO 52 34 DTMFTHRH 53 35 DTMFTHRL DTMFTHR[15:8] 01 R/W DTMFTHR[7:0] 00 54 36 R/W DTMFPDT DTMFPDT[7:0] 00 55 R/W 37 DTMFADT DTMFADT[7:0] 00 R/W 56 38 DTMFACT DTMFACT[7:0] 00 R/W 58 3A DTMFRDT 59 3B DTMFRFH 60 3C DTMFRFL DTMFRF[7:0] 00 RO 61 3D DTMFCFH DTMFCF[15:8] 00 RO 62 3E DTMFCFL DTMFCF[7:0] 00 RO D5 D4 D3 D2 DTMFFDEV[1:0] D1 DTMFTC[3:0] RES DTMFRCVDT[3:0] RES RES DTMFRDY DTMFST DTMFRDT[3:0] RES DTMFRF[15:8] R/W 00 RO 00 RO LINE REGISTERS 64 40 APG RAMP PRE 65 41 HB DACG ADCG VOHZ ARX[1:0] 66 42 VCMR 67 43 LAMC 68 44 LS 69 45 LCL LGCRT LGCRR LGCM[1:0] LGCRT RES 70 46 RTLC RTM LCM VBLC RTDUD RTDUA 71 47 LCDB LCDI[7:0] 72 48 RTDBA 73 49 PWMT 74 4A DDCC 76 4C OHV RES SB VOH[5:0] 20 R/W 77 4D GMV UBR RES VGM[5:0] 02 R/W 78 4E VBHV XBATR RES VBATH[5:0] 32 R/W 79 4F VBLV VBATL[5:0] 10 R/W 80 50 LCDCL 00 R/W 81 51 RTDFCLD 82 52 DCHD 83 53 LCT 84 54 LCTHY 85 55 RTTA 86 56 VOV RES 87 57 DCTON RES 94 5E AMT AMTEN AMTSEL 95 5F XBTC RES ASQH RES ATX[1:0] AHYB[2:0] RES VCMR[5:0] RES PAA RES RGA SLS[3:0] LCDA LS[3:0] ILM[2:0] RTD LCD R/W 07 R/W 00 RO 00 R/W R/W R/W ARTDI[7:0] 00 R/W PT[7:0] FF R/W DCOFF[7:0] 76 R/W ARTDFC[7:0] ARTDFC[11:8] LCDC[11:8] RES LCHYEN RO RW LCT[5:0] 00 RO 00 R/W 00 R/W TR VOV[3:0] TONDC[4:0] AMTTHR XTBEN 00 00 LCTOFF[5:0] ARTT5:0] RES CBP 00 00 LCDC[7:0] DBTR R/W R/W 00 RES LCDU 00 1B XTBOT[1:0] XTBA[1:0] 00 R/W 00 R/W 00 R/W 00 R/W GROUND KEY DETECTION REGISTERS 96 60 GKDH RES HGKD[5:0] 00 RO 97 61 GKDL RES LGKD[5:0] 00 R/W 98 62 GKDDT DTGKD[7:0] 00 R/W 99 63 GKDFCL FCGKD[7:0] 02 R/W 100 64 GKDFCH FCGKD[11:8] 32 R/W 101 65 RTDFCLD 10 R/W 102 66 DCHD DRTDFC[11:0] 00 R/W 103 67 RTTD 104 68 RTDBD DRTDI[7:0] 106 6A XBSDCN DCNXB[7:0] 00 R/W 107 6B XBSDCP DCPXB[7:0] 00 R/W 110 6E LOAD 00 R/W 119 77 DCTR C8 RO GKDEN RES DRTDFC[7:0] RES RES XRTR Preliminary Datasheet Rev1.0 DRTT5:0] LOAD RES VTR[7:0] Page 78 of 164 00 R/W 00 R/W January 2010 ASYNC /12Bit N681386/87 Single Programmable Extended Codec/SLCC Addr (Dec) Addr (Hex) Name Default (Hex) R/W 120 78 RTMNT MNTRT[7:0] 121 79 LCMNT 00 RO MNTLC[7:0] 00 122 7A MNT5 MNTQ1[7:0] RO (QT1) 00 123 7B MNT7 RO MNTQ2[7:0] (QR1) 00 124 7C RO MNT9 MNTQ3[7:0] (QR2) 00 125 RO 7D MNT11 MNTQ4[7:0] (QT2) 00 RO 126 7E MNT13 MNTQ5[7:0] (QR3) 00 RO 127 7F MNT15 MNTQ6[7:0] (QT3) 00 RO D7 D6 D5 D4 D3 D2 D1 D0 ASYNC /12Bit MONITOR LINE CONTROL REGISTERS VOLTAGE REGISTERS 128 80 BATV VB[7:0] 02 RO 129 81 VTIP VTIP[11:0] 000 RO 12-Bits 130 82 VRING VRING[11:0] 000 RO 12-Bits 131 83 QT3V QT3V[7:0] (VTVE) (VQT2) 02 RO 132 84 QR3V QR3V[7:0] (VRVE) (VQR2) 02 RO 133 85 QT3I QT3I[11:0] 005 RO 12-Bits 134 86 QR3I QR3I[11:0] 003 RO 12-Bits 135 87 QT1I QT1I[11:0] 003 RO 12-Bits 136 88 QT2I QT2I[11:0] 003 RO 12-Bits 137 89 QR1I QR1I[11:0] 003 RO 12-Bits 138 8A QR2I QR2I[11:0] 003 RO 12-Bits TRANSISTOR CURRENT REGISTERS LOOP SUPERVISION 140 8C LGI ILG[11:0] 001 RO 12-Bits 141 8D LPV VLP[11:0] 001 RO 12-Bits 142 8E TIPI ITLP[11:0] 002 RO 12-Bits 143 8F RINGI IRLP[11:0] 000 RO 12-Bits 144 90 LPI 001 RO 12-Bits 145 91 POL 1A R/W 146 92 SCM SCM[11:0] 02 RO 147 93 VEQT1 VEQT1[7:0] 00 RO 148 94 VQT1 VQT1[7:0] 00 RO 149 95 VEQR1 VEQR1[7:0] 00 RO 150 96 VQR1 VQR1[7:0] 00 RO ILP[11:0] P2PEN RES ILGP ILPP IRLPP ITLPP VLPP 12-Bits 153 99 TEMP TS[7:0] (Vtemp) 00 RO 154 9A VBGAP VBG[7:0] 4A RO 155 9B VLPP2P LPVP2P[11:0] 000 RO 12-Bits 156 9C ILPP2P LPIP2P[11:0] 000 RO 12-Bits POWER ALARM LPF POLE REGISTERS 159 9F PALCNT PALCNT[7:0] 00 RO 160 A0 PALPQ2 Q2C[7:0] 00 R/W 161 A1 PALPQn Q1C[7:0] 00 R/W 162 A2 PALPQ3 Q3C[7:0] 00 R/W 163 A3 PALPQHn Q2C[11:8] 00 R/W 164 A4 PALPQH2 Q3C[11:8] 00 R/W 165 A5 PATHQ2 Q2TH[7:0] 00 R/W 166 A6 PATHQn Q1TH[7:0] 00 R/W 167 A7 PATHQ3 Q3TH[7:0] 00 R/W ZRn[3:0] 00 R/W ZR2C[3:0] 00 R/W Q1C[11:8] RES Q3C12 Q1C12 Q2C12 IMPEDENCE MATCHING REGISTERS 168 A8 IM1 169 A9 IM2 ZC[3:0] 170 AA THAT THAT[7:0] 00 R/W 171 AB LCMCNT LCMCNT[7:0] 00 RO RES ZSW Preliminary Datasheet Rev1.0 ZCP[1:0] Page 79 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC Addr (Dec) Addr (Hex) 172 AC CC 173 AD OS2RPD 175 AF CAL1 SDAT[3:0] 176 B0 CAL2 TVTE1[3:0] 177 B1 CAL3 SCMT[3:0] 180 B4 IQTROS 181 B5 PWCT 182 B6 CAL4 XVRTS[3:0] 192 C0 OSN RES 193 C1 RMPC Name D7 D6 D5 D4 D3 D2 D1 CBGSW RES Default (Hex) D0 CTRIM[2:0] R/W 00 RO 00 RO VBATT[3:0] 79 RO SDBT[3:0] 97 RO RVTE1[3:0] 79 RO RES 00 R/W O2RPD[7:0] CALIBRATION REGISTERS DC OFFSET REGISTERS HISENSE BTVR ILFDB DACSFC PWCT[7:0] XIRTT[1:0] RES 00 RO 78 R/W 08 R/W 00 R/W R/W TONE GENERATION REGISTERS TRAP LBAC O2ZC R1EN O1ZC O2E TOR RES RES O1E OSCILLATOR INITIAL CONDITION & COEFFICIENT REGISTERS 194 C2 OS1ICL O1IC[7:0] 00 195 C3 OS1ICH O1IC[15:8] 00 R/W 196 C4 OS2ICL O2IC[7:0] 00 R/W 197 C5 OS2ICH O2IC[15:8] 00 R/W 198 C6 OS1CL O1C[7:0] 00 R/W 199 C7 OS1CH O1C[15:8] 00 R/W 200 C8 OS2CL O2C[9:2] 00 R/W 201 C9 OS2CH O2C[17:10] 00 R/W 202 CA OS1ATL O1ON[7:0] 00 R/W 203 CB OS1ATH O1ON[15:8] 00 R/W 204 CC OS2ATL O2ON[7:0] 00 R/W 205 CD OS2ATH O2ON[15:8] 00 R/W 206 CE OS1ITL O1OFF[7:0] 00 R/W 207 CF OS1ITH O1OFF[15:8] 00 R/W 208 D0 OS2ITL O2OFF[7:0] 00 R/W 209 D1 OS2ITH O2OFF[15:8] 00 R/W 220 DC ROFFS 221 DD ADCL 222 DE DACL 223 DF DGH DAC[11:8] 224 E0 ST0L0 RES 225 E1 ST1L0 RES 226 E2 ST2L0 RES 227 E3 ST0L1 228 E4 ST1L1 RES 229 E5 ST2L1 RES 230 E6 SK0L0 231 E7 SK1L0 232 E8 SK2L0 233 E9 SK0L1 234 EA SK1L1 235 EB SK2L1 RES 236 EC WM0 237 ED WM1 238 EE WM2 239 EF XSTEP 243 F3 IMRAM OSCILLATOR ACTIVE & INACTIVE TIME REGISTERS GENERAL TONE GENERATION REGISTERS O2C[1:0] ROS[5:0] ADC[7:0] DAC[7:0] ADC[11:8] 00 R/W 00 R/W 00 R/W 44 R/W DC-DC CONFIGURATION and OTHER FUNCTIONS 02 R/W ST1L0[4:0] ST0L0[3:0] 04 R/W ST2L0[4:0] 06 R/W ST0L1[3:0] RES ST1L1[4:0] ST2L1[4:0] SK0L0[7:0] SK1L0[5:0] RES SK2L0[4:0] RES SK0L1[7:0] SK1L1[5:0] 08 R/W 10 R/W 19 R/W 1F R/W 04 R/W 02 R/W 1F R/W 04 R/W SK2L1[4:0] 02 R/W RES WM0[4:0] 08 R/W RES WM1[4:0] 10 R/W RES WM2[4:0] 18 R/W 53 R/W 00 R/W RES Preliminary Datasheet Rev1.0 PWMTC XS[3:0] IMDATA Page 80 of 164 January 2010 ASYNC /12Bit N681386/87 Single Programmable Extended Codec/SLCC Addr (Dec) Addr (Hex) Name 244 F4 IMDEL 245 F5 IMEN 246 F6 PCMSCAL PCMSCAL[7:0] 00 R/W 247 F7 PCMSCAH PCMSCAL[15:8] 20 R/W 248 F8 RES 00 W 249 F9 RES 00 W 250 FA RES 00 W 251 FB 00 R/W D7 D6 D5 D4 D3 D2 IMRW RES IMEN IMHYBDC[3:0] D0 IMR1M IMPM IMB3PDC[3:0] RES IMEN Default (Hex) D1 ADCLPFBYP RES HBLPFBYP 00 R/W 10 R/W Decimal to Hex Conversion To convert decimal value to hex value divide the decimal number by 16, and write the remainder on the side as the least significant digit. This process is continued by dividing the quotient by 16 and writing the remainder until the quotient is 0. When performing the division, the remainders which will represent the hex equivalent of the decimal number are written beginning at the least significant digit (right) and each new digit is written to the next more significant digit (the left) of the previous digit. Consider the number 175 decimal. Division Quotient Remainder Hex Number 175 / 16 10 = A 15 = F AF N681386/87 includes some bits that can be written without the PLL running while some bits requires the PLL running for the write to be effective. Any register that states the ASYNC bits means that specific DO NOT require the PLL running for the write to be effective. Preliminary Datasheet Rev1.0 Page 81 of 164 R/W January 2010 ASYNC /12Bit N681386/87 Single Programmable Extended Codec/SLCC 14.1. PCM CONTROL REGISTERS 14.1.1. PCM CONTROL REGISTER Addr. Name 0x00 PCMC D7 D6 CMS[1:0] D5 D4 D3 D2 D1 D0 Default BM GCLK BDAEN TRI RES EN 0x00 Async (D0 - D5) The following table explains the PCM control register bits. Bit Location 0 2 Bit Description Bit Value Bit Name 0 1 PCM path including digital receive path EN Disable Enable Tri-state PCMT LSB TRI Positive edge of BCLK Negative edge of BCLK 3 Burst Device Address decode enable BDAEN All Devices in Parallel Single Device 4 GCI Clock Format (per data bit) GCLK 1 BCLK 2 BCLK 5 Must be set appropriate to PCMC:CMS selection BM 8-bit mode 16-bit mode There are three different CODEC Modes to choose from and they are as follows: CODEC MODE SELECTION CMS1 CMS0 Mode 0 0 A-Law 0 1 u-Law 1 0 Linear 1 1 Reserved 14.1.2. RECEIVE/TRANSMIT TIMESLOT (WIDEBAND AND NARROWBAND) Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default 0x01 TTLNB TTSNB[7:0] 0x00 0x02 RTLNB RTSNB[7:0] 0x00 0x03 TCH RTSWB[9:8] TTSWB[9:8] RTSNB[9:8] TTSNB[9:8] Async 0x50 Transmit and receive timeslot are expressed in number of BCLK cycles in a 10-bit word. For Narrowband, Transmit Timeslot Start, TTSNB[9:0], determines the start point for the timeslot on the PCM interface for data in the transmit direction and the Receive Timeslot Start, RTSNB[9:0], determines the start point for the timeslot on the PCM interface for data in the receive direction. Timeslot Channel High, TCH address (0x03) bits are the two most significant bits of the 10-bit word for both transmit and receive timeslot, TCH:RTSWB[9:8] and TCH:TTSWB[9:8] for Wideband and TCH:RTSNB[9:8] and TCH:TTSNB[9:8] for Narrowband. Preliminary Datasheet Rev1.0 Page 82 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 14.1.3. PLL STATUS REGISTER Addr. Name D7 D6 D5 D4 0x04 PLLS PLLCM CLK1544EN FSRATE D3 D2 D1 BCFS[3:0] (RO) D0 Default PL (RO) 0xD9 Async (D7, D5) PL[0] and BCFS[4:1] are status bits which means they are READ ONLY bits in this register. Any write to these bits will be ignored. FSRATE[5], CLK1544EN[6], and PLLM[7] are READ/WRITE bits. Bit Location Bit Description Bit Value Bit Name 0 1 0 PLL Lock Status (RO) PL Not Locked Locked 5 Frame Sync Rate FSRATE 8kHz 16kHz 6 Enable clock 1.544MHz CLK1544EN Disabled Enabled With an external 8 kHz Frame Sync set (PCMFS:FSS=0), PLL Bit Clock Frequency Status, BCFS[3:0] bits will show the value of BCLK according to the following table. Not all clocks are supported by 16KHz frame sync [ * ]. Bit Clock Frequency DC/DC CLK Mode BCFS[3] BCFS[2] BCFS[1] BCFS[0] BCLK(kHz) PLLCM[7] PON:CDCC[7] (Addr - 0x22) 0 0 0 0 256 0 0 0 0 0 1 512 0 1 0 0 1 0 768 1 0 0 0 1 1 1000* 1 1 0 1 0 0 1024 0 1 0 1 1152 0 1 1 0 1536 0 1 1 1 1544* 1 0 0 0 2000 1 0 0 1 2048 1 0 1 0 4000 1 0 1 1 4096 1 1 0 0 8000 1 1 0 1 8192 1 1 1 0 1 1 1 1 Preliminary Datasheet Rev1.0 DC-DC Clock Type 1 13.824 MHz 1 27.648MHz NA Page 83 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 14.1.4. PCM FREQUENCY SETTING REGISTER Addr. Name D7 0x05 PCMFS D6 D5 D4 BCF[3:0] D3 D2 D1 D0 Default IFST FSS WBEN SRES 0x00 Async (D7- D1) The following table explains the PCM Frequency Setting register bits. Bit Location Bit Description Bit Value Bit Name 0 1 0 Soft Reset SRES Disable Enable 1 Band Select WBEN FS = 8kHz (Narrowband) FS = 16kHz (Wideband) 2 Frame Sync Source FSS External Internal 3 Internal Frame Sync Type IFST Short (fixed width 1 BCLK) Long (fixed width 8 BCLK) When an internal 8 kHz Frame Sync is used (PCMFS:FSS=1) these bits should be programmed with the value of BCLK Frequency, BCFS[3:0], according to the following table. Bit Clock Frequency Preliminary Datasheet Rev1.0 BCF [4] BCF [3] BCF [2] BCF [1] BCLK (Hz) 0 0 0 0 256 0 0 0 1 512 0 0 1 0 768 0 0 1 1 1000 0 1 0 0 1024 0 1 0 1 1152 0 1 1 0 1536 0 1 1 1 1544 1 0 0 0 2000 1 0 0 1 2048 1 0 1 0 4000 1 0 1 1 4096 1 1 0 0 8000 1 1 0 1 8192 1 1 1 0 1 1 1 1 Page 84 of 164 NA January 2010 N681386/87 Single Programmable Extended Codec/SLCC 14.1.5. SILICON VERSION ID REGISTER (READ ONLY) Addr. Name 0x06 SIREV D7 D6 D5 D4 D3 D2 D1 D0 SIREV[7:0] Default 0xEF Silicon revision ID Register is a READ ONLY register. 