The information contained in this document is being issued in advance of the production cycle for the
product. The parameters for the product may change before final production or NEC Electronics
Corporation, at its own discretion, may withdraw the product prior to its production.
Not all products and/or types are availabe in every country. Please check with an NEC Electronics
sales representative for availability and additional information.
MOS INTEGRATED CIRCUIT
µ
PD161606
720 OUTPUTS TFT-LCD SOURCE DRIVER WITH TIMING GENERATOR
PRELIMINARY PRODUCT INFORMATION
Document No. S16789EJ2V0PM00 (2nd edition)
Date Published March 2004 NS CP(K)
Printed in Japan
2003
The mark shows major revised points.
DESCRIPTION
The
µ
PD161606 is a TFT-LCD source driver that includes display RAM.
This driver has 720 outputs, a display RAM capacity of 115,200 bits (240 pixels x 3 bits x 96 lines + α rendering flag) of
partial display RAM.
FEATURES
TFT-LCD driver with on-chip display RAM
Logic power supply voltage: 1.7 to 2.5 V (Generating inside a chip is also possible from power supply IC interface power
supply)
CPU/RGB interface power supply voltage: 1.7 to 3.3 V
Gate driver power supply voltage: 1.7 to 3.3 V
Driver power supply voltage: 4.0 to 5.5 V
Display RAM: 240 x 3 x 96 bits
Driver outputs: 720 outputs
CPU interface: Three types of interfaces selectable
6-bit/16-bit/18-bit RGB interface
i80/M68 parallel interface (selectable from 8-bit)
8-bit serial interface (SPI correspondence)
Colors: 262,144 colors/pixel
On-chip timing generator
On-chip oscillator
ORDERING INFORMATION
Part Number Package
µ
PD161606P Chip
Remark Purchasing the above chip entails the exchange of documents such as a separate memorandum on
product quality, so please contact one of our sales representatives.
Preliminary Product Information S16789EJ2V0PM
2
µ
PD161606
CONTENTS
1. BLOCK DIAGRAM.....................................................................................................................................4
2. PIN CONFIGURATION (Pad Layout) ......................................................................................................5
3. PIN FUNCTIONS........................................................................................................................................9
3.1 Power Supply System Pins ............................................................................................................................... 9
3.2 Logic System Pins ........................................................................................................................................... 11
3.3 Driver Pins ........................................................................................................................................................ 13
3.4 Pins for Gate Control Interface Power Supply............................................................................................... 13
3.5 E2PROM Control Pins ...................................................................................................................................... 14
3.6 Test or Other Pins ............................................................................................................................................ 14
4. PIN I/O CIRCUITS AND RECOMMENDED CONNECTION OF UNUSED PINS....................................15
5. DESCRIPTION OF FUNCTIONS.............................................................................................................17
5.1 Interface ............................................................................................................................................................ 17
5.1.1 Selection of interface type...................................................................................................................... 17
5.1.2 RGB interface......................................................................................................................................... 18
5.1.3 i80/M68 Parallel interface....................................................................................................................... 23
5.1.4 Serial interface ....................................................................................................................................... 25
5.1.5 Chip select ............................................................................................................................................. 28
5.1.6 Access to display data RAM and internal registers ................................................................................ 28
5.1.7
µ
PD161645 control serial interface ....................................................................................................... 34
5.2 Partial Display RAM ......................................................................................................................................... 35
5.2.1 X address circuit..................................................................................................................................... 35
5.2.2 Y address circuit..................................................................................................................................... 36
5.2.3 Arbitrary address area access (window access mode (WAS))............................................................... 38
5.3 Oscillator........................................................................................................................................................... 40
5.4 Display Timing Generator................................................................................................................................ 41
5.5
γ
- Curve Correction Circuit............................................................................................................................. 45
5.5.1 Amplitude adjustment with internal amplifier .......................................................................................... 46
5.5.2 Amplitude adjustment by bulit-in resistance ........................................................................................... 48
5.5.3 Inclination adjustment ............................................................................................................................ 49
5.5.4 Fine tuning adjustment........................................................................................................................... 50
5.6 Partial Display Function .................................................................................................................................. 51
5.7 Stand-by............................................................................................................................................................ 52
Preliminary Product Information S16789EJ2V0PM 3
µ
PD161606
5.7.1 Stand-by mode 1.................................................................................................................................... 52
5.7.2 Stand-by mode 2.................................................................................................................................... 53
6. POWER SUPPLY INJECTION/INTERCEPTION ....................................................................................57
6.1
µ
PD161606 Power Supply Injection Setting Sequence Example ................................................................ 57
6.2
µ
PD161606 Power Supply Interception Setting Sequence Example .......................................................... 61
7. E2PROM INTERFACE..............................................................................................................................62
7.1 The
µ
PD161606 and E2PROM Connection .................................................................................................... 62
7.2 Each Operation................................................................................................................................................. 63
8. RESET......................................................................................................................................................68
9. COMMAND...............................................................................................................................................71
9.1 Command List .................................................................................................................................................. 71
10. ELECTRICAL SPECIFICATIONS..........................................................................................................80
11. EXAMPLE OF THE
µ
PD161606 AND CPU CONNECTION ................................................................88
Preliminary Product Information S16789EJ2V0PM
4
µ
PD161606
1. BLOCK DIAGRAM
T.B.D.
Remark T.B.D.: To be determined.
Preliminary Product Information S16789EJ2V0PM 5
µ
PD161606
2. PIN CONFIGURATION (Pad Layout)
Chip size: 2.4 x 19.5 mm2
Bump size (output, including long side and short side): 90 x 26
µ
m2
Bump size (input): 106 x 54
µ
m2
Alignment mark (mark center, unit:
µ
m)
X Y
AM1 1025 9575
AM2 1025 9575
Alignment mark size
30µm40µm30µm
30µm
40µm
30µm
Preliminary Product Information S16789EJ2V0PM
6
µ
PD161606
Table 2–1. Pad Coordinate (1/3)
PIN No. PIN NAME X Y PIN No. PIN NAME X Y PIN No. PIN NAME X Y
1 DUMMY -1038.26 9330.00 101 RGB10 -1038.26 -1670.00 201 S27 584.70 -9596.26
2 GSTB -1038.26 9220.00 102 RGB05 -1038.26 -1780.00 202 S28 629.70 -9461.26
3 GCLK -1038.26 9110.00 103 RGB04 -1038.26 -1890.00 203 S29 674.70 -9596.26
4 VCOUT -1038.26 9000.00 104 RGB03 -1038.26 -2000.00 204 S30 719.70 -9461.26
5 EQ -1038.26 8890.00 105 RGB02 -1038.26 -2110.00 205 DUMM
Y
764.70 -9596.26
6 GOE2 -1038.26 8780.00 106 RGB01 -1038.26 -2220.00 206 DUMM
Y
1046.26 -9254.00
7 GOE1 -1038.26 8670.00 107 RGB00 -1038.26 -2330.00 207 S31 911.26 -9226.00
8 GSO -1038.26 8560.00 108 HSYNC -1038.26 -2440.00 208 S32 1046.26 -9198.00
9 GCS -1038.26 8450.00 109 VSYNC -1038.26 -2550.00 209 S33 911.26 -9170.00
10 GSCLK -1038.26 8340.00 110 DOTCLK -1038.26 -2660.00 210 S34 1046.26 -9142.00
11 DCCLK -1038.26 8230.00 111
/
RESET -1038.26 -2770.00 211 S35 911.26 -9114.00
12 GRESET -1038.26 8120.00 112 TIN2 -1038.26 -2880.00 212 S36 1046.26 -9086.00
13 DUMMY -1038.26 8010.00 113 TIN1 -1038.26 -2990.00 213 S37 911.26 -9058.00
14 DUMMY -1038.26 7900.00 114 TIN0 -1038.26 -3100.00 214 S38 1046.26 -9030.00
15 DUMMY -1038.26 7790.00 115 TESTO17 -1038.26 -3210.00 215 S39 911.26 -9002.00
16 VCC3 -1038.26 7680.00 116 TESTO16 -1038.26 -3320.00 216 S40 1046.26 -8974.00
17 VCC3 -1038.26 7570.00 117 TESTO15 -1038.26 -3430.00 217 S41 911.26 -8946.00
18 VCC3 -1038.26 7460.00 118 TESTO14 -1038.26 -3540.00 218 S42 1046.26 -8918.00
19 VCC3 -1038.26 7350.00 119 TESTO13 -1038.26 -3650.00 219 S43 911.26 -8890.00
20 VSS -1038.26 7240.00 120 TESTO12 -1038.26 -3760.00 220 S44 1046.26 -8862.00
21 VSS -1038.26 7130.00 121 TESTO11 -1038.26 -3870.00 221 S45 911.26 -8834.00
22 VSS -1038.26 7020.00 122 TESTO10 -1038.26 -3980.00 222 S46 1046.26 -8806.00
23 VSS -1038.26 6910.00 123 TESTO9 -1038.26 -4090.00 223 S47 911.26 -8778.00
24 VS -1038.26 6800.00 124 TESTO8 -1038.26 -4200.00 224 S48 1046.26 -8750.00
25 VS -1038.26 6690.00 125 TESTO7 -1038.26 -4310.00 225 S49 911.26 -8722.00
26 VS -1038.26 6580.00 126 TESTO6 -1038.26 -4420.00 226 S50 1046.26 -8694.00
27 VS -1038.26 6470.00 127 TESTO5 -1038.26 -4530.00 227 S51 911.26 -8666.00
28 VSS -1038.26 6360.00 128 TESTO4 -1038.26 -4640.00 228 S52 1046.26 -8638.00
29 VSS -1038.26 6250.00 129 TESTO3 -1038.26 -4750.00 229 S53 911.26 -8610.00
30 VSS -1038.26 6140.00 130 TESTO2 -1038.26 -4860.00 230 S54 1046.26 -8582.00
31 VSS -1038.26 6030.00 131 TESTO1 -1038.26 -4970.00 231 S55 911.26 -8554.00
32 VSS -1038.26 5920.00 132 TESTO0 -1038.26 -5080.00 232 S56 1046.26 -8526.00
33 VSS -1038.26 5810.00 133 TOSC1SEL -1038.26 -5190.00 233 S57 911.26 -8498.00
34 VCOM EQ1 -1038.26 5700.00 134 TOSC1IN -1038.26 -5300.00 234 S58 1046.26 -8470.00
35 VCOM EQ2 -1038.26 5590.00 135 DVCC2 -1038.26 -5410.00 235 S59 911.26 -8442.00
36 VCOM EQ3 -1038.26 5480.00 136 DVSS -1038.26 -5520.00 236 S60 1046.26 -8414.00
37 VCOM EQ4 -1038.26 5370.00 137 OSC2SEL -1038.26 -5630.00 237 S61 911.26 -8386.00
38 VSG -1038.26 5260.00 138 OSC2IN -1038.26 -5740.00 238 S62 1046.26 -8358.00
39 VSG -1038.26 5150.00 139 OSC2OUT -1038.26 -5850.00 239 S63 911.26 -8330.00
40 VSG -1038.26 5040.00 140 VSS -1038.26 -5960.00 240 S64 1046.26 -8302.00
41 VSG -1038.26 4930.00 141 VSS -1038.26 -6070.00 241 S65 911.26 -8274.00
42 CVNH1 -1038.26 4820.00 142 VSS -1038.26 -6180.00 242 S66 1046.26 -8246.00
43 CVNH2 -1038.26 4710.00 143 VSS -1038.26 -6290.00 243 S67 911.26 -8218.00
44 CVPH1 -1038.26 4600.00 144 VCC1 -1038.26 -6400.00 244 S68 1046.26 -8190.00
45 CVPH2 -1038.26 4490.00 145 VCC1 -1038.26 -6510.00 245 S69 911.26 -8162.00
46 CVNL1 -1038.26 4380.00 146 VCC1 -1038.26 -6620.00 246 S70 1046.26 -8134.00
47 CVNL2 -1038.26 4270.00 147 VCC1 -1038.26 -6730.00 247 S71 911.26 -8106.00
48 CVPL1 -1038.26 4160.00 148 SF VCC1 -1038.26 -6840.00 248 S72 1046.26 -8078.00
49 CVPL2 -1038.26 4050.00 149 SF VCC2 -1038.26 -6950.00 249 S73 911.26 -8050.00
50 DVSS -1038.26 3940.00 150 SF VCC3 -1038.26 -7060.00 250 S74 1046.26 -8022.00
51 BWS1 -1038.26 3830.00 151 SF VCC4 -1038.26 -7170.00 251 S75 911.26 -7994.00
52 DVCC2 -1038.26 3720.00 152 VSS -1038.26 -7280.00 252 S76 1046.26 -7966.00
53 BWS0 -1038.26 3610.00 153 VSS -1038.26 -7390.00 253 S77 911.26 -7938.00
54 DVSS -1038.26 3500.00 154 VSS -1038.26 -7500.00 254 S78 1046.26 -7910.00
55 PSX -1038.26 3390.00 155 VSS -1038.26 -7610.00 255 S79 911.26 -7882.00
56 DVCC2 -1038.26 3280.00 156 VCC2 -1038.26 -7720.00 256 S80 1046.26 -7854.00
57 SSEL -1038.26 3170.00 157 VCC2 -1038.26 -7830.00 257 S81 911.26 -7826.00
58 DVSS -1038.26 3060.00 158 VCC2 -1038.26 -7940.00 258 S82 1046.26 -7798.00
59 C86 -1038.26 2950.00 159 VCC2 -1038.26 -8050.00 259 S83 911.26 -7770.00
60 DVCC2 -1038.26 2840.00 160 VSTBY -1038.26 -8160.00 260 S84 1046.26 -7742.00
61 CSEG -1038.26 2730.00 161 DVSS -1038.26 -8270.00 261 S85 911.26 -7714.00
62 DVSS -1038.26 2620.00 162 VS -1038.26 -8380.00 262 S86 1046.26 -7686.00
63 SCLEG1 -1038.26 2510.00 163 VS -1038.26 -8490.00 263 S87 911.26 -7658.00
64 DVCC2 -1038.26 2400.00 164 VS -1038.26 -8600.00 264 S88 1046.26 -7630.00
65 SCLEG0 -1038.26 2290.00 165 VS -1038.26 -8710.00 265 S89 911.26 -7602.00
66 DVSS -1038.26 2180.00 166 VSS -1038.26 -8820.00 266 S90 1046.26 -7574.00
67 RSEL -1038.26 2070.00 167 VSS -1038.26 -8930.00 267 S91 911.26 -7546.00
68 DVCC2 -1038.26 1960.00 168 VSS -1038.26 -9040.00 268 S92 1046.26 -7518.00
69 ECS -1038.26 1850.00 169 VSS -1038.26 -9150.00 269 S93 911.26 -7490.00
70 ESK -1038.26 1740.00 170 VSS -1038.26 -9260.00 270 S94 1046.26 -7462.00
71 EDI -1038.26 1630.00 171 VSS -1038.26 -9370.00 271 S95 911.26 -7434.00
72 EDO -1038.26 1520.00 172 DUMMY -1038.26 -9480.00 272 S96 1046.26 -7406.00
73 DVSS -1038.26 1410.00 173 DUMMY -675.30 -9596.26 273 S97 911.26 -7378.00
74 /RD
(
E
)
-1038.26 1300.00 174 DUMMY -630.30 -9461.26 274 S98 1046.26 -7350.00
75 /WR
(
R
,
/W
)
-1038.26 1190.00 175 S1 -585.30 -9596.26 275 S99 911.26 -7322.00
76 D7 -1038.26 1080.00 176 S2 -540.30 -9461.26 276 S100 1046.26 -7294.00
77 D6 -1038.26 970.00 177 S3 -495.30 -9596.26 277 S101 911.26 -7266.00
78 D5 -1038.26 860.00 178 S4 -450.30 -9461.26 278 S102 1046.26 -7238.00
79 D4 -1038.26 750.00 179 S5 -405.30 -9596.26 279 S103 911.26 -7210.00
80 D3 -1038.26 640.00 180 S6 -360.30 -9461.26 280 S104 1046.26 -7182.00
81 D2 -1038.26 530.00 181 S7 -315.30 -9596.26 281 S105 911.26 -7154.00
82 D1 -1038.26 420.00 182 S8 -270.30 -9461.26 282 S106 1046.26 -7126.00
83 D0 -1038.26 310.00 183 S9 -225.30 -9596.26 283 S107 911.26 -7098.00
84 /CS -1038.26 200.00 184 S10 -180.30 -9461.26 284 S108 1046.26 -7070.00
85 RS -1038.26 90.00 185 S11 -135.30 -9596.26 285 S109 911.26 -7042.00
86 SO -1038.26 -20.00 186 S12 -90.30 -9461.26 286 S110 1046.26 -7014.00
87 SI -1038.26 -130.00 187 S13 -45.30 -9596.26 287 S111 911.26 -6986.00
88 SCL -1038.26 -240.00 188 S14 -0.30 -9461.26 288 S112 1046.26 -6958.00
89 DVSS -1038.26 -350.00 189 S15 44.70 -9596.26 289 S113 911.26 -6930.00