14.1.6. DEVICE VERSION ID REGISTER (READ ONLY) Addr. Name 0x07 DVID D7 D6 D5 D4 D3 D2 D1 D0 VER[7:0] (RO) Default NA Device Version ID Register is a READ ONLY register. Device VER[7:0] Condition N681386 0x01 N681387 0x01 WBAND Pin = GND N681387 0x09 WBAND Pin = VDD 14.1.7. TIMESLOT (WIDEBAND) Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default 0x08 TTLWB TTSWB[7:0] 0xC0 0x09 RTLWB RTSWB[7:0] 0xC0 Async Transmit and receive timeslot are expressed in number of BCLK cycles in a 10-bit word. For Wideband, Transmit Timeslot Start, TTSWB[9:0], determines the start point for the timeslot on the PCM interface for data in the transmit direction and the Receive Timeslot Start, RTSWB[9:0], determines the start point for the timeslot on the PCM interface for data in the receive direction. The two most significant bits of the 10-bit word are located on register TCH address (0x03). Preliminary Datasheet Rev1.0 Page 85 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 14.2. FSK REGISTERS 14.2.1. FSK CONTROL REGISTER Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default 0x10 FSKC PE PEN PTYP POL TX STOP SPEC EN 0x00 The following table explains the FSK Control Register bits. Bit Location Bit Value Bit Name Bit Description 0 1 0 FSK Encoder EN Disable Enable 1 FSK Specification SPEC Bell 202 ITU-T V.23 2 Number of STOP bits STOP 1 Stop bit 2 Stop bits 3 FSK Encoder start to transmit data from FSK FIFO TX Stop Transmission Start Transmission 4 FSK bit stream polarity POL Non-inverted Inverted 5 Parity Bit Type PTYP Even parity Odd parity 6 Parity Bit Enable PEN Disable Enable 7 FSK Package Format PE Disable Enable FSK Package Format automatically amends a `start bit' (Space) to the head of the FSK transmit data and one or two `stop bits' (Mark) to the end, depending on programming of FSKC:STOP. "Res" in the register map means Reserved. Bell 202 ITU-T V.23 Mark `1' 1200 Hz 1300 Hz Space `0' 2200 Hz 2100 Hz 14.2.2. FSK TRANSMIT REGISTER Addr. Name 0x11 FSKTD D7 D6 D5 D4 D3 D2 D1 FSK[7:0] D0 Default 0x00 FSK Transmit Register, FSK[7:0], is a WRITE ONLY register. Data written to this register will be placed into the Internal FIFO for transmission. Note: Reading this register will always give 0x00 as data. Preliminary Datasheet Rev1.0 Page 86 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 14.2.3. FSK STATUS REGISTER (READ ONLY) Addr. Name 0x12 FSKS D7 D6 D5 D4 D3 RES D2 D1 D0 Default FF (RO) RES FEP (RO) 0x03 "RES" in the register map means reserved bit(s). FSK Status Register is a READ ONLY register. The following table explains the FSK Status Register bits. Bit Location Bit Name Bit Description 0 FSK FIFO Empty Pending FEP 2 FSK FIFO Full FF Bit Value 0 FSK FIFO not empty (Last set of bit stream finished transmitting) FSK FIFO not Full 1 FSK FIFO is empty FIFO Full 14.2.4. FSK LCR REGISTER Addr. Name D7 0x13 FSKLCR D6 D5 D4 D3 D2 D1 GAIN[3:0] RES D0 Default 0x00 "RES" in the register map means reserved bit(s). The gain level is specified in linear values and referenced to the maximum linear PCM level (+3.14 dBm0). The following table contains the adjusted levels and the attenuated value of the correspondent maximum PCM level. FSK Encoder output signal level GAIN3 GAIN2 GAIN1 GAIN0 Attenuation to max PCM level 0 0 0 0 - 0 0 0 1 -23.512 0 0 1 0 -17.499 0 0 1 1 -13.978 0 1 0 0 -11.48 0 1 0 1 -9.542 0 1 1 0 -7.956 0 1 1 1 -6.617 1 0 0 0 -5.458 1 0 0 1 -4.434 1 0 1 0 -3.52 1 0 1 1 -2.692 1 1 0 0 -1.937 1 1 0 1 -1.242 1 1 1 0 -0.599 1 1 1 1 0 Preliminary Datasheet Rev1.0 Page 87 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 14.2.5. FSK TCR REGISTER Addr. Name D7 0x14 FSKTCR D6 D5 D4 D3 D2 RES D1 D0 Default FSKR FMT 0x00 "RES" in the register map means reserved bit(s). Bit Location Bit Description Bit Name Bit Value 0 1 0 Fast Mode FMT Disabled Enabled 1 FSK Route FSKR Output Not Output Preliminary Datasheet Rev1.0 Page 88 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 14.3. DIAGNOSTIC REGISTERS 14.3.1. DIAGNOSTIC CONTROL 0 Addr Name D7 D6 D5 D4 D3 D2 D1 D0 Default 0x15 DIAGCTRL0 FIFOIP DCREN ACLPFEN DCLPFEN FIFOEN SIGNED RES DIAGEN 0x00 Bit Location Bit Description Bit Value Bit Name 0 1 0 Enable Diagnostic Mode DIAGEN Disabled Enabled 2 3 Converts unsigned Source Register data to signed data Enable DIAGFIFO0 / DIAGFIFO1 FIFO Structure. SIGNED FIFOEN Disabled Disabled Enabled Enabled 4 Enable Low pass filter in the DC path. The DC Path LPF utilizes the Loop Closure Detect LPF and is programmed in LCDCL: LCDC[11:0]. DCLPFEN Disabled Enabled 5 Enable Low pass filter in the AC path. The AC Path LPF utilizes the AC Ring Trip Detect LPF and is programmed in RTDFCLD:ARTDFC[11:0]. ACLPFEN Disabled Enabled 6 Enable DC Removal function in the AC path DCREN Disabled Enabled 7 Determines Data routed to DIAGFIFO0 / DIAGFIFO1 FIFO Structure DIAGCTRL0:DIAGEN must be set. NOTE: DIAGCTRL0:FIFOEN will be turned on automatically if ADC PCM Data is selected. FIFOIP DC/AC Diagnostics Output ADC PCM data 14.3.2. DIAGNOSTIC CONTROL 1 Addr. Name D7 0x16 DIAGCTRL1 TRACNEG 7 D5 D4 ACSEL[2:0] D3 D2 TRDCNEG D1 D0 DCSEL[2:0] Default 0x00 Bit Value Bit Location 3 D6 Bit Description VTIP, VRING and SCM are forced to negative values when selected on the DC diagnostics path. VTIP, VRING and SCM are forced to negative values when selected on the AC diagnostics path. Bit Name 0 1 TRDCNEG Disabled Enabled TRACNEG Disabled Enabled NOTE: Some diagnostic operations required signed operation, for example: DC removal. ACSEL[6:4]: Select source register for the AC path diagnostics DCSEL[2:0]: Select source register for the DC path diagnostics Preliminary Datasheet Rev1.0 Page 89 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC Select AC/DC source for Diagnostics ACSEL2 DCSEL2 ACSEL1 DCSEL1 ACSEL0 DCSEL0 Source Register 0 0 0 VTIP 0 0 1 VRING 0 1 0 LPV 0 1 1 SCM 1 0 0 TIPI 1 0 1 RINGI 1 1 0 LPI 1 1 1 LGI 14.3.3. DIAGNOSTIC CONTROL 2, 3, 4. AND 5 Addr. Name 0x17 DIAGCTRL2 0x18 DIAGCTRL3 0x19 DIAGCTRL4 0x1A DIAGCTRL5 D7 D6 D5 D4 D3 D2 D1 VHI[7:0] VHI[11:8] VLO[7:0] DCRDC DCRAC DCRRC Default 0x00 SELT[2:0] RES D0 0x00 0x00 VLO[11:8] RES 0x00 Select MADC source for timing measurement. SELT2 SELT1 SELT0 Source Register 0 0 0 VTIP 0 0 1 VRING 0 1 0 LPV 0 1 1 SCM 1 0 0 TIPI 1 0 1 RINGI 1 1 0 LPI 1 1 1 LGI VHI[11:0]: Determines VHI for DIACNTRL:TIMER[12:0] measurement. Range, Step Size and number of valid bits same as Source Register determined by SELT. VLO[11:0]: Determines VLO for DIACNTRL:TIMER[12:0] measurement. Range, Step Size and number of valid bits same as Source Register determined by SELT. Preliminary Datasheet Rev1.0 Page 90 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC Bit Value Bit Location Bit Description Bit Name 0 1 5 DC Removal RC Time Constant DCRRC 1.25/64ms 1.25/32ms 6 DC Removal Accelerated Convergence. DCRAC Disable Enable 7 Enable DC Removal output to DC Path LPF in addition to the normal connection to the AC Path LPF DIACNTRL0:DCREN must be set. DCRDC Disable Enable Notes: - When enabled DC Removal is able to estimate the DC level of a selected source data and pass an AC only signal to the AC Path LPF. - When DC Removal is enabled both DIAGCTRL5:TRDCNEG and DIAGCTRL5:TRACNEG need to be turned on if VTIP or VRING or SCM are selected as the source register. 14.3.4. DIAGNOSTIC CONTROL 6 AND 7 (READ ONLY) Addr. Name 0x1B DIAGCTRL6 D7 0x1C DIAGCTRL7 D6 D5 D4 D3 D2 D1 D0 TIMER[7:0] (RO) TMREN Default 0x00 TIMER[12:8] (RO) RES TIMER[12:0] are status bits which means they are READ ONLY bits in this register. Any write to these bits will be ignored. TMREN[5] is READ/WRITE bit. Bit(s) Location 7 Bit Description Capacitor Charging Timer Bit Value Bit Name TMREN 0 1 Reset Timer - It will increase by at the rate of 800hz when the monitored source is between VLO and VHI. The timer will accumulate the time when the voltage of the selected source (by SELT) falls between VLO and VHI. Capacitor Charging Timer TMREN[7] (0x1C) Range Preliminary Datasheet Rev1.0 Minimum Maximum Increment 0 ms 10.24 s 1.25 ms Page 91 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 14.3.5. DIAGNOSTIC CONTROL 8 (READ ONLY) Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 DCDP[7:0] (RO) 0x1D 00 DCDP[11:8] (RO) RES DIAGCTRL8 ACDP[7:0] (RO) 00 ACDP[11:8] (RO) RES Default DCDP[11:0]: DC Diagnostic Path Output ACDP[11:0]: AC Diagnostic Path Output NOTE: This register is structured to be read in 4 byte burst 14.3.6. DIAGNOSTIC FIFO 0 AND FIFO1 (READ ONLY) Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 FIFO0[7:0] (RO) 0x1E DIAGFIFO0 00 FIFO0[15:8] (RO) FIFO0[23:16] (RO) 00 FIFO0[31:24] (RO) FIFO1[7:0] (RO) 0x1F DIAGFIFO1 00 FIFO1[15:8] (RO) FIFO1[23:16] (RO) 00 FIFO1[31:24] (RO) DIAGFIFO0 and DIAGFIFO1 are structured as Dual FIFO Structures. Default Each FIFO has 16 entries, each entry structured as a 4 byte structure illustrated above. When one FIFO is full an interrupt is generated and diagnostic data is collected in the alternative FIFO. In Diagnostic Mode (DIAGCTRL0:DIAGEN) DIAGFIFO0 uses the Ring Trip Detect Interrupt mechanism and DIAGFIFO1 uses the Loop Closure Detect Interrupt mechanism. When DIAGCTRL0:FOFIP[7] is set to 0, DIAGFIFO0 and DIAGFIFO1 are used to store DC Diagnostic Path and AC Path Output Data - FIFOn[15:0], n=0,1 contains DCDP[11:0]: DC Diagnostic Path Output in the lower 12 bits FIFOn[31:16], n=0,1 contains ACDP[11:0]: AC Diagnostic Path Output in the lower 12 bits - NOTE: DC Diagnostic Path and AC Path Data is input to each FIFO at 800 Hz. When DIAGCTRL0:FOFIP[7] is enabled DIAGFIFO0 and DIAGFIFO1 are used to store ADC PCM Data - FIFOn[15:0], n=0,1 contains 16-bit ADC PCM data FIFOn[31:16], n=0,1 is not output In this case the Maximum burst read is 32 bytes per FIFO. - NOTE: PCM Data is input to each FIFO at the sampling frequency (Wideband or Narrowband). Preliminary Datasheet Rev1.0 Page 92 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 14.4. SYSTEM REGISTERS 14.4.1. PCM HPF (HIGH PASS FILTER) Addr. Name D7 D6 0x20 PHF DACLP RES D5 D4 D3 DACFF[1:0] D2 ADCFF[1:0] D1 D0 Default ADCHP DACHP 0x80 "RES" in the register map means reserved bit(s). Bit Location Bit Description Bit Value Bit Name 0 PCM Transmit HPF (DAC) DACHP Enable Disable 1 PCM Receive HPF (ADC) ADCHP Enable Disable 7 LPF for Wideband (DAC) DACLP Disable Enable High Pass Filter Select DAC DACFF [5] 0 0 1 1 1 0 DACFF [4] 0 1 0 1 High Pass Filter Select ADC DAC HPF Select (Hz) 20 40 80 160 ADCFF [3] 0 0 1 1 ADCFF [2] 0 1 0 1 ADC HPF Select (Hz) 20 40 80 160 High pass filter cutoff is only programmable in the Wideband mode. 14.4.2. LOOP BACK CONTROL REGISTER Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default 0x21 LB DACPOL ADCPOL RES ALP2 ALP1 DLP3 DLP2 DLP1 0x00 "RES" in the register map means reserved bit(s). The following table explains the Loop Back Control Register bits. Bit Location 0 Bit Description Bit Name Bit Value 0 1 DLP1 Disable Enable DLP2 Disable Enable 2 Digital loop back (D/A to A/D) Digital loop back (LP interpolation filter to LP decimation filter) Digital loop back (A/u law expander to A/u law compander) DLP3 Disable Enable 3 Analog Loop back 1 ALP1 Disable Enable 4 Analog Loop back 2 ALP2 Disable Enable 6 Invert ADC input Polarity ADCPOL Disable Enable 7 Invert DAC Output Polarity DACPOL Disable Enable 1 Preliminary Datasheet Rev1.0 Page 93 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 14.4.3. POWER ON Addr. Name D7 D6 0x22 PON CDCC D5 D4 D3 RES D2 D1 D0 Default DACPP ADCPP DCC 0x01 "RES" in the register map means reserved bit(s). The following table explains the Loop Back Control Register bits. Bit Name Bit Value Bit Location Bit Description 0 DC/DC Power Control Circuitry DCC DCDC On DCDC OFF 1 A/D Power Path ADCPP Disable Enable 2 DAC Power Path DACPP Disable Enable 0 1 DC/DC CLK Mode DC-DC Clock Type PLLS:PLLCM[7] (Addr: 0x04) CDCC[7] 0 0 0 1 1 0 1 1 1 13.824MHz 1 27.648MHz This table gives the PLL Period. Preliminary Datasheet Rev1.0 Page 94 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 14.4.4. LINEFEED TRIM Addr Name D7 D6 D5 D4 D3 D2 D1 D0 Default 0x23 ILIM ZCPINV ZCPEN RNGGAIN RIPS TINS ILMGAIN CALTR1 CALTR0 0x00 CALIBRATION STATE CURRENT ADJUST Bit Location CALTR1 CALTR0 Current 0 0 20mA 0 1 19.6mA 1 0 19.4mA 1 1 20.4mA Bit Description Bit Value Bit Name 0 1 2 Ring Limiting Gain Adjust strength of Ring limiting Impacts noise ILIMGAIN Default 2 x default 3 Idle State Battery Current TINS Default current Low current RIPS Default current Low current RNGGAIN Default High gain ZCPEN Disabled Enabled ZCPINV Subtract Add 6 Idle State Battery Current Stops RIP in idle for lower power Increase Ring feedback gain in idle and Ring state for more accuracy Line Capacitor Compensation 7 Line Capacitor Compensation 4 5 Preliminary Datasheet Rev1.0 Page 95 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 14.5. INTERRUPT REGISTERS 14.5.1. INTERRUPT VECTOR LOW (READ ONLY) Addr. Name 0x24 INTV D7 D6 D5 D4 D3 RES D2 D1 D0 Default IR3C1 (RO) IR2C1 (RO) IR1C1 (RO) 0x00 "RES" in the register map means reserved bit(s). Interrupt Vector Register is a READ ONLY register. Each bit in this register will be cleared when there are no pending interrupts reported in the corresponding interrupt status registers. Bit Location Bit Value Bit Name Bit Description 0 1 0 Interrupt Vector 1 Low IR1C1 No INT INT1 1 Interrupt Vector 2 Low IR2C1 No INT INT2 2 Interrupt Vector 3 Low IR3C1 No INT INT3 14.5.2. INTERRUPT STATUS REGISTER 1 Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default 0x26 INT1 PAT3 PAR3 PAT1 PAR1 PAR2 PAT2 LC RT 0x00 This register displays all the Power Alarm and the Loop Closure interrupt of the device. A pending interrupt is represented by a HIGH "1" in the respective bit. Writing 1 to that respective bit clears the pending interrupt. Bit Location Bit Name Bit Description Bit Value 0 1 0 RING Trip RT No INT INT 1 Loop Closure LC No INT INT 2 Power Alarm QR2 PAT2 No INT INT 3 Power Alarm QT2 PAR2 No INT INT 4 Power Alarm QT1 PAR1 No INT INT 5 Power Alarm QR1 PAT1 No INT INT 6 Power Alarm QR3 PAR3 No INT INT 7 Power Alarm QT3 PAT3 No INT INT Preliminary Datasheet Rev1.0 Page 96 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 14.5.3. INTERRUPT ENABLE REGISTER 1 Addr Name D7 D6 D5 D4 D3 D2 D1 D0 Default 0x27 IE1 PAT3E PAR3E PAT1E PAR1E PAR2E PAT2E LCE RTE 0x00 This register enables all the Power Alarm and the Loop Closure interrupt of the device. An interrupt can be enabled by writing a HIGH "1" in the respective interrupt bit. Bit Location Bit Description Bit Value Bit Name 0 1 0 RING Trip RTE Masked Enabled 1 Loop Closure LCE Masked Enabled 2 Power Alarm QR2 PAT2E Masked Enabled 3 Power Alarm QT2 PAR2E Masked Enabled 4 Power Alarm QT1 PAR1E Masked Enabled 5 Power Alarm QR1 PAT1E Masked Enabled 6 Power Alarm QR3 PAR3E Masked Enabled 7 Power Alarm QT3 PAT3E Masked Enabled 14.5.4. INTERRUPT STATUS REGISTER 2 Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default 0x28 INT2 FSKI DTMFI RI RA O2I O2A O1I O1A 0x00 Bit Location Bit Description Bit Name Bit Value 0 1 0 Oscillator 1 Active Timer O1A No INT INT Pending 1 Oscillator 1 Inactive Timer O1I No INT INT Pending 2 Oscillator 2 Active Timer O2A No INT INT Pending 3 Oscillator 2 Inactive Timer O2I No INT INT Pending 4 Ringing Active Timer RA No INT INT Pending 5 Ringing Inactive Timer RI No INT INT Pending 6 DTMF Initialize DTMFI No INT INT Pending 7 FSK Interrupt occurs when the FSK FIFO is empty FSKI No INT INT Pending Preliminary Datasheet Rev1.0 Page 97 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 14.5.5. INTERRUPT ENABLE REGISTER 2 Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default 0x29 IE2 FSKIE DTMFIE RIE RAE O2IE O2AE O1IE O1AE 0x00 Bit Location Bit Description Bit Value Bit Name 0 1 0 Oscillator 1 Active Timer O1AE Masked Enabled 1 Oscillator 1 Inactive Timer O1IE Masked Enabled 2 Oscillator 2 Active Timer O2AE Masked Enabled 3 Oscillator 2 Inactive Timer O2IE Masked Enabled 4 Ringing Active Timer RAE Masked Enabled 5 Ringing Inactive Timer RIE Masked Enabled 6 DTMF Inactive Timer DTMFIE Masked Enabled 7 FSK Enable FSKIE Masked Enabled 14.5.6. INTERRUPT STATUS REGISTER 3 Addr. Name 0x2A INT3 D7 D6 D5 D4 D3 D2 GKDI RES D1 RES D0 Default TMP 0x00 "RES" in the register map means reserved bit(s). This register displays the status of the dice Temperature interrupt of the device. A pending interrupt is represented by a HIGH "1" in the respective bit. Writing 1 to that respective bit clears the pending interrupt. Bit Location Bit Description Bit Name Bit Value 0 1 0 Die Temperature Interrupt TMP No INT INT Pending 3 Ground Key Detection Interrupt GKDI No INT INT Pending Preliminary Datasheet Rev1.0 Page 98 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 14.5.7. INTERRUPT ENABLE REGISTER 3 Addr. Name 0x2B IE3 D7 D6 D5 D4 D3 GKDIE RES D2 D1 RES D0 Default TMPE 0x00 "RES" in the register map means reserved bit(s). This register enables the dice Temperature interrupt of the device. An interrupt can be enabled by writing a HIGH "1" in the respective interrupt bit. The following table explains the Interrupt Enable Register 1 bits. Bit Location Bit Description Bit Name Bit Value 0 1 0 Temperature Interrupt Enable TMPE Masked Enabled 3 Ground Key Detection Interrupt Enable GKDIE Masked Enabled Preliminary Datasheet Rev1.0 Page 99 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 14.6. DTMF DETECTION REGISTER 14.6.1. DTMF CONTROL 1 Addr. Name D7 D6 0x30 DTMFC1 DTMFEN ADCOSEL D5 D4 D3 D2 DTMFFDEV D1 D0 Default DTMFTC 0x00 ADC output is the signal from ADC coming to DTMF decode. Therefore, the ADC Select bit select either the ADC or PCM input to the DTMF decode. When DTMFTC[3:0] bits are set to larger values, DTMF detector needs more time to decode the DTMF signal but the numerical precision is greater. Bit Location Bit Description Bit Value Bit Name 0 1 6 ADC Output Select ADCOSEL ADC output comes from ADC. (Receive path) ADC output comes from PCM. (Transmit path) 7 DTMF Enable DTMFEN Disabled Enabled DTMF Frequency Deviation DTMFFDEV[5] DTMFFDEV[4] Deviation (%) 0 0 1.5 0 1 2.5 1 0 3.0 1 1 3.5 Time constant used for DTMF frequency estimation DTMFTC3 DTMFTC2 DTMFTC1 DTMFTC0 0 0 0 0 Time Constant 0 0 0 0 1 1 0 0 1 0 2 0 0 1 1 3 0 1 0 0 4 0 1 0 1 5 0 1 1 0 6 0 1 1 1 7 1 0 0 0 8 1 0 0 1 9 Preliminary Datasheet Rev1.0 Page 100 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC Time constant used for DTMF frequency estimation DTMFTC3 DTMFTC2 DTMFTC1 DTMFTC0 1 0 1 0 Time Constant 10 1 0 1 1 11 1 1 0 0 12 1 1 0 1 13 1 1 1 0 14 1 1 1 1 15 14.6.2. DTMF CONTROL 2 Addr. Name 0x31 DTMFCTRL2 D7 D6 D5 D4 D3 D2 D1 RES D0 Default DTMFCLR 0x00 "RES" in the register map means reserved bit(s). Bit Location 0 Bit Description Bit Value Bit Name DTMF Clear previous received data. DTMFCLR 0 1 Default Clear 14.6.3. DTMF CONTROL 3 Addr. Name 0x32 DTMFCTRL3 D7 D6 D5 D4 D3 D2 D1 DTMFRCVDT RES D0 Default 0x00 "RES" in the register map means reserved bit(s). Row Frequency Column frequency 697 Hz 770 Hz 852 Hz 941 Hz Preliminary Datasheet Rev1.0 1209 Hz 1 0x01 hex 4 0x04 hex 7 0x07 hex * 0x0B hex 1336 Hz 2 0x02 hex 5 0x05 hex 8 0x08 hex 0 0x0A hex Page 101 of 164 1477 Hz 3 0x03 hex 6 0x06 hex 9 0x09 hex # 0x0C hex 1633 Hz A 0x0D hex B 0x0E hex C 0x0F hex D 0x00 hex January 2010 N681386/87 Single Programmable Extended Codec/SLCC 14.6.4. DTMF STATUS (READ ONLY) Addr. Name 0x33 DTMFST D7 D6 D5 D4 D3 D2 D1 RES D0 Default DTMFEMT (RO) 0x01 "RES" in the register map means reserved bit(s). It is a Read ONLY bit Bit Location Bit Description Bit Name 0 DTMF buffer is empty DTMFEMT Bit Value 0 1 Pending Data Buffer is Empty 14.6.5. DTMF THRESHOLD Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default 0x34 DTMFTHRH DTMFTHR[15:8] 0xE4 0x35 DTMFTHRL DTMFTHR[7:0] 0xE5 This is the signal level threshold which must be present to detect a DTMF tone. 14.6.6. DTMF PRESENT DETECT TIME Addr. Name 0x36 DTMFPDT D7 D6 D5 D4 D3 D2 D1 DTMFPDT[7:0] D0 Default 0x00 DTMF PRESENT DETECT TIME The time for which a tone must be present to be qualified as a valid DTMF tone Range Preliminary Datasheet Rev1.0 Minimum Maximum Increment 0 ms 127 ms 0.5 ms Page 102 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 14.6.7. DTMF ABSENT DETECT TIME Addr. Name 0x37 DTMFADT D7 D6 D5 D4 D3 D2 D1 D0 DTMFADT[7:0] Default 0x00 DTMF ABSENT DETECT TIME The time for which a tone must be absent before a signal is considered a new DTMF tone Range Minimum Maximum Increment 0 ms 127 ms 0.5 ms 14.6.8. DTMF ACCEPT TIME Addr. Name 0x38 DTMFACT D7 D6 D5 D4 D3 D2 DTMFACT[7:0] D1 D0 Default 0x00 DTMF ACCEPT TIME The time for which a tone must be stable to be qualified as a correct tone Range Minimum Maximum Increment 0 ms 127 ms 0.5 ms This guard time improves detection performance by rejecting detected signals with insufficient duration and by masking momentary detection dropout. Preliminary Datasheet Rev1.0 Page 103 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 14.6.9. DTMF RECEIVE DATA STATUS Addr. Name D7 D6 0x3A DTMFRDT DTMFRDY DTMFST D5 D4 D3 D2 D1 D0 Default DTMFRDT[3:0] RES 0x00 "RES" in the register map means reserved bit(s). DTMF Detector received data, DTMFRDT[3:0]. This data is valid when DTMF Ready, DTMFRDY[7], is active. Bit Value Bit Location Bit Description 6 DTMF State (indicates whether a valid DTMF tone is currently being detected and DTMF Present Time DTMFPDT[7:0], is qualified.) DTMFST Data Not Valid Data Valid 7 DTMF Ready (indicates that a valid DTMF tone has been present for required DTMF Hold Time (ACCT) DTMFRDY Data Not Ready Data Ready Bit Name 0 1 Row Frequency Column frequency 697 Hz 770 Hz 852 Hz 941 Hz 1209 Hz 1 0x01 hex 4 0x04 hex 7 0x07 hex * 0x0B hex 1336 Hz 2 0x02 hex 5 0x05 hex 8 0x08 hex 0 0x0A hex 1477 Hz 3 0x03 hex 6 0x06 hex 9 0x09 hex # 0x0C hex 1633 Hz A 0x0D hex B 0x0E hex C 0x0F hex D 0x00 hex 14.6.10. DTMF ROW FREQUENCY Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default 0x3B DTMFRFH DTMFRF[15:8] 0x00 0x3C DTMFRFL DTMFRF[7:0] 0x00 These two bytes are for debug mode, and display the DTMF Row frequency directly. * DTMFRF[15:3] is the integer part of the DTMF Row frequency, * DTMFRF[2:0] is the decimal fraction part of the DTMF Row frequency (13.3 format). Preliminary Datasheet Rev1.0 Page 104 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 14.6.11. 