90 RGB25 -1038.26 -460.00 190 S16 89.70 -9461.26 290 S114 1046.26 -6902.00
91 RGB24 -1038.26 -570.00 191 S17 134.70 -9596.26 291 S115 911.26 -6874.00
92 RGB23 -1038.26 -680.00 192 S18 179.70 -9461.26 292 S116 1046.26 -6846.00
93 RGB22 -1038.26 -790.00 193 S19 224.70 -9596.26 293 S117 911.26 -6818.00
94 RGB21 -1038.26 -900.00 194 S20 269.70 -9461.26 294 S118 1046.26 -6790.00
95 RGB20 -1038.26 -1010.00 195 S21 314.70 -9596.26 295 S119 911.26 -6762.00
96 RGB15 -1038.26 -1120.00 196 S22 359.70 -9461.26 296 S120 1046.26 -6734.00
97 RGB14 -1038.26 -1230.00 197 S23 404.70 -9596.26 297 S121 911.26 -6706.00
98 RGB13 -1038.26 -1340.00 198 S24 449.70 -9461.26 298 S122 1046.26 -6678.00
99 RGB12 -1038.26 -1450.00 199 S25 494.70 -9596.26 299 S123 911.26 -6650.00
100 RGB11 -1038.26 -1560.00 200 S26 539.70 -9461.26 300 S124 1046.26 -6622.00
Preliminary Product Information S16789EJ2V0PM 7
µ
PD161606
Table 2–1. Pad Coordinate (2/3)
PIN No. PIN NAME X
Y
PIN No. PIN NAME X
Y
PIN No. PIN NAME X
Y
301 S125 911.26 -6594.00 401 S225 911.26 -3794.00 501 S325 911.26 -994.00
302 S126 1046.26 -6566.00 402 S226 1046.26 -3766.00 502 S326 1046.26 -966.00
303 S127 911.26 -6538.00 403 S227 911.26 -3738.00 503 S327 911.26 -938.00
304 S128 1046.26 -6510.00 404 S228 1046.26 -3710.00 504 S328 1046.26 -910.00
305 S129 911.26 -6482.00 405 S229 911.26 -3682.00 505 S329 911.26 -882.00
306 S130 1046.26 -6454.00 406 S230 1046.26 -3654.00 506 S330 1046.26 -854.00
307 S131 911.26 -6426.00 407 S231 911.26 -3626.00 507 S331 911.26 -826.00
308 S132 1046.26 -6398.00 408 S232 1046.26 -3598.00 508 S332 1046.26 -798.00
309 S133 911.26 -6370.00 409 S233 911.26 -3570.00 509 S333 911.26 -770.00
310 S134 1046.26 -6342.00 410 S234 1046.26 -3542.00 510 S334 1046.26 -742.00
311 S135 911.26 -6314.00 411 S235 911.26 -3514.00 511 S335 911.26 -714.00
312 S136 1046.26 -6286.00 412 S236 1046.26 -3486.00 512 S336 1046.26 -686.00
313 S137 911.26 -6258.00 413 S237 911.26 -3458.00 513 S337 911.26 -658.00
314 S138 1046.26 -6230.00 414 S238 1046.26 -3430.00 514 S338 1046.26 -630.00
315 S139 911.26 -6202.00 415 S239 911.26 -3402.00 515 S339 911.26 -602.00
316 S140 1046.26 -6174.00 416 S240 1046.26 -3374.00 516 S340 1046.26 -574.00
317 S141 911.26 -6146.00 417 S241 911.26 -3346.00 517 S341 911.26 -546.00
318 S142 1046.26 -6118.00 418 S242 1046.26 -3318.00 518 S342 1046.26 -518.00
319 S143 911.26 -6090.00 419 S243 911.26 -3290.00 519 S343 911.26 -490.00
320 S144 1046.26 -6062.00 420 S244 1046.26 -3262.00 520 S344 1046.26 -462.00
321 S145 911.26 -6034.00 421 S245 911.26 -3234.00 521 S345 911.26 -434.00
322 S146 1046.26 -6006.00 422 S246 1046.26 -3206.00 522 S346 1046.26 -406.00
323 S147 911.26 -5978.00 423 S247 911.26 -3178.00 523 S347 911.26 -378.00
324 S148 1046.26 -5950.00 424 S248 1046.26 -3150.00 524 S348 1046.26 -350.00
325 S149 911.26 -5922.00 425 S249 911.26 -3122.00 525 S349 911.26 -322.00
326 S150 1046.26 -5894.00 426 S250 1046.26 -3094.00 526 S350 1046.26 -294.00
327 S151 911.26 -5866.00 427 S251 911.26 -3066.00 527 S351 911.26 -266.00
328 S152 1046.26 -5838.00 428 S252 1046.26 -3038.00 528 S352 1046.26 -238.00
329 S153 911.26 -5810.00 429 S253 911.26 -3010.00 529 S353 911.26 -210.00
330 S154 1046.26 -5782.00 430 S254 1046.26 -2982.00 530 S354 1046.26 -182.00
331 S155 911.26 -5754.00 431 S255 911.26 -2954.00 531 S355 911.26 -154.00
332 S156 1046.26 -5726.00 432 S256 1046.26 -2926.00 532 S356 1046.26 -126.00
333 S157 911.26 -5698.00 433 S257 911.26 -2898.00 533 S357 911.26 -98.00
334 S158 1046.26 -5670.00 434 S258 1046.26 -2870.00 534 S358 1046.26 -70.00
335 S159 911.26 -5642.00 435 S259 911.26 -2842.00 535 S359 911.26 -42.00
336 S160 1046.26 -5614.00 436 S260 1046.26 -2814.00 536 S360 1046.26 -14.00
337 S161 911.26 -5586.00 437 S261 911.26 -2786.00 537 S361 911.26 14.00
338 S162 1046.26 -5558.00 438 S262 1046.26 -2758.00 538 S362 1046.26 42.00
339 S163 911.26 -5530.00 439 S263 911.26 -2730.00 539 S363 911.26 70.00
340 S164 1046.26 -5502.00 440 S264 1046.26 -2702.00 540 S364 1046.26 98.00
341 S165 911.26 -5474.00 441 S265 911.26 -2674.00 541 S365 911.26 126.00
342 S166 1046.26 -5446.00 442 S266 1046.26 -2646.00 542 S366 1046.26 154.00
343 S167 911.26 -5418.00 443 S267 911.26 -2618.00 543 S367 911.26 182.00
344 S168 1046.26 -5390.00 444 S268 1046.26 -2590.00 544 S368 1046.26 210.00
345 S169 911.26 -5362.00 445 S269 911.26 -2562.00 545 S369 911.26 238.00
346 S170 1046.26 -5334.00 446 S270 1046.26 -2534.00 546 S370 1046.26 266.00
347 S171 911.26 -5306.00 447 S271 911.26 -2506.00 547 S371 911.26 294.00
348 S172 1046.26 -5278.00 448 S272 1046.26 -2478.00 548 S372 1046.26 322.00
349 S173 911.26 -5250.00 449 S273 911.26 -2450.00 549 S373 911.26 350.00
350 S174 1046.26 -5222.00 450 S274 1046.26 -2422.00 550 S374 1046.26 378.00
351 S175 911.26 -5194.00 451 S275 911.26 -2394.00 551 S375 911.26 406.00
352 S176 1046.26 -5166.00 452 S276 1046.26 -2366.00 552 S376 1046.26 434.00
353 S177 911.26 -5138.00 453 S277 911.26 -2338.00 553 S377 911.26 462.00
354 S178 1046.26 -5110.00 454 S278 1046.26 -2310.00 554 S378 1046.26 490.00
355 S179 911.26 -5082.00 455 S279 911.26 -2282.00 555 S379 911.26 518.00
356 S180 1046.26 -5054.00 456 S280 1046.26 -2254.00 556 S380 1046.26 546.00
357 S181 911.26 -5026.00 457 S281 911.26 -2226.00 557 S381 911.26 574.00
358 S182 1046.26 -4998.00 458 S282 1046.26 -2198.00 558 S382 1046.26 602.00
359 S183 911.26 -4970.00 459 S283 911.26 -2170.00 559 S383 911.26 630.00
360 S184 1046.26 -4942.00 460 S284 1046.26 -2142.00 560 S384 1046.26 658.00
361 S185 911.26 -4914.00 461 S285 911.26 -2114.00 561 S385 911.26 686.00
362 S186 1046.26 -4886.00 462 S286 1046.26 -2086.00 562 S386 1046.26 714.00
363 S187 911.26 -4858.00 463 S287 911.26 -2058.00 563 S387 911.26 742.00
364 S188 1046.26 -4830.00 464 S288 1046.26 -2030.00 564 S388 1046.26 770.00
365 S189 911.26 -4802.00 465 S289 911.26 -2002.00 565 S389 911.26 798.00
366 S190 1046.26 -4774.00 466 S290 1046.26 -1974.00 566 S390 1046.26 826.00
367 S191 911.26 -4746.00 467 S291 911.26 -1946.00 567 S391 911.26 854.00
368 S192 1046.26 -4718.00 468 S292 1046.26 -1918.00 568 S392 1046.26 882.00
369 S193 911.26 -4690.00 469 S293 911.26 -1890.00 569 S393 911.26 910.00
370 S194 1046.26 -4662.00 470 S294 1046.26 -1862.00 570 S394 1046.26 938.00
371 S195 911.26 -4634.00 471 S295 911.26 -1834.00 571 S395 911.26 966.00
372 S196 1046.26 -4606.00 472 S296 1046.26 -1806.00 572 S396 1046.26 994.00
373 S197 911.26 -4578.00 473 S297 911.26 -1778.00 573 S397 911.26 1022.00
374 S198 1046.26 -4550.00 474 S298 1046.26 -1750.00 574 S398 1046.26 1050.00
375 S199 911.26 -4522.00 475 S299 911.26 -1722.00 575 S399 911.26 1078.00
376 S200 1046.26 -4494.00 476 S300 1046.26 -1694.00 576 S400 1046.26 1106.00
377 S201 911.26 -4466.00 477 S301 911.26 -1666.00 577 S401 911.26 1134.00
378 S202 1046.26 -4438.00 478 S302 1046.26 -1638.00 578 S402 1046.26 1162.00
379 S203 911.26 -4410.00 479 S303 911.26 -1610.00 579 S403 911.26 1190.00
380 S204 1046.26 -4382.00 480 S304 1046.26 -1582.00 580 S404 1046.26 1218.00
381 S205 911.26 -4354.00 481 S305 911.26 -1554.00 581 S405 911.26 1246.00
382 S206 1046.26 -4326.00 482 S306 1046.26 -1526.00 582 S406 1046.26 1274.00
383 S207 911.26 -4298.00 483 S307 911.26 -1498.00 583 S407 911.26 1302.00
384 S208 1046.26 -4270.00 484 S308 1046.26 -1470.00 584 S408 1046.26 1330.00
385 S209 911.26 -4242.00 485 S309 911.26 -1442.00 585 S409 911.26 1358.00
386 S210 1046.26 -4214.00 486 S310 1046.26 -1414.00 586 S410 1046.26 1386.00
387 S211 911.26 -4186.00 487 S311 911.26 -1386.00 587 S411 911.26 1414.00
388 S212 1046.26 -4158.00 488 S312 1046.26 -1358.00 588 S412 1046.26 1442.00
389 S213 911.26 -4130.00 489 S313 911.26 -1330.00 589 S413 911.26 1470.00
390 S214 1046.26 -4102.00 490 S314 1046.26 -1302.00 590 S414 1046.26 1498.00
391 S215 911.26 -4074.00 491 S315 911.26 -1274.00 591 S415 911.26 1526.00
392 S216 1046.26 -4046.00 492 S316 1046.26 -1246.00 592 S416 1046.26 1554.00
393 S217 911.26 -4018.00 493 S317 911.26 -1218.00 593 S417 911.26 1582.00
394 S218 1046.26 -3990.00 494 S318 1046.26 -1190.00 594 S418 1046.26 1610.00
395 S219 911.26 -3962.00 495 S319 911.26 -1162.00 595 S419 911.26 1638.00