14/15 DTMF COLUMN FREQUENCY Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default 0x3D DTMFCFH DTMFCF[15:8] 0x00 0x3E DTMFCFL DTMFCF[7:0] 0x00 These two bytes are for debug mode, and display the DTMF Column frequency directly. * DTMFCF[15:3] is the integer part of the DTMF Column frequency, * DTMFCF[2:0] is the decimal fraction part of the DTMF Column frequency (13.3 format). Preliminary Datasheet Rev1.0 Page 105 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 14.7. LINE REGISTERS 14.7.1. AC PATH GAIN Addr. Name D7 D6 D5 D4 0x40 APG RAMP PREN VOHZ RES D3 D2 D1 ARX[1:0] Analog Receive Gain D0 ATX[1:0] 0x00 Analog Transmit Gain ARX1 ARX0 Gain (dB) ATX1 ATX0 Gain (dB) 0 0 0 0 0 0 0 1 - 3.5 0 1 - 3.5 1 0 + 3.5 1 0 + 3.5 1 1 Mute 1 1 Mute Bit Location Default Bit Description Bit Value Bit Name 0 1 5 Wink function VOHZ Return to nominal VRING Ramp towards 0 VRING 6 Soft Polarity Reversal PREN Disable Enable 7 Soft Polarity Reversal ramp RAMP 1.484 V/125 s 2.968 V/125 s 14.7.2. HYBRID BALANCE Addr. Name D7 D6 0x41 HB DACG ADCG Bit Location D5 D4 D3 D2 D1 AHYB[2:0] RES Bit Description D0 Default 0x1B Bit Value Bit Name 0 1 6 Analog ADC Path Gain ADCG -6 dB 0 dB 7 Analog DAC Path Gain DACG 0 dB 6 dB Audio Hybrid Balance Adjustment Preliminary Datasheet Rev1.0 AHYB2 AHYB1 AHYB0 Trans hybrid Gain 0 0 0 +4.08 0 0 1 +2.50 0 1 0 +1.16 0 1 1 0 1 0 0 - 1.02 1 0 1 - 1.94 1 1 0 - 2.77 1 1 1 Disable Page 106 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 14.7.3. COMMON RINGING BIAS ADJUST DURING RINGING Addr. Name 0x42 VCMR D7 D6 D5 D4 D3 D2 D1 D0 Default VCMR[5:0] RES 0x00 "RES" in the register map means reserved bit(s). The above register sets Common Ringing Bias Adjustment voltage during Ringing. To convert decimal value to hex value please refer to the beginning of this section (Register Description). COMMON RINGING BIAS ADJUST VOLTAGE DURING RINGING Minimum Maximum Increment Range 0V -93.5 V 1.484 V 14.7.4. LINE AUTOMATIC MANUAL CONTROL Addr. Name 0x43 LAMC D7 D6 D5 D4 D3 RES D2 D1 D0 Default PAA RGA LCDA 0x07 "RES" in the register map means reserved bit(s). Bit Location Bit Description Bit Name Bit Value 0 1 0 Loop Closure Detect Automatic LCDA Manual Mode Automatic Control 1 RING Automatic RGA Manual Mode Automatic RING Control 2 Power Alarm Automatic React (Enters Open state automatically upon power alarm regardless of current state) PAA Manual Mode Automatic Control In RING Automatic, LAMC:RGA[1] address (0x43), when entering Ringing state the RING Oscillator is automatically enabled. Both OSN:O2E[1] address (0xC0) and RMPC:R1EN[5] address (0xC1) are set automatically. Enter Active state from ringing state automatically upon RING Trip Detect. The RING Oscillators are automatically disabled. Forward or Reverse states determined primarily by OHV:SB[6] address (0x4C) Upon entering Loop Closure Detect Automatic LAMC:LCDA[0] address (0x43) the device will enter the Active state from Idle, TIP Open, RING Open and ON-HOOK Transmission states automatically upon Loop Closure Detect. Forward or Reverse states determined primarily by OHV:SB[6] address (0x4C). Preliminary Datasheet Rev1.0 Page 107 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 14.7.5. LINEFEED STATUS Addr. Name 0x44 LS D7 D6 D5 D4 D3 D2 D1 SLS[3:0] D0 LS[3:0] Default 0x00 LineFeed Status LS3 LS2 LS1 LS0 0 0 0 0 Open 0 0 0 1 Forward Active State 0 0 1 0 Forward ON-HOOK Transmission 0 0 1 1 TIP Open 0 1 0 0 Ringing 0 1 0 1 Reverse Active 0 1 1 0 Reverse ON-HOOK Transmission 0 1 1 1 RING Open 1 0 0 1 Forward Idle 1 1 0 1 Reverse Idle 1 1 1 0 Calibration Mode LS:LS[3:0] is the Linefeed Status Register bits which reflects the programmed linefeed state, not necessarily the actual linefeed state. See LS:SLS[3:0] definition. When automatic transitions occur LS:LS[3:0] will also update accordingly. SLS[3:0] is the Shadow Linefeed Status Register bits which reflects the actual real-time linefeed state. Automatic operations may cause actual linefeed state to deviate from the state defined in LS:LS[3:0]. For example when LS:LS[3:0] is programmed for `Ringing' state, LS:SLS[3:0] will only indicate `Ringing' during the actual RING burst. During the RING cadence LS:SLS[3:0] will indicate `ON-HOOK Transmission'. This register has the same setting as the Linefeed Status Register bits. 14.7.6. LOOP CURRENT LIMIT Addr. 0x45 Name D7 D6 LCL LGCRT LGCRR D5 D4 LGCM[1:0] D3 D2 D1 ILM[2:0] RES D0 Default 0x00 "RES" in the register map means reserved bit(s). To convert Current Limit decimal value to hex value please refer to the beginning of this section (Register Description). CURRENT LIMIT [ILM[2:0]] Range Preliminary Datasheet Rev1.0 Minimum Maximum Increment 20 mA [0x00] 41 mA [0x07] 3 mA Page 108 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC Bit Location LGCM1 LGCM0 Common Mode Correction 0 0 Open (none) 0 1 Small (one) 1 0 Medium (two) 1 1 Large (three) Bit Description Bit Value Bit Name 0 1 6 Series Resistor with CRn LGCRR OFF ON 7 Series Resistor with CTn LGCRT OFF ON 14.7.7. RING TRIP DETECT STATUS/ LOOP CLOSURE STATUS (READ ONLY) Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default 0x46 RTLC RTM LCM VBLC RTDUD (RO) RTDUA (RO) LCDU (RO) RTD (RO) LCD (RO) 0x00 "RES" in the register map means reserved bit(s). RING Trip Detect Unfiltered Indicator (RTDUD) bit reflects the real-time output of RING trip detects circuit before debounce. Loop Closure Detect Unfiltered Indicator (LCDU) bit reflects the real-time output of Loop Closure Detect circuit before debounce. Bits of register RTLC[7:5] are READ/WRITE but the bits RTLC[4:0] are READ ONLY Bit Location Bit Description Bit Value Bit Name 0 1 0 Loop Closure Detect (filtered output) LCD LCD has not occurred LCD has occurred 1 RING Trip Detect (filtered output) RTD RTD has not occurred RTD has occurred 2 Loop Closure Detect Unfiltered LCDU Threshold not exceeded Threshold exceeded 3 RING Trip Detect Unfiltered AC RTDUA Threshold not exceeded Threshold exceeded 4 RING Trip Detect Unfiltered DC RTDUD Threshold not exceeded Threshold exceeded 5 Voltage-Based Loop Closure VBLC LC determined by loop current LC determined by Tip to RING voltage 6 Loop Closure Mask Counter LCM Disabled Enabled 7 Ring Trip Mask Control RTM Disabled Enabled Preliminary Datasheet Rev1.0 Page 109 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 14.7.8. LOOP CLOSURE DEBOUNCE Addr. Name 0x47 LCDB D7 D6 D5 D4 D3 D2 D1 D0 LCDI[7:0] Default 0x00 Loop Closure Detect Debounce Interval LCDI[7:0] is an 8-bit register which sets time interval (decimal value) in digital format. To convert decimal value to hex value please refer to the beginning of this section (Register Description). LOOP CLOSURE DEBOUNCE INTERVAL Minimum Maximum Increment 0 msec 159 msec 1.25 msec Range 14.7.9. RING TRIP DEBOUNCE INTERVAL Addr. Name 0x48 RTDBA D7 D6 D5 D4 D3 D2 D1 D0 ARTDI[7:0] Default 0x00 RING Trip Detect Debounce Interval ARTDI[6:0] is an 8-bit register which sets time interval (decimal value) in digital format. To convert decimal value to hex value please refer to the beginning of this section (Register Description). RING TRIP DEBOUNCE Range Minimum Maximum Increment 0 msec 159 msec 1.25 msec 14.7.10. PWM PERIOD Addr. Name 0x49 PWMT D7 D6 D5 D4 D3 D2 D1 D0 PT[7:0] Default 0xFF This register sets PWM period for the DC/DC converter. Use the following equation to calculate the period. PWM Period = (PT[7:0] + 1) x PLL Period The PWM period should be set to a value greater than the DC/DC Converter Minimum OFF Time PWMT:PT[7:0] > DDCC:DCOFF[4:0] The PLL Period (expressed in nsec) which is selected based on the setting of PON:CDCC[7] address (0x22) and whether the BCLK is binary or decimal. Preliminary Datasheet Rev1.0 Page 110 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 14.7.11. DC/DC CONTROLLER CONTROL Addr. Name 0x4A DDCC D7 D6 D5 D4 D3 D2 D1 D0 Default DCOFF[7:0] 0x76 This register sets DC/DC Converter Minimum OFF Time. Use the following equation to calculate the period. DCOFF[7:0] should be programmed to values 04 hex TOFF = DCOFF[7:0] x PLL Period The PLL Period (expressed in nsec) which is selected based on the setting of PON:CDCC[7] address (0x22) and whether the BCLK is binary or decimal. 14.7.12. ON-HOOK VOLTAGE Addr. Name D7 D6 0x4C OHV RES SB D5 D4 D3 D2 D1 D0 Default VOH[5:0] 0x20 "RES" in the register map means reserved bit(s). ON-HOOK VOLTAGE (VTIP - VRING) [VOH] Range Bit Location 6 Minimum Maximum Increment Default 0V - 93.5 V 1.484 V - 47.488 V Bit Description Determines polarity of Idle, Active, and On-hook transition states after automatic transitions Preliminary Datasheet Rev1.0 Page 111 of 164 Bit Value Bit Name 0 1 SB Forward Reverse January 2010 N681386/87 Single Programmable Extended Codec/SLCC 14.7.13. GROUND MARGIN VOLTAGE Addr. Name D7 D6 D5 0x4D GMV UBR RES D4 D3 D2 D1 D0 VGM[5:0] Default 0x02 "RES" in the register map means reserved bit(s). GROUND MARGIN VOLTAGE [VGM] Minimum Maximum Increment Default 0V - 93.5 V 1.484 V -2.968 V Range Bit Location Bit Description Bit Name 7 Unbalanced Ringing UBR Bit Value 0 1 Balanced Ringing Unbalanced Ringing 14.7.14. HIGH BATTERY VOLTAGE Addr. 0x4E Name VBHV D7 XBATR D6 RES D5 D4 D3 D2 VBATH[5:0] D1 D0 Default 0x32 "RES" in the register map means reserved bit(s). HIGH BATTERY VOLTAGE [VBATH] Minimum Maximum Increment Default 0V - 93.5 V 1.484 V - 74.2 V Bit Name 0 1 XBATR Disabled Enabled Range Bit Location 7 Bit Description External Battery Enable Bit Value 14.7.15. LOW BATTERY VOLTAGE Addr. 0x4F Name VBLV D7 D6 D5 D4 RES D3 D2 VBATL[5:0] D1 D0 Default 0x10 "RES" in the register map means reserved bit(s). LOW BATTERY VOLTAGE [VBATL] Range Preliminary Datasheet Rev1.0 Minimum Maximum Increment Default 0V - 93.5 V 1.484 V - 23.744 V Page 112 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 14.7.16. LOOP CLOSURE DETECT/RING TRIP DETECT COEFFICIENT Addr. 0x50 0x51 0x52 Name LCDCL RTDFCLD DCHD D7 D6 D5 D4 D3 LCDC[7:0] ARTDFC[7:0] D2 ARTDFC[11:8] D1 D0 LCDC[11:8] Default 0x00 0x00 0x00 Loop Closure Detect Coefficient LCDC[11:0] is governed by the cutoff frequency fLP f LCDC[11 : 0] = 1 - 2 * * LP 800Hz * 2 12 AC Ring Trip Detect Filter Coefficient ARTDFC[11:0] is governed by the cutoff frequency fLP f ARTDFC[11 : 0] = 1 - 2 * * LP 800Hz * 2 12 14.7.17. LOOP CLOSURE DETECT THRESHOLD WITHOUT / WITH HYSTERESIS Addr. 0x53 0x54 Name LCT LCTHY D7 D6 RES DBTR LCHYEN D5 D4 D3 D2 LCT[5:0] LCTOFF[5:0] D1 D0 Default 0x00 0x00 "RES" in the register map means reserved bit(s). Bit Location Bit Description Condition Bit Name (0x53) D0 - D5 Loop Closure Detect Threshold If hysteresis enabled (LCTHY:LCHYEN=1) LCT[5:0] only used to determine transitions from ON-HOOK to OFF-HOOK state (0x54) D0 - D5 Loop Closure Detect Threshold with hysteresis Only valid if hysteresis enabled (LCTHY:LCHYEN=1) LCTOFF[5:0] only used to determine transitions from OFF-HOOK to ON-HOOK state Bit Location Bit Description Current Based (RTLC:VBLC=0,) Current Based Voltage Based (RTLC:VBLC=1,) Voltage Based (LCDB:VBLC=1) Bit Name 0 to 80 mA 1.27 mA 0 to 93.5 V 1.484 V 0 to 80 mA 1.27 mA 0 to 93.5 V 1.484 V LCTOFF Bit Value 0 1 Loop Closure Hysteresis LCHYEN Disable Enable 7 Dynamic Battery Target DBTR Disable Enable Page 113 of 164 Increment LCT 6 Preliminary Datasheet Rev1.0 Range January 2010 N681386/87 Single Programmable Extended Codec/SLCC 14.7.18. RING TRIP DETECT THRESHOLD Addr. 0x55 Name D7 RTTA D6 D5 D4 D3 D2 D1 D0 ARTT[5:0] RES Default 0x00 RING TRIP DETECT THRESHOLD [ARTT] Minimum Maximum Increment 0A 80 mA 1.27 mA Range 14.7.19. OFFSET VOLTAGE Addr. Name 0x56 VOV D7 D6 D5 D4 D3 D2 TR RES D1 D0 VOV[3:0] Default 0x00 "RES" in the register map means reserved bit(s). The Tracking Mode is enabled by set TR bit HIGH and disabled by setting it LOW. Offset Voltage between TIP and RING [VOV] Minimum Maximum Increment Default 0V 24 V 1.484 V 3.0 V Range Bit Location 4 Bit Description Bit Value Bit Name Tracking Mode 0 1 |VBAT| will not go below VBATL TR VBAT tracks VRING in constant current region 14.7.20. DC/DC TIME ON Addr. Name 0x57 DCTON D7 D6 D5 D4 D3 D2 TONDC[5:0] RES D1 D0 Default 0x00 "RES" in the register map means reserved bit(s). Minimum DCDC on time Preliminary Datasheet Rev1.0 Page 114 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 14.7.21. DAC/ADC AUTOMUTE FUNCTION Addr. Name D7 D6 0x5E AUTOMT AMTEN AMTSEL Bit Location D5 D4 D3 D2 D1 AMTTHR Bit Description Bit Name 6 Automute Select AMTSEL 7 Automute Enable AMTEN D0 Default 0x00 Bit Value 0 DAC data + ADC data Disabled 1 DAC data only Enabled Automute Threshold Modes AMTTHR[5:0] Linear u-Law A-law Preliminary Datasheet Rev1.0 Page 115 of 164 0 0 8 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 14.8. GROUND KEY DETECTION 14.8.1. LINEFEED CONTROL Addr. Name D7 D6 D5 D4 D3 D2 D1 0x5F XBTC RES ASQH CBP XBEN XTBOT1 XTBOT0 D0 Default XTBAT[1:0] 0x00 "RES" in the register map means reserved bit(s). Bit Location Bit Description Bit Value Bit Name 0 1 2 DC Bias Current OFF-Hook XTBOT0 8 mA 4 mA 3 DC Bias Current On-Hook TR XTBOT1 4 mA 8 mA 4 Ringer Bias Enable XBEN Disable Enable Capacitors CT and CR bypassed STIPAC and SRINGAC pins are muted 5 Capacitor Bypass CBP capacitors CP() and CM (C2) in circuit 6 Audio Mute ASQH STIPAC and SRINGAC pins are not muted The DC bias current flows through external BJTs in the both On-Hook Transmission and in Active Off-Hook State. Increasing this value (External Transistor Bias Levels) increases the TIP to RING peak of the differential AC current. Current Limit adjustment XTBA1 XTBA0 DC Bias Current 0 0 1 1 0 1 0 1 Nominal ILIM +1 mA +2 mA -1 mA 14.8.2. GROUND KEY DETECT HIGH/LOW THRESHOLD Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default 0x60 GKDH RES HGKD[7:0] 0x00 0x61 GKDL RES LGKD[7:0] 0x00 GKD HIGH/LOW THRESHOLD Range Preliminary Datasheet Rev1.0 Minimum Maximum Increment 0A 80 mA 1.27mA Page 116 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 14.8.3. GROUND KEY DETECT DEBOUNCE TIME Addr. Name 0x62 GKDDT D7 D6 D5 D4 D3 D2 D1 D0 DTGKD[7:0] Default 0x00 GKD DEBOUNCE TIME Range Minimum Maximum Increment 0 msec 320 msec 1.25 msec 14.8.4. GROUND KEY DETECT FILTER COEFFICIENT LOW/ HIGH Addr. Name D7 0x63 0x64 GKDFCL GKDFCH D6 GKDEN D5 D4 D3 D2 D1 D0 FCGKD[7:0] 0x00 0x00 FCGKD[11:8] RES Default Ground Key Detection Filter Coefficient governs the Ground Key Detect LPF cutoff frequency fLP f FCGKD[11 : 0] = 1 - 2 * * LP 800Hz Bit Location 7 Bit Description * 2 12 Bit Value Bit Name Enable Ground Key detection GKDEN 0 1 Disable Enable 14.8.5. DC RING TRIP DEBOUNCE FILTER COEFFICIENT LOW Addr. Name 0x65 RTDCDL 0x66 DCHD D7 D6 D5 D4 D3 D2 D1 DRTDFC[7:0] Default 0x00 DRTDFC[11:8] RES D0 0x00 DC Ring Trip Coefficient is governed by the cutoff frequency fLP 1 - ( 2 * * fLP ) 12 DRTFC[11 : 0] = x 2 800 Preliminary Datasheet Rev1.0 Page 117 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 14.8.6. DC RING TRIP CURRENT THRESHOLD Addr. 0x67 Name D7 D6 RTTD RES XRTR D5 D4 D3 D2 D1 D0 DRTT[5:0] Default 0x00 DC Ring Trip current Threshold in Internal Ringing Mode RING TRIP DETECT THRESHOLD [DRTT] Range Minimum Maximum Increment 0A 80 mA 1.27 mA 14.8.7. DC RING TRIP DEBOUNCE TIME Addr. Name 0x68 RTDBD D7 D6 D5 D4 D3 D2 DRTD[7:0] D1 D0 Default 0x00 DC RING TRIP DEBOUNCE TIME Range Preliminary Datasheet Rev1.0 Minimum Maximum Increment 0 msec 159 msec 1.25 msec Page 118 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 14.8.8. EXTERNAL BATTERY SWITCH OUTPUT CONFIGURATION 1 Addr. Name 0x6A 0x6B XBSDCN XBSDCP D7 D6 D5 D4 D3 D2 D1 D0 Default DCNXB[7:0] DCPXB[7:0] 0x00 0x00 External battery switch DCN pin and DCP output configuration for different line states XBSDCN Register XBSDCP Register Linefeed State DCN output DCP output Open x x x x x x x 0 LOW Open x x x x x x x 1 HIGH Forward/Reverse Active x x x x x x 0 x LOW Forward/Reverse Active x x x x x x 1 x HIGH Forward/Reverse ON-HOOK Transmission x x x x x 0 x x LOW Forward/Reverse ON-HOOK Transmission x x x x x 1 x x HIGH TIP/RING Open x x x x 0 x x x LOW TIP/RING Open x x x x 1 x x x HIGH Ringing x x x 0 x x x x LOW Ringing x x x 1 x x x x HIGH Forward/Reverse Idle x x 0 x x x x x LOW Forward/Reverse Idle x x 1 x x x x x HIGH Calibration Mode x 0 x x x x x x LOW Calibration Mode x 1 x x x x x x HIGH 14.8.9. DC/DC HEAVY CURRENT CONVERTER Addr. Name 0x6E LOAD Bit Location 0 D7 Bit Description DC/DC Heavy Current Load Preliminary Datasheet Rev1.0 D6 D5 D4 D3 D2 D1 RES Bit Name LOAD Page 119 of 164 D0 Default LOAD 0x00 Bit Value 0 1 Light load Heavy Current Load such as Ringing for DC/DC converter January 2010 N681386/87 Single Programmable Extended Codec/SLCC 14.8.10. DC/DC TARGET VOLTAGE (READ ONLY) Addr. Name 0x77 DCTR D7 D6 D5 D4 D3 D2 VTR[7:0] (RO) D1 D0 Default 0XC8 In Inductor mode the Target Voltage for DC/DC Converter is a READ ONLY register. DC/DC TARGET VOLTAGE [VTR] Range Preliminary Datasheet Rev1.0 Minimum Maximum Increment Default 0V - 93.5 V 1.484 V 3.0 V Page 120 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 14.9. MONITORING REGISTERS 14.9.1. MONITOR CURRENT FOR RING TRIP AND LOOP CLOSURE Addr (Hex) 78 RTMNT MNTRT[7:0] Default (Hex) 00 79 LCMNT MNTLC[7:0] 00 RO Default (Hex) R/W Name Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 R/W RO RING TRIP CURRENT MONITOR LOOP CLOSURE CURRENT MONITOR Range Minimum Maximum Increment 0A 80 mA 0.317 mA 14.9.2. MONITOR CURRENT FOR RING TRIP AND LOOP CLOSURE Addr (Hex) 7A Name Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MNT5 MNTQ1[7:0] RO 7B MNT7 MNTQ2[7:0] RO 7C MNT9 MNTQ3[7:0] RO 7D MNT11 MNTQ4[7:0] RO 7E MNT13 MNTQ5[7:0] RO 7F MNT15 MNTQ6[7:0] RO TRANSISTOR POWER DESSIPATION TIP, RING, and LOOP CURRENT SENSE DESCRIPTION Dependent on the maximum power dissipation rating of the external transistors Preliminary Datasheet Rev1.0 CONDITION Range Minimum Maximum Stepsize QT1 and QR1 PATHQ2 0W 7.70 W 30.4 mW QT2 and QR2 PATHQ1 0W 0.97 W 3.80 mW QT3 and QR3 PATHQ3 0W 7.70 W 30.4 mW Page 121 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 14.10. LINE CONTROL REGISTERS 14.10.1. VOLTAGE REGISTERS 14.10.1.1. BATTERY VOLTAGE SENSE (READ ONLY) Addr. Name 0x80 BATV D7 D6 D5 D4 D3 D2 D1 D0 VB[7:0] (RO) Default 0x02 Battery Voltage VB[7:0] is a READ ONLY register. BATTERY VOLTAGE SENSE [VB] Range 14.10.1.2. Addr. 0x81 0x82 Minimum Maximum Increment 0V - 95.88 V 0.376 V TIP/RING VOLTAGE SENSE (READ ONLY) Name D7 D6 D5 D4 D3 D2 D1 D0 VTIP[11:4] (RO) VTIP VTRIP (XP) VRING VRING (XP) VTIP[3:0] (RO) 0x00 RES VRING[11:4] (RO) VRING[3:0] (RO) Default 0x00 RES "XP" stands for extra precision register. TIP and RING voltage is a READ ONLY register. The range value depends on calibration. The values provided for range is without any calibration. Please refer to the SPI Peripheral Interface section for details. TIP AND RING VOLTAGE SENSE [VTIP, VRING] Precision Bits Minimum Maximum Increment 0V -95.88 V 374 mV 8 0V -95.88 V 23.4 mV 12 Range 14.10.1.3. Addr. Name 0x83 0x84 QT3V QR3V TIP/RING TRANSISTOR 3 EMITTER VOLTAGE SENSE (READ ONLY) D7 D6 D5 D4 D3 D2 QT3V[7:0] (VTVE) (VQT2) (RO) QR3V[7:0] (VRVE) (VQR2) (RO) D1 D0 Default 0x03 0x02 Transistors QT3 / QR3 Emitter Voltage (QT3V, QR3V) is a READ ONLY register. The range value depends on calibration. The values provided for range is without any calibration. TRANSISTORS QT3 / QR3 EMITTER VOLTAGE Range Preliminary Datasheet Rev1.0 Minimum 0V Maximum - 95.88 V Page 122 of 164 Increment 0.376 V January 2010 N681386/87 Single Programmable Extended Codec/SLCC 14.11. Addr. 0x85 0x86 0x87 0x88 0x89 0x8A TRANSISTOR CURRENT REGISTERS (TIP/RING TRANSISTOR 1/2/3 CURRENT SENSE) Name D7 D6 D5 QT3I D4 D3 D2 D1 QT3I[11:4] QT3I (XP) QT3I[3:0] QR3I QR3I[3:0] QT1I 0x03 RES QT1I[11:4] QT1I (XP) QT1I[3:0] QT2I 0x03 RES QT2I[11:4] QT2I (XP) QT2I[3:0] QR1I 0x03 RES QR1I[11:4] QR1I (XP) QR1I[3:0] QR2I 0x03 RES QR2I[11:4] QR2I (XP) QR2I[3:0] Default 0x05 RES QR3I[11:4] QR3I (XP) D0 0x03 RES "XP" stands for extra precision register. TIP/RING Transistor 1/2/3 Current register is a READ ONLY. The range value depends on calibration. The values provided for Range is without any calibration. Please refer to the SPI Peripheral Interface section for details. REAL TIME CURRENT Precision Bits Minimum Range Maximum Increment 0A 78.54 mA 306 A 8 0A 78.54 mA 19.18 A 12 0A 78.54 mA 306 A 8 0A 78.54 mA 19.18 A 12 0A 78.54 mA 306 A 8 0A 78.54 mA 19.18 A 12 0A 9.95 mA 38.8 A 8 0A 9.95 mA 2.43 A 12 0A 78.54 mA 306 A 8 0A 78.54 mA 19.18 A 12 0A 9.95 mA 38.8 A 8 0A 9.95 mA 2.43 A 12 QT3I QR3I QT1I QT2I QR1I QR2I Preliminary Datasheet Rev1.0 Page 123 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 14.12. LOOP SUPERVISION 14.12.1. LONGITUDINAL CURRENT Addr. Name 0x8C LGI LGI (XP) D7 D6 D5 D4 D3 D2 D1 D0 ILG[11:4] ILG[3:0] Default 0x00 RES "XP" stands for extra precision register. The range value depends on calibration. The values provided for Range is without any calibration. Please refer to the SPI Peripheral Interface section for details. ILG = (IQT1 - IQT3 - IQR3 + IQR1) 2 LONGITUDINAL CURRENT Precision Bits Minimum Maximum Increment 0 mA 77.62 mA 