396 S220 1046.26 -3934.00 496 S320 1046.26 -1134.00 596 S420 1046.26 1666.00
397 S221 911.26 -3906.00 497 S321 911.26 -1106.00 597 S421 911.26 1694.00
398 S222 1046.26 -3878.00 498 S322 1046.26 -1078.00 598 S422 1046.26 1722.00
399 S223 911.26 -3850.00 499 S323 911.26 -1050.00 599 S423 911.26 1750.00
400 S224 1046.26 -3822.00 500 S324 1046.26 -1022.00 600 S424 1046.26 1778.00
Preliminary Product Information S16789EJ2V0PM
8
µ
PD161606
Table 2–1. Pad Coordinate (3/3)
PIN No. PIN NAME X
Y
PIN No. PIN NAME X
Y
PIN No. PIN NAME X
Y
601 S425 911.26 1806.00 701 S525 911.26 4606.00 801 S625 911.26 7406.00
602 S426 1046.26 1834.00 702 S526 1046.26 4634.00 802 S626 1046.26 7434.00
603 S427 911.26 1862.00 703 S527 911.26 4662.00 803 S627 911.26 7462.00
604 S428 1046.26 1890.00 704 S528 1046.26 4690.00 804 S628 1046.26 7490.00
605 S429 911.26 1918.00 705 S529 911.26 4718.00 805 S629 911.26 7518.00
606 S430 1046.26 1946.00 706 S530 1046.26 4746.00 806 S630 1046.26 7546.00
607 S431 911.26 1974.00 707 S531 911.26 4774.00 807 S631 911.26 7574.00
608 S432 1046.26 2002.00 708 S532 1046.26 4802.00 808 S632 1046.26 7602.00
609 S433 911.26 2030.00 709 S533 911.26 4830.00 809 S633 911.26 7630.00
610 S434 1046.26 2058.00 710 S534 1046.26 4858.00 810 S634 1046.26 7658.00
611 S435 911.26 2086.00 711 S535 911.26 4886.00 811 S635 911.26 7686.00
612 S436 1046.26 2114.00 712 S536 1046.26 4914.00 812 S636 1046.26 7714.00
613 S437 911.26 2142.00 713 S537 911.26 4942.00 813 S637 911.26 7742.00
614 S438 1046.26 2170.00 714 S538 1046.26 4970.00 814 S638 1046.26 7770.00
615 S439 911.26 2198.00 715 S539 911.26 4998.00 815 S639 911.26 7798.00
616 S440 1046.26 2226.00 716 S540 1046.26 5026.00 816 S640 1046.26 7826.00
617 S441 911.26 2254.00 717 S541 911.26 5054.00 817 S641 911.26 7854.00
618 S442 1046.26 2282.00 718 S542 1046.26 5082.00 818 S642 1046.26 7882.00
619 S443 911.26 2310.00 719 S543 911.26 5110.00 819 S643 911.26 7910.00
620 S444 1046.26 2338.00 720 S544 1046.26 5138.00 820 S644 1046.26 7938.00
621 S445 911.26 2366.00 721 S545 911.26 5166.00 821 S645 911.26 7966.00
622 S446 1046.26 2394.00 722 S546 1046.26 5194.00 822 S646 1046.26 7994.00
623 S447 911.26 2422.00 723 S547 911.26 5222.00 823 S647 911.26 8022.00
624 S448 1046.26 2450.00 724 S548 1046.26 5250.00 824 S648 1046.26 8050.00
625 S449 911.26 2478.00 725 S549 911.26 5278.00 825 S649 911.26 8078.00
626 S450 1046.26 2506.00 726 S550 1046.26 5306.00 826 S650 1046.26 8106.00
627 S451 911.26 2534.00 727 S551 911.26 5334.00 827 S651 911.26 8134.00
628 S452 1046.26 2562.00 728 S552 1046.26 5362.00 828 S652 1046.26 8162.00
629 S453 911.26 2590.00 729 S553 911.26 5390.00 829 S653 911.26 8190.00
630 S454 1046.26 2618.00 730 S554 1046.26 5418.00 830 S654 1046.26 8218.00
631 S455 911.26 2646.00 731 S555 911.26 5446.00 831 S655 911.26 8246.00
632 S456 1046.26 2674.00 732 S556 1046.26 5474.00 832 S656 1046.26 8274.00
633 S457 911.26 2702.00 733 S557 911.26 5502.00 833 S657 911.26 8302.00
634 S458 1046.26 2730.00 734 S558 1046.26 5530.00 834 S658 1046.26 8330.00
635 S459 911.26 2758.00 735 S559 911.26 5558.00 835 S659 911.26 8358.00
636 S460 1046.26 2786.00 736 S560 1046.26 5586.00 836 S660 1046.26 8386.00
637 S461 911.26 2814.00 737 S561 911.26 5614.00 837 S661 911.26 8414.00
638 S462 1046.26 2842.00 738 S562 1046.26 5642.00 838 S662 1046.26 8442.00
639 S463 911.26 2870.00 739 S563 911.26 5670.00 839 S663 911.26 8470.00
640 S464 1046.26 2898.00 740 S564 1046.26 5698.00 840 S664 1046.26 8498.00
641 S465 911.26 2926.00 741 S565 911.26 5726.00 841 S665 911.26 8526.00
642 S466 1046.26 2954.00 742 S566 1046.26 5754.00 842 S666 1046.26 8554.00
643 S467 911.26 2982.00 743 S567 911.26 5782.00 843 S667 911.26 8582.00
644 S468 1046.26 3010.00 744 S568 1046.26 5810.00 844 S668 1046.26 8610.00
645 S469 911.26 3038.00 745 S569 911.26 5838.00 845 S669 911.26 8638.00
646 S470 1046.26 3066.00 746 S570 1046.26 5866.00 846 S670 1046.26 8666.00
647 S471 911.26 3094.00 747 S571 911.26 5894.00 847 S671 911.26 8694.00
648 S472 1046.26 3122.00 748 S572 1046.26 5922.00 848 S672 1046.26 8722.00
649 S473 911.26 3150.00 749 S573 911.26 5950.00 849 S673 911.26 8750.00
650 S474 1046.26 3178.00 750 S574 1046.26 5978.00 850 S674 1046.26 8778.00
651 S475 911.26 3206.00 751 S575 911.26 6006.00 851 S675 911.26 8806.00
652 S476 1046.26 3234.00 752 S576 1046.26 6034.00 852 S676 1046.26 8834.00
653 S477 911.26 3262.00 753 S577 911.26 6062.00 853 S677 911.26 8862.00
654 S478 1046.26 3290.00 754 S578 1046.26 6090.00 854 S678 1046.26 8890.00
655 S479 911.26 3318.00 755 S579 911.26 6118.00 855 S679 911.26 8918.00
656 S480 1046.26 3346.00 756 S580 1046.26 6146.00 856 S680 1046.26 8946.00
657 S481 911.26 3374.00 757 S581 911.26 6174.00 857 S681 911.26 8974.00
658 S482 1046.26 3402.00 758 S582 1046.26 6202.00 858 S682 1046.26 9002.00
659 S483 911.26 3430.00 759 S583 911.26 6230.00 859 S683 911.26 9030.00
660 S484 1046.26 3458.00 760 S584 1046.26 6258.00 860 S684 1046.26 9058.00
661 S485 911.26 3486.00 761 S585 911.26 6286.00 861 S685 911.26 9086.00
662 S486 1046.26 3514.00 762 S586 1046.26 6314.00 862 S686 1046.26 9114.00
663 S487 911.26 3542.00 763 S587 911.26 6342.00 863 S687 911.26 9142.00
664 S488 1046.26 3570.00 764 S588 1046.26 6370.00 864 S688 1046.26 9170.00
665 S489 911.26 3598.00 765 S589 911.26 6398.00 865 S689 911.26 9198.00
666 S490 1046.26 3626.00 766 S590 1046.26 6426.00 866 S690 1046.26 9226.00
667 S491 911.26 3654.00 767 S591 911.26 6454.00 867 DUMM
Y
911.26 9254.00
668 S492 1046.26 3682.00 768 S592 1046.26 6482.00 868 DUMM
Y
1046.26 9282.00
669 S493 911.26 3710.00 769 S593 911.26 6510.00 869 DUMM
Y
764.70 9596.26
670 S494 1046.26 3738.00 770 S594 1046.26 6538.00 870 S691 719.70 9461.26
671 S495 911.26 3766.00 771 S595 911.26 6566.00 871 S692 674.70 9596.26
672 S496 1046.26 3794.00 772 S596 1046.26 6594.00 872 S693 629.70 9461.26
673 S497 911.26 3822.00 773 S597 911.26 6622.00 873 S694 584.70 9596.26
674 S498 1046.26 3850.00 774 S598 1046.26 6650.00 874 S695 539.70 9461.26
675 S499 911.26 3878.00 775 S599 911.26 6678.00 875 S696 494.70 9596.26
676 S500 1046.26 3906.00 776 S600 1046.26 6706.00 876 S697 449.70 9461.26
677 S501 911.26 3934.00 777 S601 911.26 6734.00 877 S698 404.70 9596.26
678 S502 1046.26 3962.00 778 S602 1046.26 6762.00 878 S699 359.70 9461.26
679 S503 911.26 3990.00 779 S603 911.26 6790.00 879 S700 314.70 9596.26
680 S504 1046.26 4018.00 780 S604 1046.26 6818.00 880 S701 269.70 9461.26
681 S505 911.26 4046.00 781 S605 911.26 6846.00 881 S702 224.70 9596.26
682 S506 1046.26 4074.00 782 S606 1046.26 6874.00 882 S703 179.70 9461.26
683 S507 911.26 4102.00 783 S607 911.26 6902.00 883 S704 134.70 9596.26
684 S508 1046.26 4130.00 784 S608 1046.26 6930.00 884 S705 89.70 9461.26
685 S509 911.26 4158.00 785 S609 911.26 6958.00 885 S706 44.70 9596.26
686 S510 1046.26 4186.00 786 S610 1046.26 6986.00 886 S707 -0.30 9461.26
687 S511 911.26 4214.00 787 S611 911.26 7014.00 887 S708 -45.30 9596.26
688 S512 1046.26 4242.00 788 S612 1046.26 7042.00 888 S709 -90.30 9461.26
689 S513 911.26 4270.00 789 S613 911.26 7070.00 889 S710 -135.30 9596.26
690 S514 1046.26 4298.00 790 S614 1046.26 7098.00 890 S711 -180.30 9461.26
691 S515 911.26 4326.00 791 S615 911.26 7126.00 891 S712 -225.30 9596.26
692 S516 1046.26 4354.00 792 S616 1046.26 7154.00 892 S713 -270.30 9461.26
693 S517 911.26 4382.00 793 S617 911.26 7182.00 893 S714 -315.30 9596.26
694 S518 1046.26 4410.00 794 S618 1046.26 7210.00 894 S715 -360.30 9461.26
695 S519 911.26 4438.00 795 S619 911.26 7238.00 895 S716 -405.30 9596.26
696 S520 1046.26 4466.00 796 S620 1046.26 7266.00 896 S717 -450.30 9461.26
697 S521 911.26 4494.00 797 S621 911.26 7294.00 897 S718 -495.30 9596.26
698 S522 1046.26 4522.00 798 S622 1046.26 7322.00 898 S719 -540.30 9461.26
699 S523 911.26 4550.00 799 S623 911.26 7350.00 899 S720 -585.30 9596.26
700 S524 1046.26 4578.00 800 S624 1046.26 7378.00 900 DUMM
Y
-630.30 9461.26
901 DUMM
Y
-675.30 9596.26
Preliminary Product Information S16789EJ2V0PM 9
µ
PD161606
3. PIN FUNCTIONS
3.1 Power Supply System Pins
Symbol Pin Name Pad No. I/O Function
VCC1 Logic power supply 144 to 147 This is the power supply for the logic circuit.