303 uA 8 0 mA 77.62 mA 18.95 uA 12 Range 14.12.2. LOOP VOLTAGE SENSE (READ ONLY) Addr. Name 0x8D LPV LPV (XP) D7 D6 D5 D4 D3 D2 D1 D0 Default VLP[11:4] (RO) VLP[3:0] (RO) 00 RES "XP" stands for extra precision register. Loop Voltage is a READ ONLY register. The range value depends on calibration. The values provided for Range is without any calibration. This is a 12-bit register. Please refer to the SPI Peripheral Interface section for details. Minimum LOOP VOLTAGE (VTIP - VRING) Maximum Increment Precision Bits 0V - 95.88 V 374 mV 8 0V - 95.88 V 23.41mV 12 Range Preliminary Datasheet Rev1.0 Page 124 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 14.12.3. TIP, RING, AND LOOP CURRENT (READ ONLY) Addr. Name D7 D6 0x8F 0x90 D4 D3 D2 D1 D0 Default ITLP[11:4] (RO) TIPI TIPI (XP) RINGI RINGI (XP) LPI LPI (XP) 0x8E D5 ITLP[3:0] (RO) NA RES IRLP[11:4] (RO) IRLP[3:0] (RO) NA RES ILP[11:4] (RO) ILP[3:0] (RO) NA RES "XP" stands for extra precision register. The above registers are READ ONLY. The range value depends on calibration. The values provided for Range is without any calibration. Please refer to the SPI Peripheral Interface section for details. TIP, RING, and LOOP CURRENT Precision Bits Minimum Maximum Increment 0 mA 77.62 mA 303 uA 8 0 mA 77.62 mA 18.95 uA 12 Range 14.12.4. POLARITY Addr. Name 0x91 POL D7 D6 RES D5 D4 D3 D2 D1 D0 Default P2PEN ILGP ILPP IRLP ITLP VLP NA Loop voltage, TIP Current, RING Current, Loop Current, and Longitudinal Current all have Sign Bit associated with it. The Polarity register contains all the Sign or Polarity bits. For these registers mentioned the range can also extend in the negative direction by setting the Sign or Polarity bit. Bit Location Bit Description Bit Name Bit Value 0 1 VLP Positive Negative ITLP Positive Negative RING Current IRLP Positive Negative 3 Loop Current ILPP Positive Negative 4 Longitudinal Current ILGP Positive Negative Clear value Continuously updates new peak values 0 Loop Voltage 1 TIP Current 2 5 Loop current PK-2-PK clear P2PEN When P2PEN[5] is set from 0 to 1 the peak detector circuit register value is cleared. If P2PEN[5] is set to HIGH and it remain at HIGH than the peak detector circuit register value is continuously updated with new peak values. Preliminary Datasheet Rev1.0 Page 125 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 14.12.5. COMMON MODE VOLTAGE Addr. Name 0x92 SCM SCM (XP) D7 D6 D5 D4 D3 D2 D1 D0 Default SCM[11:4] SCM[3:0] NA RES "XP" stands for extra precision register. The Common Mode Voltage is calculated using the equation below. Please refer to the SPI Peripheral Interface section for details. (VTIP + VRING) 2 14.12.6. TIP EMITTER VOLTAGE FOR TRANSISTORS QT1 SENSE (READ ONLY) Addr. Name 0x93 VEQT1 D7 D6 D5 D4 D3 D2 D1 D0 Default VEQT1[7:0] (RO) NA This is the emitter sense of the transistor QT1 which is used for the power alarm computation. This register is a READ ONLY register. The range value depends on calibration. The values provided for range is without any calibration. TIP - TRANSISTOR QT1 EMITTER VOLTAGE SENSE Minimum Maximum Increment 0V Range - 95.88 V 0.376 V 14.12.7. TIP VOLTAGE FOR TRANSISTOR QT1 SENSE (READ ONLY) Addr. Name 0x94 VQT1 D7 D6 D5 D4 D3 D2 D1 VQT1[7:0] (RO) D0 Default NA The value in this register is derived from TIP voltage and TIP emitter voltage of the transistor. This is the emitter sense of the transistor QT1 which is used for the power alarm computation. This register is a READ ONLY register. The range value depends on calibration. The values provided for range is without any calibration. TIP - TRANSISTOR QT1 VOLTAGE SENSE Minimum Maximum Increment Range Preliminary Datasheet Rev1.0 0V - 95.88 V Page 126 of 164 0.376 V January 2010 N681386/87 Single Programmable Extended Codec/SLCC 14.12.8. RING EMITTER VOLTAGE FOR TRANSISTOR QT1 SENSE (READ ONLY) Addr. Name 0x95 VEQR1 D7 D6 D5 D4 D3 D2 D1 D0 Default VEQR1[7:0] (RO) NA This is the emitter sense of the transistor QR1 which is used for the power alarm computation. This register is a READ ONLY register. The range value depends on calibration. The values provided for range is without any calibration. RING - TRANSISTOR QR1 EMITTER VOLTAGE SENSE Minimum Maximum Increment 0V Range - 95.88 V 0.376 V 14.12.9. RING VOLTAGE FOR TRANSISTOR QT1 SENSE (READ ONLY) Addr. Name 0x96 VQR1 D7 D6 D5 D4 D3 D2 D1 D0 VQR1[7:0] (RO) Default NA The value in this register is derived from RING voltage and RING emitter voltage of the transistor. This is the emitter sense of the transistor QR1 which is used for the power alarm computation. This register is a READ ONLY register. The range value depends on calibration. The values provided for range is without any calibration. RING - TRANSISTOR QR1 VOLTAGE SENSE Minimum Maximum Increment 0V Range 14.12.10. Addr. Name 0x99 TEMP - 95.88 V 0.376 V TEMPERATURE SENSE (READ ONLY) D7 D6 D5 D4 D3 D2 D1 D0 TS[7:0] (RO) Default NA Die Temperature Sense TS[7:0] is a READ ONLY register. The actual temperature T is given by: T = TS[7:0] - 67 14.12.11. Addr. Name 0x9A VBGAP @ 1C Increment BAND GAP VOLTAGE D7 D6 D5 D4 D3 D2 D1 D0 VBG[7:0] Default 0x00 Bandgap Voltage Trim VBG[7:0] is a trim parameters which can be used during the calibration sequence. Preliminary Datasheet Rev1.0 Page 127 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 14.12.12. Addr. 0x9B PEAK TO PEAK LOOP VOLTAGE (READ ONLY) Name D7 D6 D5 D4 D3 D2 D1 D0 Default LPVP2P[11:4] (RO) VLPP2P 0x00 LPVP2P[3:0] (RO) VLPP2P (XP) RES "XP" stands for extra precision register. This read only register captures the peak-to-peak loop voltage. The peak detector circuit clears this register value when POL:P2PEN[5] address (0X91)is set from 0 to 1 and continuously updates new peak values when P2PEN[5] is HIGH. The final peak value is held in VLPP2P:LPVP2P address (0X91) when P2PEN[5] is cleared to LOW until P2PEN[5] is set again. The peak-to-peak loop voltage is measured as (max positive peak + max negative peak) / 2. PEAK TO PEAK LOOP VOLTAGE Precision Bits Minimum Maximum Increment 0V - 95.88 V 374 mV 8 0V - 95.88 V 23.41mV 12 Range 14.12.13. Addr. PEAK TO PEAK LOOP CURRENT (READ ONLY) Name D7 D6 D5 D4 D3 D2 D1 Default LPIP2P[11:4] (RO) ILPP2P 0x9C ILPP2P (XP) D0 NA LPIP2P[3:0] (RO) RES "XP" stands for extra precision register. This read only register captures the peak-to-peak loop current. The peak detector circuit clears this register value when POL:P2PEN[5] address (0X91)is set from 0 to 1 and continuously updates new peak values when P2PEN[5] is HIGH. The final peak value is held in ILPP2P:LPIP2P address (0X91) when P2PEN[5] is cleared to LOW until P2PEN[5] is set again. The peak-to-peak loop current is measured as (max positive peak + max negative peak) / 2. PEAK TO PEAK LOOP CURRENT Precision Bits Minimum Maximum Increment 0 mA -77.62 mA 303 uA 8 0 mA -77.62 mA 18.95 uA 12 Range Preliminary Datasheet Rev1.0 Page 128 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 14.13. POWER ALARM LPF POLE REGISTERS 14.13.1. POWER ALARM COUNTER Addr. Name 0x9F PALCNT D7 D6 D5 D4 D3 D2 D1 D0 Default PALCNT[7:0] 0x00 The Power Alarm Counter indicates the number of rising edges of the LOWVDC or HIGHIDC flags. The value of this register clips at 255. This counter is reset after every read from this address. a) DCDC output voltage (VBAT) 10% above full scale or b) DCDC supply voltage (VDDC) too low or c) DCDC supply current (IVDDC) too high; 14.13.2. POWER ALARM LOW PASS FILTER POLE FOR TRANSISTORS 1/2/3 Addr. Name D7 D6 D5 D4 D3 0xA0 PALPQ2 Q2C[7:0] 0x00 0xA1 PALPQ1 Q1C[7:0] 0x00 0xA2 PALPQ3 Q3C[7:0] 0x00 0xA3 PALPQHn 0xA4 PALPQH2 Q1C[11:8] LPFEN Q3C12 Q1C12 Q2C12 D2 D1 D0 Default Q2C[11:8] 0x00 Q3C[11:8] 0x00 The Power Alarm register are 13 bit registers. For example Q2 Power Alarm bits are located at address 0xA0, (D0 - D7, Q2C[7:0]) first 8-bits. The next 4-bits are located at address 0xA3 (D0 - D3 bits, Q2C[11:8]) and the last bit out of 13-bits is located at address 0xA4 (D4 - Q2C[12]). The other two transistor bits can be located the same way. LPFEN enables the Low Pass Filter when set to 1. POWER ALARM LOW PASS FILTER POLE FOR TRANSISTORS 1/2/3 Dependent on the thermal time constant of the external transistors QT2 and QR2 PALPQ2 13 1 * 2 Q 2C[12 : 0] = 1 - T 800 * TC Preliminary Datasheet Rev1.0 QT1 and QR1 PALPQ1 1 Q1C[12 : 0] = 1 - 800 * TTC Page 129 of 164 QT3 and QR3 PALPQ3 13 * 2 13 1 * 2 Q3C[12 : 0] = 1 - 800 * TTC January 2010 N681386/87 Single Programmable Extended Codec/SLCC 14.13.3. POWER ALARM THRESHOLD FOR TRANSISTOR 1-3 Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default 0xA5 PATHQ2 Q2TH[7:0] 0x00 0xA6 PATHQ1 Q1TH[7:0] 0x00 0xA7 PATHQ3 Q3TH[7:0] 0x00 TIP, RING, and LOOP CURRENT DESCRIPTION CONDITION Range Minimum Maximum Increment Dependent on the maximum power dissipation rating of the external transistors QT1 and QR1 PATHQ2 0W 7.7 W 30.4 mW QT2 and QR2 PATHQ1 0W 0.97 W 3.8 mW QT3 and QR3 PATHQ3 0W 7.7 W 30.4 mW 14.14. IMPEDANCE MATCHING 1/2 Addr. Name D7 0xA8 0xA9 IM1 IM2 RES D6 D5 D4 D3 D2 D1 ZR1[3:0] RES ZSW RES D0 Default 0x00 0x00 "RES" in the register map means reserved bit(s). Impedance Matching/ R1 Element Bit Location 6 ZR13 ZR12 ZR11 ZR10 R1 (Ohm) 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 x 0 1 0 1 0 1 0 1 0 1 0 1 x 600 900 600 900 270 200 200 100 370 220 320 220 Not Used Bit Description Impedance matching Feedback loop Disable Preliminary Datasheet Rev1.0 Bit Value Bit Name ZSW 0 Default, enabled Page 130 of 164 1 Disables impedance matching feedback loop for diagnostics testing January 2010 N681386/87 Single Programmable Extended Codec/SLCC 14.14.1. TEMPERATURE ALARM THRESHOLD Addr Name 0xAA THAT D7 D6 D5 D4 D3 D2 D1 D0 TATH[7:0] TTH = TATH[7:0] - 67 Default 0x00 @ Increment of 1C 14.14.2. LOOP CLOSURE MASK COUNT Addr Name 0xAB LCMCNT D7 D6 D5 D4 D3 D2 D1 D0 LCMCNT[7:0] Default 0x00 LOOP CLOSURE MASK COUNT Minimum Maximum Increment 0 ms 319 ms 1.25 ms Range 14.14.3. COARSE CALIBRATION INTERNAL RESISTOR Addr Name 0xAC CC D7 D6 D5 D4 D3 D2 CBGSW RES D1 D0 CTRIM[2:0] Default 0x00 "RES" in the register map means reserved bit(s).Coarse Calibration CTRIM[2:0] and Internal Resistor CBGSW are a trim parameters which can be used during the calibration sequence. 