When VSTBY = H, the power supply voltage input from this pin is
directly used as the power supply voltage of the internal logic circuit.
When VSTBY = L, the voltage output to the SF_VCC1 pin is used as
the logic power supply voltage, so connect this pin to the SF_VCC1
pin. For details, refer to Figure 31.
VCC2 CPU/RGB interface power
supply
156 to 159 This is the power supply pin for the CPU/RGB interface.
VCC3 Gate interface power supply 16 to 19 This is the power supply pin for the gate driver interface.
VS Driver power supply 24 to 27,
162 to 165
This is the power supply pin for the driver circuit.
VSC
γ
- power supply 38 to 41 This is the power supply pin for the
γ
- circuit.
VSS Ground 20 to 23,
28 to 33,
140 to 143,
152 to 155,
166 to 171
This is the ground pin for the logic circuit, logic interface circuit,
source driver circuit, gate control circuit, and power supply control
circuit.
SF_VCC1 Internal logic power supply
generation amplifier output
148 to 151 Output When VSTBY = L, connect a capacitor between this pin and VSS. For
details, refer to Figure 31.
VSTBY Logic power supply generation
control
160 Input Select the existence of voltage supply of power supply for logic
circuits.
VSTBY = L: With no voltage supply necessity for VCC1
VSTBY = H: VCC1 needs to be voltage supplied
DVSS Mode setting 50, 54, 58, 62,
66, 73, 89,
136, 161
Pull-down power supply pin for mode setting.
DVCC2 Mode setting 52, 56, 60, 64,
68, 135
Pull-up power supply pin for mode setting.
Preliminary Product Information S16789EJ2V0PM
10
µ
PD161606
Figure 31. Supplies of Power Supply
CPU/RGB
Interface circuit
CPU/RGB
Interface circuit
On-chip power supply
gate Dr interface circuit
On-chip power supply
gate Dr interface circuit
VCC2
VCC1
SF_VCC1
VSTBY
Regulator OFF
1.7 to 2.5 V
Open
1.7 to 2.35 V
IC internal logic circuit power supply
IC internal logic circuit power supply
VCC3
2.5 to 3.3 V
VCC2
VCC1
SF_VCC1
VSTBY
Regulator ON
[When using IC regulator for logic circuit]
Usage conditions: VCC2 = 2.5 to 3.3 V, VCC3 = 1.7 to 3.3 V
[When not using IC regulator for logic circuit]
Usage conditions: VCC1 = 1.7 to 2.5 V, VCC2 = 1.7 to 3.3 V, VCC3 = 1.7 to 3.3 V, VCC1VCC2
VCC3
2.5 to 3.3 V
Preliminary Product Information S16789EJ2V0PM 11
µ
PD161606
3.2 Logic System Pins (1/2)
Symbol Pin Name Pad No. I/O Function
This pin selects the bus width of the RGB interface.
BWS0,
BWS1
RGB interface bus width
selection
53,
51
Input
PSX CPU interface mode
selection
55 Input This pin selects the mode of the CPU interface.
L: Parallel interface
H: Serial interface
/CS Chip select 84 Input This pin is used for chip select signals. When /CS = active level, the chip is
active and can perform data I/O operations including command and data
I/O.
CSEG Chip select polarity
selection
61 Input This selects active level of chip select (/CS).
CSEG = L: Low level
CSEG = H: High level
/RESET Reset 111 Input When /RESET is L, an internal reset is performed. The reset operation is
executed at the /RESET signal level. Be sure to perform reset via this pin
at power application.
RSEL Reset switch 67 Input Switches the effective range for hard reset for the registers.
/RD
(E)
Read (Enable) 74 Input When i80 series parallel data transfer (/RD) has been selected, the signal
at this pin is used to enable read operations. Data is output to the data bus
only when this pin is low.
When M68 series parallel data transfer (E) has been selected, the signal at
this pin is used to enable read/write operations.
/WR
(R, /W)
Write
(Read/write)
75 Input When i80 series parallel data transfer (/WR) has been selected, the signal
at this pin is used to enable write operations.
When M68 series parallel data transfer (R,/W) has been selected, this pin
is used to determine the direction of data transfer.
L: Write
H: Read
C86 Select interface 59 Input This pin is used to switch between interface modes (i80 series CPU or M68
series CPU).
L: Selects i80 series CPU mode
H: Selects M68 series CPU mode
D0 to D7
Data bus 83 to 76 I/O These pins comprise 8-bit bi-directional data.
When the chip is not selected, D0 to D7 are in high impedance mode.
SI Serial input 87 Input This pin is data input of serial interface.
SO Serial output 86 Output This pin is data output of serial interface.
SCL Serial clock 88 Input This pin is clock input of serial interface.
Remark /xxx indicates active low signal.
Hard reset Command reset
L Don’t perform reset for
registers.
Perform reset for registers.
H Perform reset for registers. Perform reset for registers.
BWS1 BWS0 RGB interface bus width
L L 18 bits
L H 16 bits
H L 6 bits
H H Setting prohibited
Preliminary Product Information S16789EJ2V0PM
12
µ
PD161606
(2/2)
Symbol Pin Name Pad No. I/O Function
SCLEG0 SCL data I/O edge
select
65 Input Selects the serial clock edge for data I/O via the serial interface.
For details, refer to Table 55.
SCLEG1 SCL polarity select 63 Input Selects the active level of the serial clock (SCL) for the serial interface.
SCLEG1 = L: Low level (high-level start)
SCLEG1 = H: High level (low-level start)
SSEL Serial interface mode
select
57 Input Selects the serial interface mode.
SSEL = L: Serial interface 1
SSEL = H: Serial interface 2
RS Data/command select 85 Input This pin is used in serial interface 1.
When parallel data transfer has been selected, this pin is usually
connected to the least significant bit of the standard CPU address bus
and is used to distinguish between data from display data and
commands.
RS = L: Indicates that data from D0 to D7 is commands.
RS = H: Indicates that data from D0 to D7 is display data.
HSYNC Horizontal sync signal 108 Input This is the horizontal sync signal of the RGB interface.
VSYNC Vertical sync signal 109 Input This is the vertical sync signal of the RGB interface.
DOTCLK Dot clock 110 Input This is the dot clock signal of the RGB interface.
RGB00 to RGB05,
RGB10 to RGB15,
RGB20 to RGB25
Data bus 107 to 102,
101 to 96,
95 to 90
Input These pins are RGB interface data signal.
OSC2SEL Oscillation signal select 137 Input This is the oscillation signal selection pin.
L: Selects CR internal oscillator.
H: Selects external resistor connected oscillator.
OSC2IN 138 Input
OSC2OUT
Oscillation signal
139 Output
These are the oscillation signal pins.
OSCEL = H: Connect a resistor between the OSCIN pin and
OSCOUT pin.
For the resistance values to be used as a guide, refer to the electrical
characteristics.
OSCEL = L: Leave OSCIN and OSCOUT open.
Preliminary Product Information S16789EJ2V0PM 13
µ
PD161606
3.3 Driver Pins
Symbol Pin Name Pad No. I/O Function
S1 to S720 Source output 175 to 204,
207 to 866,
870 to 899
Output These pins are source output pins.
CVPH1, CVPH2,
CVPL1, CVPL2,
CVNH1, CVNH2,
CVNL1, CVNL2
Reference power
supply pin for
γ
-
correction power
supply
44, 45,
48, 49,
42, 43,
46, 47
Operational amplifier output pins for
γ
-correction.
Normally a capacitor of 1
µ
F or greater is connected to these pins.
Leave these pins open when not using amplifier for
γ
- correction.
3.4 Pins for Gate Driver Control Internal Power Supply
Symbol Pin Name Pad No. I/O Function
GCLK Gate driver CLK output 3 Output This is the CLK output to the gate driver.
GSTB Gate driver STB output 2 Output Connect this pin to the STVR pin of the gate driver.
GOE1 Gate driver OE1 output 7 Output This is the OE1 output pin to the gate driver.
GOE2 Gate driver OE2 output 6 Output This is the OE2 output pin to the gate driver.
VCOUT Square wave signal output 4 Output Outputs the square wave signal for common modulation of VP-P
voltage 0 V to VCC3.
GCS Chip select for gate driver
interface
9 Output This is chip select for the gate driver serial interface.
GSCLK Serial clock for gate driver
interface
10 Output This is the serial clock for the gate driver serial interface.
GSO Serial data output for gate
driver interface
8 Output This is the serial data output for the gate driver serial interface.
GRESET Reset output for gate driver
interface
12 Output This is the reset output for the gate driver serial interface.
DCCLK Boost clock output 11 Output Outputs the DC/DC converter boost clock.
EQ Equalize control 5 Output Equalize control pin.
VCOM_EQ1 to
VCOM_EQ4
VCOM pin for equalize
control
34 to 37 Input Pin used for equalize control.
Preliminary Product Information S16789EJ2V0PM
14
µ
PD161606
3.5 E2PROM Control Pins
Symbol Pin Name Pad No. I/O Function
ECS Chip select for
E2PROM interface
69 Output This is the chip select for the E2PROM interface.
E2PROM is made active by outputting ECS = H, following which data
transmission is performed.
Connect this pin to CS (chip select pin) of the E2PROM.
ESK Serial clock for
E2PROM interface
70 Output This is the CLK for the E2PROM interface.
Data is output from EDO to the E2PROM at the rising edge of ESK.
Connect this pin to CLK (shift clock pin) of the E2PROM
EDI Serial data input for
E2PROM interface
71 Input This is the data input for the E2PROM interface.
This pin is used for E2PROM data read.
Connect this pin to DOUT (data out pin) of the E2PROM
EDO Serial data output for
E2PROM interface
72 Output This is the data output for the E2PROM.
Data is output to E2PROM.
Connect this pin to DIN (data in pin) of the E2PROM.
3.6 Test or Other Pins
Symbol Pin Name Pad No. I/O Function
TOUT0 to TOUT17 Test output 132 to 115 Output This is output pin when IC is in test mode.
Normally, leave it open.
TIN0 to TIN2 Test input 114 to 112,
Input This is input pin when IC is in test mode.
Normally, leave it open or connected it to VSS.
TOSC1IN Test input 134 Input This is input pin when IC is in test mode.
Normally, leave it open or connected it to VSS.
TOSC1SEL Test input 133 Input This is input pin when IC is in test mode.
Normally, leave it open or connected it to VSS.
DUMMY Dummy 1, 13 to 15,
172 to 174,
205, 206,
867 to 869,
900, 901
Dummy pin
Preliminary Product Information S16789EJ2V0PM 15
µ
PD161606
4. PIN I/O CIRCUITS AND RECOMMENDED CONNECTION OF UNUSED PINS
The I/O circuit types of each pin and recommended connection of unused pins are described below.
(1/2)
Recommended Connection of Unused Pins
Pin Name Input Type I/O Power Supply
Parallel Interface Serial Interface
Note
BWS0, BWS1 Schmitt trigger Input VCC2 Mode setting pin O
PSX Schmitt trigger
Input VCC2 Mode setting pin O
/CS Schmitt trigger
Input VCC2 Connect this pin to VCC2 and VSS when CSEG = L and
CSEG = H, respectively.
CSEG Schmitt trigger
Input VCC2 Mode setting pin O
/RESET Schmitt trigger
Input VCC2 Always reset on power application
RSEL Schmitt trigger
Input VCC2 Mode setting pin O
/RD (E) Schmitt trigger Input VCC2 Connect to VCC2 or VSS
/WR (R,/W) Schmitt trigger Input VCC2 − −
D0 to D7 Schmitt trigger
I/O VCC2 Leave open
C86 Schmitt trigger Input VCC2 Mode setting pin Connect to VCC2 or VSS O
SI, SCL Schmitt trigger Input VCC2 Connect to VCC2 or VSS − −
SO Output VCC2 Leave open
SCLEG0, SCLEG1 Schmitt trigger Input VCC2 Connect to VCC2 or VSS Mode setting pin O
SSEL Schmitt trigger
Input VCC2 Connect to VCC2 or VSS Mode setting pin O
RS Schmitt trigger
Input VCC2 Register setting pin
HSYNC Schmitt trigger
Input VCC2 Connect to VCC2 or VSS
VSYNC Schmitt trigger
Input VCC2 Connect to VCC2 or VSS
DOTCLK Schmitt trigger
Input VCC2 Connect to VCC2 or VSS
RGB00 to RGB05,
RGB10 to RGB15,
RGB20 to RGB25
Schmitt trigger Input VCC2 Leave this pin open.
The unused pins are as follows.
·Unused pins in case of 6-bit interface: RGB10 to RGB15,
RGB20 to RGB25
·Unused pins in case of 16-bit interface: RGB00, RGB20
OSC2IN Input VCC2 Leave open
OSC2OUT Output VCC2 Leave open
OSC2SEL Schmitt trigger
Input VCC2 Connect to VSS
Note O: Connect to VCC2 or VSS, depending on the mode selected.
Preliminary Product Information S16789EJ2V0PM
16
µ
PD161606
(2/2)
Recommended Connection of Unused Pins
Pin Name Input Type I/O Power Supply
Parallel Interface Serial Interface
Note
GCLK Output VCC3 Leave open
GSTB Output VCC3 Leave open
GOE1 Output VCC3 Leave open
GOE2 Output VCC3 Leave open
VCOUT Output VCC3 Leave open
GCS Output VCC3 Leave open
GSCLK Output VCC3 Leave open
GSO Output VCC3 Leave open
GRESET Output VCC3 Leave open
DCCLK Output VCC3 Leave open
EQ Output VCC3 Leave open
VCOM_EQ Input VS Leave open
ECS Output VCC2 Leave open
ESK Output VCC2 Leave open
EDI Schmitt trigger Input VCC2 Leave open
EDO Output VCC2 Leave open
S1 to S720 Output VS Leave open
VSTBY Schmitt trigger Input VCC2 Mode setting pin O
TOUT0 to TOUT17 Output VCC2 Leave open
TIN0 to TIN2 Schmitt trigger Input VCC2 Leave open or Connect to VSS
TOSC1IN Schmitt trigger Input VCC2 Leave open or Connect to VSS
TOSC1SEL Schmitt trigger Input VCC2 Leave open or Connect to VSS
Note O: Connect to VCC2 or VSS, depending on the mode selected.
Preliminary Product Information S16789EJ2V0PM 17
µ
PD161606
5. DESCRIPTION OF FUNCTIONS
5.1 Interface
5.1.1 Selection of interface type
The
µ
PD161606 can transfer data using the RGB interface (18/16/6-bit), i80/M68 parallel interface (8-bit), or serial
interface (8-bit), or serial interface (8-bit). The modes listed in the following table can be selected by setting the PSX, BWS0,
BWS1, and SSEL pins. The i80/M68 parallel interface allows writing and reading to/from both data RAM and registers. The
serial interface allows writing to both display data RAM and registers, and reading of registers. The RGB interface allows
display data input.
Table 51.
PSX SSEL BWS0 BWS1 Mode /CS RS /RD
(E)
/WR
(R,/W) C86
D7
to
D0
SI,
SCLK SI RGB00 to RGB25
L L RGB
18-bit RGB00 to RGB25
H L RGB
16-bit
RGB00 to RGB25
(RGB00, RGB20 is
open)
L X
L H
8-bit
parallel
RGB
6-bit
/CS RS /RD
(E)
/WR
(R,/W) C86
D7
to
D0
X Note1 X Note1
RGB00 to RGB05
(RGB10 to RGB15,
RGB20 to RGB25 is
open)
L L RGB
18-bit RGB00 to RGB25
H L RGB
16-bit
RGB00 to RGB25
(RGB00, RGB20 is
open)
L
L H
8-bit
Serial1
RGB
6-bit
/CS RS
X Note1 R,/W X Note1 Hi-Z
Note2 SI,
SCL SI
RGB00 to RGB05
(RGB10 to RGB15,
RGB20 to RGB25 is
open)
L L RGB
18-bit RGB00 to RGB25
H L RGB
16-bit
RGB00 to RGB25
(RGB00, RGB20 is
open)
H
H
L H
8-bit
Serial2
RGB
6-bit
/CS X Note1 X Note1 X Note1 X Note1 Hi-Z
Note2 SI,
SCL SI
RGB00 to RGB05
(RGB10 to RGB15,
RGB20 to RGB25 is
open)
Other the above Setting prohibited
Notes1. Connect to VCC2 or VSS.
2. Hi-Z: High impedance. Leave open.
Preliminary Product Information S16789EJ2V0PM
18
µ
PD161606
5.1.2 RGB interface
The
µ
PD161606 inputs display data from the DOTCLK, HSYNC, VSYNC, RGB00 to RGB05, RGB10 to RGB15, and RGB20
to RGB25 pins. The horizontal interval back porch is set with R75, and the vertical interval back porch with R76.
6-bit, 16-bit, and 18-bit as the data bus width for the RGB interface.
Selection is performed with the BWS0 and BWS1 pins.
When the 6-bit bus width is selected, the back porch, HSYNC width, etc., must be controlled in units of 3 DOTCLK.
Table 52. Data Bus Width Selection
BWS1 BWS0 Data Bus Width
L L 18-bit
L H 16-bit
H L 6-bit
The operation sequence is as follows (when DCKEG = L, HSEG = L, VSEG = L).
Figure 51 shows the timing chart for when the 16-bit or 18-bit bus width is selected.
Start
VSYNC = 0, HSYNC = 0 1: Vertical back porch count reset, line count reset
VSYNC = 1, HSYNC = 0 1: Vertical back porch count +1
The value of Vertical back porch counter is subtracted from the value (tVBP) set to the back porch of Vertical period.
tVBP Vertical back porch count number = not 0
= 0
HSYNC = 0, DOTCLK = 0 1: Horizontal back porch count reset
HSYNC = 1, DOTCLK = 0 1: Horizontal back porch count+1
The value of horizontal back porch counter is subtracted from the value (tHBP) set to the back porch of horizontal period.
tHBP horizontal back porch count number = not 0
= 0
It is taking in about the first data at the rising edge of the next DOTCLK.
Data is taken in by 240 clocks (data is disregarded after 241 clocks).
The data taken in by HSYNC = 10 is latched to the output stage.
VSYNC = 0
0
Remark As for low active and DOTCLK, VSYNC and HSYNC latch data by the rising edge.
Preliminary Product Information S16789EJ2V0PM 19
µ
PD161606
Figure 51. RGB Interface Timing Chart
(DCKEG = H, HSEG = H, VSEG = L)
VSYNC
HSYNC
RGB
05
to RGB
00
RGB
15
to RGB
10
RGB
25
to RGB
20
RGB
05
to RGB
00
RGB
15
to RGB
10
RGB
25
to RGB
20
RGB
05
to RGB
00
RGB
15
to RGB
10
RGB
25
to RGB
20
Invalid
Invalid
Invalid Invalid
Invalid
Invalid
1st line Last line
1 line period
1st pixel
1st pixel
2nd pixel Last pixel
Last pixel
t
VB
= vertical back porch period
t
HB
= horizontal back porch period
HSYNC
DCK
1 pixel period
t
HH
t
VSS
t
VSH
t
VB
1234
t
HSS
t
HSH
123
Preliminary Product Information S16789EJ2V0PM
20
µ
PD161606
The relationships between the input data and the various source output pins for each bus width are as follows.
Figure 52. Relationship between Input Data and Source Output (16-/18-bit Bus Width)
[16-/18-bit bus width]
<ADC = 0>
Source output S1 S2 S3 S4 S5 S6 S7 S8
Data bus RGB20 to
RGB25 Note2
RGB10 to
RGB15
RGB00 to
RGB05 Note1
RGB20 to
RGB25 Note2
RGB10 to
RGB15
RGB00 to
RGB05 Note1
RGB20 to
RGB25 Note2
RGB10 to
RGB15
Receiving
order
1st pixel 2nd pixel 3rd pixel
S715 S716 S717 S718 S718 S720
RGB20 to
RGB25 Note2
RGB10 to
RGB15
RGB00 to
RGB05 Note1
RGB20 to
RGB25 Note2
RGB10 to
RGB15
RGB00 to
RGB05 Note1
239th pixel 240th pixel
<ADC = 1>
Source output S1 S2 S3 S4 S5 S6 S7 S8
Data bus RGB00 to
RGB05 Note1
RGB10 to
RGB15
RGB20 to
RGB25 Note2
RGB00 to
RGB05 Note1
RGB10 to
RGB15
RGB20 to
RGB25 Note2
RGB00 to
RGB05 Note1
RGB10 to
RGB15
Receiving
order
240th pixel 239th pixel 238th pixel
S715 S716 S717 S718 S718 S720
RGB00 to
RGB05 Note1
RGB10 to
RGB15
RGB20 to
RGB25 Note2
RGB00 to
RGB05 Note1
RGB10 to
RGB15
RGB20 to
RGB25 Note2
2nd pixel 1st pixel
Notes 1. When the 16-bit bus width is selected, RGB01 to RGB05 are used.