14.14.4. OSCILLATOR 2 RINGING PHASE DELAY Addr. Name 0xAD OS2RPD D7 D6 D5 D4 D3 D2 D1 D0 Default O2RPD[7:0] 0x00 When Oscillator 2 is used for Tone Generation it is recommended this register be set to 0x00. If the ringing phase delay in oscillator 2 (0xAD) is used , zero crossing function must be enabled OSN:O2ZC[5] address 0xC0. OSCILLATOR 2 RINGING PHASE DELAY Range Preliminary Datasheet Rev1.0 Minimum Maximum Increment 0 ms 31.8 ms 125 us Page 131 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 14.15. CALIBRATION Addr Name D7 D6 D5 D4 D3 D2 D1 D0 Default 0xAF CAL1 SDAT[3:0] VBATT[3:0] 0X77 0xB0 CAL2 TVTE1[3:0] SDBT[3:0] 0X97 0xB1 CAL3 SCMT[3:0] RVTE[3:0] 0X79 All values are trim parameters which can be used during the calibration sequence. Preliminary Datasheet Rev1.0 Bits Trim VBATT[3:0] VBAT Trim SDAT[3:0] SDA Trim SDBT[3:0] SDB Trim TVTE1[3:0] TVE1 Trim RVTE[3:0] RVE1 Trim SCMT[3:0] SCM Trim Page 132 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 14.16. DC OFFSET REGISTERS 14.16.1. DC OFFSET (RING, TIP, AND VBAT) Addr. Name D7 D6 D5 D4 0xB4 IQTROS HISENSE BTVR ILFDB DACSFC D3 D2 D1 D0 Default 0x00 RES "RES" in the register map means reserved bit(s). All values are trim parameters which can be used during the calibration sequence. Bit Location Bit Description Bit Value Bit Name 4 Smoothing Filter DACSFC 5 Line driver bias 6 DC/DC Range 7 Monitor DC Range 0 1 Cutoff at 1xfc Cutoff 2xfc ILFDB Fixed Bias Bias varies with coarse calibration BTVR Normal Low VBAT Normal line Extended line HISENSE 14.16.2. PWM COUNT (READ ONLY) Addr. 0xB5 Name PWCT D7 D6 D5 D4 D3 PWCT[7:0] (RO) D2 D1 D0 Default NA This register is a READ ONLY. PWM Count Register can calculate DC/DC Converter Pulse Width TON with the following equation. TON = PWCT[7:0] * PLL Period The TON Range is 0 ns to (PWM Period-TOFF) see PWMT and DDCC with a stepsize of PLL period. The PLL Period (expressed in nsec) which is selected based on the setting of PON:CDCC[7] address (0x22) and whether the BCLK is binary or decimal. Preliminary Datasheet Rev1.0 Page 133 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 14.17. TONE GENERATION REGISTERS 14.17.1. OSCILLATOR CONTROL Addr. 0xC0 Name D7 OSN D6 RES D5 D4 O2ZC O1ZC D3 D2 RES D1 D0 Default O2E O1E 0x00 "RES" in the register map means reserved bit(s). Bit Location Bit Description Bit Value Bit Name 0 1 0 Oscillator 1 O1E Disable Enable 1 Oscillator 2 O2E Disable Enable 4 Oscillator n Zero-Crossing O1ZC Disable Enable 5 Oscillator 2 Zero-Crossing O2ZC Disable Enable 14.17.2. RING CONTROL Addr. 0xC1 Name D7 D6 D5 D4 D3 RMPC TRAP LBAC R1EN RES TOR D2 D1 D0 Default 0x00 RES "RES" in the register map means reserved bit(s). Bit Location Bit Description Bit Value Bit Name 0 1 3 Tone Route TOR Transmit direction (towards DAC) Receive direction (towards ADC) 5 Ringer 1 R1EN Disable Enable 6 Ringing Waveform LBAC Sinusoidal RING Waveform Trapezoidal RING Waveform 7 Ringing Waveform Select TRAP Disable Enable 14.17.3. OSCILLATOR 1 AND 2 INITIAL CONDITION LOW/HIGH Addr. 0xC2 0xC3 0xC4 0xC5 Name OS1ICL OS1ICH OS2ICL OS2ICH D7 D6 D5 D4 O1IC[7:0] O1IC[15:8] O2IC[7:0] O2IC[15:8] D3 D2 D1 D0 Default 0x00 0x00 0x00 0x00 Initial Condition for Oscillator m OmIC[15:0] m=1,and 2 can be determined by formula. Refer to Tone Generation see Section for the formula. Preliminary Datasheet Rev1.0 Page 134 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 14.17.4. OSCILLATOR 1 AND 2 COEFFICIENT LOW/HIGH Addr. 0xC6 0xC7 0xC8 0xC9 Name D7 D6 D5 D4 D3 D2 D1 D0 O1C[7:0] O1C[15:8] O2C[9:2] O2C[17:10] OS1CL OS1CH OS2CL OS2CH Default 0x00 0x00 0x00 0x00 Coefficient for Oscillator m (OmC[15:0] m=1, and 2, refer to Tone Generation see section for the formula. OS2CL is 18-bits long word. The 16 most significant bits are on address 0xC8[9:2] and 0xC9[17:10]. The 2 least significant bits are located in register address 0xDC (D7 - D6). 14.18. Addr. 0xCA 0xCB 0xCC 0xCD 0xCE 0xCF 0xD0 0xD1 OSCILLATOR 1 AND 2 ACTIVE/ INACTIVE TIME LOW/HIGH Name D7 D6 D5 D4 D3 D2 D1 D0 O1ON[7:0] O1ON[15:8] O2ON[7:0] O2ON[15:8] O1OFF[7:0] O1OFF[15:8] O2OFF[7:0] O2OFF[15:8] OS1ATL OS1ATH OS2ATL OS2ATH OS1ITL OS1ITH OS2ITL OS2ITH Default 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 OSCILLATOR 1/2 ACTIVE/INACTIVE TIME Active/Inactive Timer Oscillator m Tone Generation Timer is disabled by programming zero O1ON O2ON O1OFF O2OFF Active/Inactive Timer Oscillator 2 Ringing only Timer is disabled by programming zero O2ON O2OFF Preliminary Datasheet Rev1.0 Page 135 of 164 Minimum Maximum Stepsize 0s 8s 125us 0s 8s 125us January 2010 N681386/87 Single Programmable Extended Codec/SLCC 14.19. GENERAL TONE GENERATION 14.19.1. RING OFFSET Addr. 0xDC Name D7 D6 D5 D4 D3 O2C[1:0] ROFFS D2 D1 D0 ROS[5:0] Default 0x00 "RES" in the register map means reserved bit(s). TIP to RING Offset for Ringing, Sets DC Offset component to the Ringing Waveform RING OFFSET [ROS] Range Minimum Maximum Increment 0V 47.488 V 1.484 V 14.19.2. ADC/DAC DIGITAL GAIN Addr. Name 0xDD 0xDE 0xDF ADCL DACL DGH D7 D6 D5 D4 D3 D2 D1 D0 ADC[7:0] DAC[7:0] DAC[11:8] Default 0x00 0x00 0x44 ADC[11:8] DIGITAL GAIN Digital Gain ADC = 1024x10 (XdB/20) DAC = 1024x10 (XdB/20) ADC DAC 0x000 Preliminary Datasheet Rev1.0 ADC DAC Gain dB Off - 0x040 1/8 -24 0x100 0x200 0x400 0x7FF 1/4 1/2 1 2 -12 -6 0 6 Page 136 of 164 Minimum Maximum - dB 6 dB January 2010 N681386/87 Single Programmable Extended Codec/SLCC 14.19.3. PWM DC/DC FINE TUNING Addr. Name 0xE0 ST0L0 ST1L0 ST2L0 ST0L1 ST1L1 ST2L1 0xE1 0xE2 0xE3 0xE4 0xE5 D7 D6 D5 D4 D3 D2 D1 D0 Default RES ST0L0[3:0] 0x02 RES ST1L0[4:0] ST2L0[4:0] ST0L1[3:0] ST1L1[4:0] ST2L1[4:0] 0x04 0x06 0x08 0x10 0x19 RES RES RES RES "RES" in the register map means reserved bit(s). Addr. Name Symbol Description 0xE0 - 0xE5 Stepsize Region State STx x = 0, 1, 2 L0 - Non-RINGING L1 - RINGING Ly Unit Proportional to master clock period Addr. Name Recommendation 0xE0 0xE1 0xE2 0xE3 0xE4 0xE5 ST0L0 ST1L0 ST2L0 ST0L1 ST1L1 ST2L1 0x02 0x02 0x02 0x08 0x08 0x08 14.19.4. PWM DC/DC FINE TUNING SKIP PERIOD Addr. Name 0xE6 0xE7 0xE8 0xE9 0xEA 0xEB SK0L0 SK1L0 SK2L0 SK0L1 SK1L1 SK2L1 D7 D6 D5 D4 D3 D2 D1 D0 0x1F 0x04 0x02 0x1F 0x04 0x02 SK0L0[7:0] SK1L0[5:0] ST2L0[4:0] SK0L1[7:0] SK1L1[5:0] SK2L1[4:0] RES RES RES RES Default "RES" in the register map means reserved bit(s). Addr. 0xE6 0xE7 0xE8 0xE9 0xEA 0xEB Addr. 0xE6 - 0xEB Preliminary Datasheet Rev1.0 Name Skip Region State Name SK0L0 SK1L0 SK2L0 SK0L1 SK1L1 SK2L1 Recommendation 0x06 0x06 0x06 0x06 0x06 0x06 Name SKx Ly Description = 0, 1, 2 Unit # of PWM duty cycle L0 - Non-RINGING L1 - RINGING Page 137 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 14.19.5. PWM DC/DC FINE TUNING Addr. Name 0xEC 0xED 0xEE 0xEF WM0 WM1 WM2 XSTEP D7 D6 D5 D4 D3 D2 D1 D0 WM0[4:0] WM1[4:0] RES RES RES PWMTC Default 0x08 0x10 0x18 0x53 WM2[4:0] XS[3:0] "RES" in the register map means reserved bit(s). "n" is the number written to the register in decimal Name Addr. Symbol 0xEC - 0xEE Watermark 0xEF Fine Adjust Region 0xEF Time constant of VLoop sensing filter for PWM Addr. 0xEC 0xED 0xEE 0xEF Preliminary Datasheet Rev1.0 WMx Description 0, 1, 2 XS Name WM0 WM1 WM2 XSTEP Unit n x 1.484V n x 1.484V PWMTC Recommendation 0x01 0x02 0x02 0x60 Page 138 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 14.19.6. IMPEDANCE MATCH REGISTER 14.19.6.1. IMPEDENCE MATCHING COEFFICIENT RAM Addr. Name 0xF3 IMRAM D7 D6 D5 D4 D3 D2 D1 D0 Default IMDATA 0x00 Read and Write location for the Impedance Matching Coefficient RAM. Used in conjunction with Write Sequence described in IMCTRL 0xF5. 14.19.6.2. Addr. 0xF4 IMPEDANCE MATCHING DELAY COUNT Name IMDEL D7 D6 D5 IMHYBDC[3:0] D4 D3 D2 D1 IMB3PDC[3:0] Bit Impedance Matching Delay Count IMB3PDC[3:0] Delay count of B3Parallel path - Default no delay IMHYBDC[7:4] Delay count of Hybrid2 path - Default no delay D0 Default 0x00 Programmed in conjunction with Impedance Matching Coefficient RAM. 14.19.6.3. Addr. Name 0xF5 IMCTRL IMPEDANCE MATCHING COEFFICIENT RAM CONTROL D7 Bit Location D6 D5 RES D4 D3 D2 D1 D0 Default IMRW RES IMEN RES IMPM 0x10 Bit Description Bit Name Bit Value 0 1 0 Program Impedance Matching Coefficient RAM IMPM Disable Enable 2 Complex Impedance Matching enable IMEN Disable Enable 4 Read/Write Impedance Matching Coefficient RAM IMRW Read Write Bits 3, 5, 6, and 7 must be set to "0". For Complex Impedance Matching Cases the appropriate set (144 Bytes) should be loaded into the following sequence into the Coefficient RAM. Write Step Sequence: 1. Set IMCTRL:IMRW[4] to 1 2. Set IMCTRL:IMPM[0] to 1 3. WRITE all 144 Bytes of Impedance Matching Coefficient set to Register IMRAM (Address 0xF3) in sequence 4. Set IMCTRL:IMPM[0] to 0 Read Step Sequence: 1. Set IMCTRL:IMRW[4] to 0 2. Set IMCTRL:IMPM[0] to 1 3. READ all 144 Bytes of Impedance Matching Coefficient set from Register IMRAM (Address 0xF3) in sequence 4. Set IMCTRL:IMRW[4] to 1 (to Restore Default Value) 5. Set IMCTRL:IMPM[0] to 0 Once the of Impedance Matching coefficients are loaded into the RAM, the Complex Impedance is enabled by setting IMCTRL:IMEN[2] Preliminary Datasheet Rev1.0 Page 139 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 14.19.6.4. Addr. 0xF6 0xF7 Name PCMSCAL PCMSCAH Name D7 D6 D5 D4 D3 PCMSCAL[7:0] PCMSCAL[15:8] D2 Bit PCM Scaling PCMSCA[15:0] Scaling for PCM signal. Format: 3.13 14.19.6.5. Addr. PCM SCALING D1 D0 Default 0x00 0x20 RESERVED REGISTERS D7 D6 D5 D4 D3 D2 D1 D0 Default 0xF8 RES 0x00 0xF9 RES 0x00 0xFA RES 0x00 These three register must be set to 0x00 during a write operation 14.19.6.6. Addr. Name 0xFB IMEN FILTER BYPASS D7 D6 D5 D4 D3 RES D2 D1 D0 Default ADCLPFBYP HBLPFBYP 0x00 Bit PCM Scaling HBLPFBYP[0] Bypass the HB LPF. Default: 0(not bypass) ADCLPFBYP[1] Bypass the ADC LPF. Default: 0(not bypass) Preliminary Datasheet Rev1.0 Page 140 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 15. TIMING DIAGRAM 15.1. PCM TIMING DIAGRAM FOR NON-GCI Figure 37: PCM Timing for Non-GCI SYMBOL 1/TFS TFSL 1/TBCK TBCKH TBCKL TFRH TFRS TFFH TFDTD TBDTD THID TDRS TDRH DESCRIPTION MIN TYP MAX UNIT FS Frequency FS Minimum LOW Width BCLK, BCLK Frequency BCLK HIGH Pulse Width BCLK LOW Pulse Width BCLK Falling Edge to FS Rising Edge Hold Time FS Rising Edge to BCLK Falling edge Setup Time BCLK Falling Edge to FS Falling Edge Hold Time The later of BCLK Rising Edge or FS Rising Edge to valid PCMT Delay Time if MSB Starts from the 1st BCLK of a Frame BCLK Rising Edge to Valid PCMT Delay Time Delay Time from BCLK Falling edge of the LSB or BCLK Rising edge following the LSB (Depending on Register TRI) to PCMT Output High Impedance Valid PCMR to BCLK Falling Edge Setup Time PCMR Hold Time from BCLK Falling Edge --TBCK 256 50 50 20 25 20 8 --- ------------- 8192 ----------- kHz sec kHz ns ns ns ns ns --- --- 20 ns --- --- 20 ns 10 --- 50 ns 25 20 ----- ----- ns ns Table 8.1: PCM Timing Parameters for Non-GCI Preliminary Datasheet Rev1.0 Page 141 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 15.2. PCM TIMING DIAGRAM FOR GCI Figure 38: GCI PCM Timing SYMBOL 1/TFS 1/TBCK TBCKH TBCKL TFRH TFRS TFFH TFDTD TBDTD THID TDRS TDRH DESCRIPTION FS Frequency BCLK Frequency BCLK HIGH Pulse Width BCLK LOW Pulse Width BCLK Falling Edge to FS Rising Edge Hold Time FS Rising Edge to BCLK Falling edge Setup Time BCLK Falling Edge to FS Falling Edge Hold Time The later of BCLK or FS Rising Edge to Valid PCMT Delay Time if MSB Starts from the 1st BCLK of a Frame BCLK Rising Edge to Valid PCMT Delay Time Delay Time from the Second BCLK Falling Edge of the LSB or the BCLK Rising Edge following LSB (Depending on Register TRI setting) to the PCMT Output High Impedance Valid PCMR to BCLK Rising Edge Setup Time PCMR Hold Time from BCLK