When the 16-bit width is selected, data input to RGB00 need not be performed, but amp output is performed for
data input to RGB05, because this is regarded as data input.
2. When the 16-bit bus width is selected, RGB21 to RGB25 are used.
When the 16-bit width is selected, data input to RGB20 need not be performed, but amp output is performed for
data input to RGB25, because this is regarded as data input.
Preliminary Product Information S16789EJ2V0PM 21
µ
PD161606
Figure 53. Relationship between Input Data and Source Output (6-bit bus width)
[6-bit bus width]
<ADC = 0>
Source output S1 S2 S3 S4 S5 S6 S7 S8
Data bus RGB00 to
RGB05
RGB00 to
RGB05
RGB00 to
RGB05
RGB00 to
RGB05
RGB00 to
RGB05
RGB00 to
RGB05
RGB00 to
RGB05
RGB00 to
RGB05
Receiving
order
1st pixel 2nd pixel 3rd pixel
S715 S716 S717 S718 S718 S720
RGB00 to
RGB05
RGB00 to
RGB05
RGB00 to
RGB05
RGB00 to
RGB05
RGB00 to
RGB05
RGB00 to
RGB05
239th pixel 240th pixel
<ADC = 1>
Source output S1 S2 S3 S4 S5 S6 S7 S8
Data bus RGB00 to
RGB05
RGB00 to
RGB05
RGB00 to
RGB05
RGB00 to
RGB05
RGB00 to
RGB05
RGB00 to
RGB05
RGB00 to
RGB05
RGB00 to
RGB05
Receiving
order
240th pixel 239th pixel 238th pixel
S715 S716 S717 S718 S718 S720
RGB00 to
RGB05
RGB00 to
RGB05
RGB00 to
RGB05
RGB00 to
RGB05
RGB00 to
RGB05
RGB00 to
RGB05
2nd pixel 1st pixel
The
µ
PD161606 contains on-chip partial RAM (3-bit/1-pixel). In addition to the data input form the RGB interface, the
partial RAM area specified by registers R15 to R22 can also be displayed, by setting the R0 register, OSD = 1.
Preliminary Product Information S16789EJ2V0PM
22
µ
PD161606
[Example when using RGB Interface]
10 / 23 [TUE]
10:35
10 / 23 [TUE]
10:35
Partial display data RAM
R15: Partial RAM display area 1
start Y address
R16: Partial RAM display area 1
line count
R19: Partial RAM display area 2
start Y address
R20: Partial RAM display area 2
line count
RGB interface input data
Actually display screen
i80/M68 interface
or
It rewrites by serial interface
Display data RAM area
RGB interface
through display mode
access area
RGB interface
start line
(Setting by R60 register)
RGB interface
end line
(Setting by R61 register)
<Cautions regarding use of RGB interface>
<1> Be sure to input data for each frame as the data input from the RGB interface.
<2> When switching to the partial mode, input at least 1 frame’s worth of data after issuing the mode switching command.
<3> When switching to the stand-by mode, input 1 frame’s worth of data in the case of stand-by mode1, and input 4
frame’s worth of data in the case of stand-by mode 2.
Mode transition flows
(1) Normal display mode
To partial display mode
(display clock: internal
oscillation)
(2) Partial display mode
Normal display mode
(display clock: DOTCLK)
(3) Normal display mode
To stand-by mode
(4) Stand-by mode
To normal display mode
(stand-by release)
DTY = 1 Data input start STBY = 1 Data input start
Wait time 1
(partial display mode transition)
DTY = 0 Wait time 1 (STBSEL = 0)
Wait time 2 (STBSEL = 1)
(stand-by mode transition)
STBY = 0
Data input stop
“Normal display mode”
“Normal display mode” Data input stop
“Stand-by mode”
“Normal display mode”
Wait time 1: Please secure sufficient time equal to 1 frame or more.
Wait time 2: Please secure sufficient time equal to 4 frames or more.
Preliminary Product Information S16789EJ2V0PM 23
µ
PD161606
5.1.3 i80/M68 parallel interface
When the parallel interface has been selected, setting the C86 pin as either H or L enables a direct connection to an i80
series or M68 series CPU (Refer to following table).
Table 53.
C86 Mode /RD (E) /WR (R, /W) D7 to D0
H M68 series CPU E R, /W D7 to D0
L i80 series CPU /RD /WR D7 to D0
The data bus signal is identified according to the combination of the RS, /RD (E), and /WR (R, /W) signals.
Table 54.
Common M68 series CPU i80 series CPU
RS R, /W /RD /WR
Function
H H L H Read display data
H L H L Write display data
L H L H Read command
L L H L Write command
Preliminary Product Information S16789EJ2V0PM
24
µ
PD161606
(1) i80 series parallel interface
When i80 series parallel data transfer has been selected, data is written to the
µ
PD161606 at L period of the /WR signal.
The data is output to the data bus when the /RD signal is L.
Figure 54. i80 Series Interface Data Bus Status
/CS
(CSEG = L)
/WR
/RD
Dn
Data write Data read
Valid data
(2) M68 series parallel interface
When M68 series parallel data transfer has been selected, data is written at the H period of the E signal when the R,/W
signal is L. In a data read operation, data is output at the rising edge of the E signal in a period when the R,/W signal is H.
The data bus is released (Hi-Z) at the falling edge of the E signal.
Figure 55. M68 Series Interface Data Bus Status
/CS
(CSEG = L)
R,/W
E
Dn
Data write Data read
Valid data
Preliminary Product Information S16789EJ2V0PM 25
µ
PD161606
5.1.4 Serial interface
The serial interface can be selected from serial interface mode 1 and serial interface mode 2 through serial mode
selection (SSEL). These mode are described in sections 5.1.4 (1) and 5.1.4 (2).
This serial interface supports SPI. The settings are described in section 5.1.4 (3).
(1) Serial interface mode 1
In serial interface mode 1, the data to be input can be specified either as “register number/register data” or “display data
(RAM data)” through input to the RS pin. The concrete details are as follows.
For the register number and register data input sequences, refer to Figure 59.
RS Pin Input Level Data Input from Serial Interface
Low-level Register number/register data
High-level Display data
(2) Serial interface mode 2
In serial interface mode 2, the 1st byte transfer sets the serial interface operation specification registers (A7 to A0) by the
1st byte transfer, and specifies whether the transfer data of 2nd byte is “register number”, “register data”, or “display data
(RAM data)”. During the 2nd byte transfer, the data specified with the 1st byte is transferred.
The serial interface operation specification registers are as follows.
Table55. Serial Interface Operation Specification Registers
Number Bit name Function
A7 − −
A6 Register/RAM data select This bit sets whether the D7 to D0 data is data for the
µ
PD161606’s registers or for
its RAM.
0: D7 to D0 are data for the
µ
PD161606’s registers.
1: D7 to D0 are data for the
µ
PD161606’s RAM.
A5 Read/write select This bit selects whether the D7 to D0 data transfer is a read operation or a write
operation. However, a read operation is possible only for the
µ
PD161606’s
registers.
For the read operation timing chart, refer to
0: D7 to D0 = Write operation
1: D7 to D0 = Read operation
A4 − −
A3 − −
A2 − −
A1 − −
A0 Command/data select This bit selects whether the D7 to D0 data is the data specifying the register
number of the command register, or the setting data for the command register.
0: D7 to D0 = register number
1: D7 to D0 = register setting value
Preliminary Product Information S16789EJ2V0PM
26
µ
PD161606
Therefore, as shown in the following timing chart, in serial interface mode 2, after the chip select signal becomes active,
access to the serial interface operation specification register is always performed.
Figure 56. Serial Interface Mode 2 Timing Chart
.
.
.
.
.
.
A6A7
Serial interface operation specification transfer
Register setting or RAM setting selection
Read or write selection
Register number value or register data value
Command & data transfer
Register numbaer value transfer
Register data value transfer
Display data (RAM data) transfer
A5 A4 A3 A2 A1 A0
/CS
SI
SCL
D7 D6 D5 D4 D3 D2 D1 D0
Therefore, to perform write to a register, for example, 2-byte transfer is performed until a series of settings have been
completed. Also note that during 4-byte transfer performing access to a register, and during 2-byte transfer performing
display data (RAM) write, chip select must be kept active.
Figure 57. When Performing Register Setting in Serial Interface Mode 2
A7 A6 A5
Serial interface operation specification transfer
Specification of transfer of the register number value
at the next transfer
Command & data transfer
Register number value transger
Serial interface operation specification transfer
Specification of transfer of the register data value
at the next transfer
Command & data transfer
Register data value transger
A4 A3 A2 A1 A0
/CS
SI
SCL
1st byte 2nd byte
3rd byte 4th byte
D7 D6 D5 D4 D3 D2 D1 D0
A7 A6 A5 A4 A3 A2 A1 A0
/CS
SI
SCL
D7 D6 D5 D4 D3 D2 D1 D0
..
..
Preliminary Product Information S16789EJ2V0PM 27
µ
PD161606
(3) SPI
When the serial interface is selected, serial data input (SI) and serial clock input (SCL) can be accepted if the chip is in
active status, but the relationship between the I/O data and the valid edges of the serial clock at this time, and the active
level of the serial clock can be set with the SCLEG0 and SCLEG1 pins.
Table 56. Relationship between Serial Clock and Data
Pin name
SCLEG1 SCLEG0
Active level of serial clock Serial data load timing Serial data output timing
L L Low-level Rising edge of serial clock Falling edge of serial clock
L H Low-level Falling edge of serial clock Rising edge of serial clock
H L High-level Falling edge of serial clock Rising edge of serial clock
H H High-level Rising edge of serial clock Falling edge of serial clock
An operation example when the active level of the serial clock is set to low level, data is output at the falling edge of the
serial clock, and data is input at the rising edge of the serial clock, is described below.
Serial data is read in the sequence of D7 first, then D6 to D0, in synchronization with the rising edge of the serial clock
from the serial input pin. This data is converted into parallel data and processed in synchronization with the rising edge of
the 8th serial clock.