Rising Edge MIN TYP MAX UNIT --512 50 50 20 50 20 8 ------------- --8192 ----------- kHz kHz ns ns ns ns ns 10 --- 50 ns 10 --- 50 ns 10 --- 50 ns 20 50 ----- ----- ns ns Table 8.2: GCI Timing Parameters Preliminary Datasheet Rev1.0 Page 142 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC SYMBOL 1/TBCK Tjitter TBCKH / TBCK TBCKH TBCKL TFRH TFRS TRISE TFALL DESCRIPTION BLCK Clock Frequency MIN MAX UNIT --- MHz -120 40% 0.256 0.512 0.768 1.000 1.024 1.152 1.536 1.544(2) 2.000 2.048 4.000 4.096 8.000 8.192 --50% 120 60% ns 50 --- --- ns 50 --- --- ns 50 50 ----- --------- ----25 25 ns ns ns ns --- BLCK Period Jitter Tolerance(1) BCLK Duty Cycle for 256 kHz Operation Minimum Pulse Width HIGH for BCLK(512 kHz or Higher) Minimum Pulse Width LOW for BCLK (512 kHz or Higher) BCLK falling Edge to FS Rising Edge Hold Time FS Rising Edge to BCLK Falling edge Setup Time Rise Time for All Digital Signals Fall Time for All Digital Signals TYP Table 8.3: General PCM Timing Parameters 1 At 512 kHz BCLK 2. This clock is not a multiple of 256kHz or 1.000MHz. Therefore, it uses a non-integer divider. Preliminary Datasheet Rev1.0 Page 143 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 15.3. SPI TIMING DIAGRAM \CS T CSHI T CSS T CSH T SCK T RISE T FALL SCLK T SDIH T SCKH T SDIS T SCKL SDI T SDOD SDO T SDOT T SDOA Figure 39: SPI Timing (Non-Daisy Chain Mode) SYMBOL DESCRIPTION MIN TYP MAX UNIT TSCK SCLK Cycle Time 90 --- --- ns TSCKH SCLK High Pulse Width 45 --- --- ns TSCKL SCLK Low Pulse Width 45 --- --- ns TRISE Rise Time for All Digital Signals --- --- 25 ns TFALL Fall Time for All Digital Signals --- --- 25 ns st TCSS CSb Falling Edge to 1 SCLK Falling Edge Setup Time 45 --- --- ns TCSH Last SCLK Rising Edge to CSb Rising Edge Hold Time 45 --- --- ns TCSHI CSb High, Delay Time between Chip Selects 200 --- --- ns TSDIS SDI to SCLK Rising Edge Setup Time 20 --- --- ns TSDIH SCLK Rising Edge to SDI Hold Time 20 --- --- ns TSDOD Delay Time from SCLK Falling Edge to SDO Data --- --- 20 ns TSDOT Delay Time from CSb Rising Edge to SDO Tri-State --- --- 10 ns TSDOA Delay Time from CSb Falling Edge to SDO Active --- --- 10 ns Table 8.4: General SPI Timing Parameters Preliminary Datasheet Rev1.0 Page 144 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC Figure 40: In-band Transmit Frequency Response Figure 41: In-band Receive Frequency Response Preliminary Datasheet Rev1.0 Page 145 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC Figure 42: Transmit Group Delay Distortion Figure 43: Receive Group Delay Distortion Preliminary Datasheet Rev1.0 Page 146 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC Figure 44: 2-Wire to PCM Signal to Distortion Mask (A-Law) Figure 45: 2-Wire to PCM Signal to Distortion Mask (-Law) Preliminary Datasheet Rev1.0 Page 147 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC Figure 46: Wideband In-band Transmit Frequency Response Figure 47: Wideband Transmit Group Delay Distortion Preliminary Datasheet Rev1.0 Page 148 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC Figure 48: Wideband Receive Group Delay Distortion Preliminary Datasheet Rev1.0 Page 149 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 16. DIGITAL I/O 16.1.1. -LAW ENCODE DECODE CHARACTERISTICS Digital Code Normalized Encode Decision Levels 8159 7903 : 4319 4063 : 2143 2015 : 1055 991 : 511 479 : 239 223 : 103 95 : 35 31 : 3 1 0 D7 D6 D5 D4 D3 D2 D1 D0 Sign Chord Chord Chord Step Step Step Step 1 0 0 0 0 0 0 0 Normalized Decode Levels 8031 : 1 0 0 0 1 1 1 1 4191 : 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 2079 : 1023 : 495 : 1 1 0 0 1 1 1 1 231 : 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 99 : 33 : 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 2 0 Notes: Sign bit = 0 for negative values, sign bit = 1 for positive values Preliminary Datasheet Rev1.0 Page 150 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 16.2. A-LAW ENCODE DECODE CHARACTERISTICS Normalized Encode Decision Levels 4096 3968 : 2176 2048 : 1088 1024 : 544 512 : 272 256 : 136 128 : 68 64 : 2 0 Digital Code D7 D6 D5 D4 D3 D2 D1 D0 Sign Chord Chord Chord Step Step Step Step 1 0 1 0 1 0 1 0 Normalized Decode Levels 4032 : 1 0 1 0 0 1 0 1 1 0 1 1 0 1 0 1 2112 : 1056 : 1 0 0 0 0 1 0 1 528 : 1 0 0 1 0 1 0 1 1 1 1 0 0 1 0 1 1 1 1 0 0 1 0 1 264 : 132 : 66 : 1 1 0 1 0 1 0 1 1 Notes: 1. Sign bit = 0 for negative values, sign bit = 1 for positive values 2. Digital code includes inversion of all even number bits 16.3. -LAW / A-LAW CODES FOR ZERO AND FULL SCALE -Law Level A-Law Sign bit (D7) Chord bits (D6,D5,D4) Step bits (D3,D2,D1,D0) Sign bit (D7) Chord bits (D6,D5,D4) Step bits (D3,D2,D1,D0) + Full Scale 1 000 0000 1 010 1010 + Zero 1 111 1111 1 101 0101 - Zero 0 111 1111 0 101 0101 - Full Scale 0 000 0000 0 010 1010 Preliminary Datasheet Rev1.0 Page 151 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 16.3.1. -LAW / A-LAW CODES FOR 0DBM0 OUTPUT (DIGITAL MILLIWATT) -Law Sample A-Law Sign bit (D7) Chord bits (D6,D5,D4) Step bits (D3,D2,D1,D0) Sign bit (D7) Chord bits (D6,D5,D4) Step bits (D3,D2,D1,D0) 1 0 001 1110 0 011 0100 2 0 000 1011 0 010 0001 3 0 000 1011 0 010 0001 4 0 001 1110 0 011 0100 5 1 001 1110 1 011 0100 6 1 000 1011 1 010 0001 7 1 000 1011 1 010 0001 8 1 001 1110 1 011 0100 16.4. 16-BIT LINEAR PCM CODES FOR ZERO AND FULL SCALE Level Sign bit Magnitude Bits + Full Scale 0 111.1111 1111 1111 + One Step 0 000 0000 0000 0001 Zero 0 000 0000 0000 0000 - One Step 1 111 1111 1111 1111 - Full Scale 1 000 0000 0000 0000 16.5. 16-BIT LINEAR PCM CODES FOR 1 KHZ DIGITAL MILLIWATT Preliminary Datasheet Rev1.0 Phase Sign bit Magnitude Bits /8 0 010 0001 1110 0011 3/8 0 101 0001 1101 0000 5/8 0 101 0001 1101 0000 7/8 0 010 0001 1110 0011 9/8 1 101 1110 0001 1100 11 / 8 1 010 1110 0010 1111 13 / 8 1 010 1110 0010 1111 15 / 8 1 101 1110 0001 1100 Page 152 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 17. TYPICAL APPLICATION CIRCUITS 17.1. DC/DC APPLICATION Figure 49: Typical Application Block Diagram Preliminary Datasheet Rev1.0 Page 153 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 17.2. DISCRETE LINE DRIVER Figure 50: Discrete Line-driver Preliminary Datasheet Rev1.0 Page 154 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 17.3. DC DC Figure 51: Inductor based circuit 12V supply Preliminary Datasheet Rev1.0 Page 155 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 17.4. TRIPLE BATTERY SWITCH APPLICATION DCN VBATH VBATL DCP 2 R26 1.2K R25 Q3 CZT5551 1 200K 3 1 2 4 2 2 D6 1N4003 1 DCN Q7 CMPT5401 1 3 D8 1N4003 100V,1a 4 2 3 Q4 CZT5551 1 R27 R29 1.2K 200K 3 2 DCP Q8 CMPT5401 DCN 1 VBAT DCP VBATR Figure 52: Triple Battery based Switch 1 Preliminary Datasheet Rev1.0 Page 156 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 17.5. N681386/87 DCDC APPLICATION USE WITH SLFC N681622 Figure 53: N681386/87 Pro-X Application diagram to be used with N681622 Preliminary Datasheet Rev1.0 Page 157 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 17.6. N681622 LINEFEED CIRCUIT Figure 54: N681622 Linefeed circuit Preliminary Datasheet Rev1.0 Page 158 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 18. PACKAGE SPECIFICATION 18.1. LQFP-48 (10X10X1.4mm FOOTPRINT 2.0mm) Preliminary Datasheet Rev1.0 Page 159 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 18.2. QFN-48 Preliminary Datasheet Rev1.0 Page 160 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 18.3. QFN 20L 4X4 mm2, PITCH:0.50 mm Preliminary Datasheet Rev1.0 Page 161 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 19. ORDERING INFORMATION Nuvoton Part Number Description N681386/87_ _ Package Material: G = Pb-free Package Product Family Package Type: D = LQFP-48 Y = QFN-48 When ordering N681386/87 series devices, please refer to the following part numbers: Part Number Temp Range (oC) Package Package Material N681386DG N681387DG -40 to 85 48-LQFP Pb-Free N681386YG N681387YG -40 to 85 48-QFN Pb-Free N681622_ _ Product Family Package Material: G = Pb-free Package Package Type: Y = QFN-20 When ordering N681622 series devices, please refer to the following part numbers: Preliminary Datasheet Rev1.0 Part Number Temp Range (oC) Package Package Material N681622YG -40 to 85 20-QFN Pb-Free Page 162 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC 20. VERSION HISTORY VERSION V0.85 DATE January 2010 PAGE 1 Package info updated 33 Table 10 updated 37 Table 14 has been deleted from the document 50 Figure 17 updated 52 Equations updated. Table 22 has been deleted from the document 62 External battery switching detail updated 67 General Description for N681622 updated 77 & 96 Register table address 0x24 updated 86 Register 0x10[1] description updated 88 & 77 96 102 -103 V1.0 Register 0x26 info updated Registers 0x36, 0x37, and 0x38 units updated Register 0x41 info updated 134 Register 0xB6 has been deleted from the document 135 Register info updated. Register 0xC0 bit description updated Location of the tables were modified 18 Absolute Maximum Ratings table for N681622 updated 20 IPD and ISB maximum values updated 21 Supply parameter for SLFC updated 31 Tables 8 and 9 updated 35 Example updated 36 Table 15 updated 40 Table 15 updated 49 Register 0x60 and 0x61 updated 56 Impedance matching section updated 59 Diagnostics Support description updated 64 PCM Interface description updated 67 PLL and Prescaler in Wideband table updated 74 SPI 12-bits Read sequence diagram updated 82 Register 0x03 default updated 85 Register 0x06 and 0x07 updated 86 Register 0x10[1] description updated 88 - 92 89 Preliminary Datasheet Rev1.0 Register 0x14 updated 105 18 - 24 January 2010 DESCRIPTION Register 0x0F deleted from the document. Register 0x15 to 0x1F description updated Register 0x15 to 0x1F updated Page 163 of 164 January 2010 N681386/87 Single Programmable Extended Codec/SLCC VERSION DATE PAGE 93 DESCRIPTION Register 0x20 updated 94 Register 0x22 info updated 107 Register 0x43 info updated 111 Register 0x4C info updated 115 Register 0x5E to 0x61 info updated 122 - 128 Register 0x81 to 0x9C updated 129 Register 0x9D and 0x9E deleted from the document 131 Register 0xAD info updated 136 Register 0xDA and 0xDB deleted from the document 139 Register 0xF7 description updated 153 Application Diagrams updated Important Notice Nuvoton products are not designed, intended, authorized or warranted for use as components in systems or equipment intended for surgical implantation, atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, or for other applications intended to support or sustain life. Furthermore, Nuvoton products are not intended for applications wherein failure of Nuvoton products could result or lead to a situation wherein personal injury, death or severe property or environmental damage could occur. Nuvoton customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Nuvoton for any damages resulting from such improper use or sales. Preliminary Datasheet Rev1.0 Page 164 of 164 January 2010