Whether the serial input data is display data or a register setting is judged from the RS input in the case of serial interface
mode 1. If RS = H, the data is display data, and if RS = L, it is register number/register data. In the case of serial
interface mode 2, this is judged from the data of the A6 operation specification bit. If A6 = H, the data is display data, and
if A6 = L, it is register number/register data. Next, the serial interface signal chart is shown.
Figure 58. Serial Interface Signal Chart
"" in the above figure indications the data read timing.
D7 D6 D5 D4 D3 D2 D1 D0
D7 D6 D5 D4 D3 D2 D1 D0
D7 D6
D7 D6 D5
D5 D4 D3 D1D2 D0
D4 D3 D2 D1 D0
RS
/CS
SI (SCLEG0 = L)
SI (SCLEG0 = H)
RS
SCL (SCLEG1 = H)
SCL (SCLEG1 = L)
RS
Remarks 1. If the chip is not active, the shift register and counter are reset to their initial settings.
2. Display data RAM read is not possible.
3. When using SCL wiring, take care concerning the possible effects of terminating reflection and noise from
external sources. Our recommends checking operation with the actual device.
Preliminary Product Information S16789EJ2V0PM
28
µ
PD161606
5.1.5 Chip select
The
µ
PD161606 has a chip select pin (/CS). The CPU parallel interface and serial interface can be used only when /CS
= L. When the chip select pin is inactive, D0 to D17 are set to high impedance (invalid) and input of RS, /RD, or /WR is not
active.
Therefore, keep the chip select pin active for 1 cycle period of data transfer (until a read/write operation has been
completed once in the parallel interface mode).
It is not necessary to keep the chip select signal active when successively transferring data. It may be non-active
between data transfer operations.
However, note that it is necessary to continue making chip selection active during "a register specification + register
value setup" and transmission of "higher rank 8-bit+ low rank 8-bit of RAM" of 16-bit in the case of a serial interface.
5.1.6 Access to display data RAM and internal registers
Figures 59 to 513 show write accesses to the display data RAM and read/write accesses to internal registers 8-bit
parallel interface modes and serial interface mode.
When the CPU accessed the
µ
PD161606, the CPU only has to satisfy the standard requirement of the cycle time (tCYC)
and can transfer data at high speeds. Usually, it is not necessary for the CPU to take WAIT time into consideration.
Preliminary Product Information S16789EJ2V0PM 29
µ
PD161606
Figure 59. Read/Write in 8-Bit Parallel Interface Mode
<8-bit Parallel Interface>
<1> Write to Display data RAM
Display data RAM
Display data
RAM
Display data
RAM
Display data
RAM
Display data RAM Display data RAM
<3> Write to Register
Command Data
Command Data
<4> Read of Register
<2> Read of Display data RAM
/CS
D7 to D5: Invalid data, D4: D4-bit of RAM, D3: D3-bit of RAM, D2: D2-bit of RAM, D1: D1-bit of RAM, D0: D0-bit of RAM
D7 to D5: Invalid data, D4: D4-bit of RAM, D3: D3-bit of RAM, D2: D2-bit of RAM, D1: D1-bit of RAM, D0: D0-bit of RAM
RS
/WR
/CS
RS
/RD
/CS
RS
/WR
/RD
D7: IX7 to D0: IX0 D7: D7 of Register to D0: D0 of Register
D7: IX7 to D0: IX0 D7: D7 of Register to D0: D0 of Register
/CS
RS
/WR
/RD
D7-D0
D7-D0
D7-D0
D7-D0
Cautions 1. While setting the writing to a register, set it the fixed input of the low level to RS pin.
The register write interval is the “register number specification” + “register value setting” interval.
2. While setting the writing to display data RAM, set it the fixed input of the high level to RS pin.
The display data RAM write interval is the “1-pixel data transfer interval”
Preliminary Product Information S16789EJ2V0PM
30
µ
PD161606
Figure 510. Read/Write in 8-bit Serial Interface
(Serial Interface Mode1)
/CS
<8-bit Serial interface mode1>
<1> Write to display data RAM
(SCLEG0 = L, SCLEG1 = L)
Display RAM data Display RAM data
Display RAM data Display RAM data
Display RAM data Display RAM data
Display RAM data Display RAM data
(SCLEG0 = L, SCLEG1 = H)
(SCLEG0 = H, SCLEG1 = L)
(SCLEG0 = H, SCLEG1 = H)
RS
R,/W
SCL
12345678 12345678
SI
/CS
RS
R,/W
SCL
12345678 12345678
SI
/CS
RS
R,/W
SCL
12345678 12345678
SI
/CS
RS
R,/W
SCL
12345678 12345678
SI D3 D2 D1 D0D7 D6 D5 D4D3 D2 D1 D0D7 D6 D5 D4
D3 D2 D1 D0D7 D6 D5 D4D3 D2 D1 D0D7 D6 D5 D4
D3 D2 D1 D0D7 D6 D5 D4D3 D2 D1 D0D7 D6 D5 D4
D3 D2 D1 D0D7 D6 D5 D4D3 D2 D1 D0D7 D6 D5 D4
Preliminary Product Information S16789EJ2V0PM 31
µ
PD161606
Figure 511. Read/Write in 8-bit Serial Interface
(Serial Interface Mode1)
/CS
RS
R,/W
SCL
12345678 910111213141516
SI
/CS
RS
R,/W
SCL
12345678 910111213141516
SI
/CS
RS
R,/W
SCL
12345678 910111213141516
SI
/CS
RS
R,/W
SCL
12345678 910111213141516
SI D3 D2 D1 D0D7 D6 D5 D4IX3 IX2 IX1 IX0IX7 IX6 IX5 IX4
D3 D2 D1 D0D7 D6 D5 D4IX3 IX2 IX1 IX0IX7 IX6 IX5 IX4
D3 D2 D1 D0D7 D6 D5 D4IX3 IX2 IX1 IX0IX7 IX6 IX5 IX4
D3 D2 D1 D0D7 D6 D5 D4IX3 IX2 IX1 IX0IX7 IX6 IX5 IX4
<2> Write to Register
(SCLEG0 = L, SCLEG1 = L)
(SCLEG0 = H, SCLEG1 = L)
Command Data
Command Data
Command Data
Command Data
(SCLEG0 = L, SCLEG1 = H)
(SCLEG0 = H, SCLEG1 = H)
Preliminary Product Information S16789EJ2V0PM
32
µ
PD161606
Figure 512. Read/Write in 8-bit Serial Interface
(Serial Interface Mode1)
/CS
RS
R,/W
SCL
12345678 910111213141516
SI
/CS
RS
R,/W
SCL
12345678 910111213141516
SI
/CS
RS
R,/W
SCL
12345678 910111213141516
SI
/CS
RS
R,/W
SCL
12345678 910111213141516
SI
D2 D1D4 D3
SO
X D7 D6 D5
D2 D1D4 D3D6 D5
SO
XD7
SO
XD7 D6 D5 D4 D3 D2 D1
D2 D1
D0
D0
D0
D0
SO
D7X
IX3 IX2 IX1 IX0IX7 IX6 IX5 IX4
IX3 IX2 IX1 IX0IX7 IX6 IX5 IX4
IX3 IX2 IX1 IX0IX7 IX6 IX5 IX4
D6 D5 D4 D3
IX3 IX2 IX1 IX0IX
7
IX6 IX5 IX4
<3> Read of Register
(SCLEG0 = L, SCLEG1 = L)
(SCLEG0 = H, SCLEG1 = L)
Command
Data
Command
Data
Command
Data
Command
Data
(SCLEG0 = L, SCLEG1 = H)
(SCLEG0 = H, SCLEG1 = H)
Cautions 1. During 16-bit transfer of the “register number specification + register value setting”, chip select must
be maintained active.
2. When performing register write, keep the output to the RS pin low level during the “register number
specification + register value setting” interval.
3. When performing display data RAM write, keep the output to the RS pin high level during the 1-pixel
data transfer interval.
Preliminary Product Information S16789EJ2V0PM 33
µ
PD161606
Figure 513. Read/Write in 8-bit Serial Interface
(Serial Interface Mode2)
/CS
SCL
12345678 910111213141516
SI
/CS
SCL
12345678 910111213141516
SI
/CS
SCL
12345678 910111213141516
SI
/CS
SCL
12345678 910111213141516
SI
/CS
SCL
12345678 910111213141516
SI
/CS
SCL
12345678 910111213141516
SI
/CS
SCL
12345678 910111213141516
SI
/CS
SCL
12345678 910111213141516
SI
A7 A6
Serial interface operatoin specification transfer Command & data transfer
Serial interface operatoin specification transfer Command & data transfer
Serial interface operatoin specification transfer Command & data transfer
Serial interface operatoin specification transfer
Serial interface operatoin specification transfer
Serial interface operatoin specification transfer
Serial interface operatoin specification transfer
Serial interface operatoin specification transfer
Command & data transfer
A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0
A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0
A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0
A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0
A7 A6 A5 A4 A3 A2 A1 A0
D4 D3
A7 A6 A5 A4 A3 A2 A1 A0
A7 A6 A5 A4 A3 A2 A1 A0
A7 A6 A5 A4 A3 A2 A1 A0
SO D7XD6D5
D2 D1
D0
D0
D0
D0
D2 D1
D4 D3D6 D5SO X D7
SO X D7 D6 D5 D4 D3 D2 D1
SO X D7 D6 D5 D4 D3 D2 D1
<2> Read of Register
(SCLEG0 = L, SCLEG1 = L)
(SCLEG0 = H, SCLEG1 = L)
Data
Data
Data
Data
(SCLEG0 = L, SCLEG1 = H)
(SCLEG0 = H, SCLEG1 = H)
<1> Write to Register
(SCLEG0 = L, SCLEG1 = L)
<8-bit Serial interface mode2>
(SCLEG0 = H, SCLEG1 = L)
(SCLEG0 = L, SCLEG1 = H)
(SCLEG0 = H, SCLEG1 = H)
Caution During 16-bit transfer of the “serial interface operation specification transfer + command & data
transfer”, chip select must be maintained active.
Preliminary Product Information S16789EJ2V0PM
34
µ
PD161606
5.1.7
µ
PD161645 control serial interface
This is the 16-bit serial interface for performing control for the
µ
PD161645. The transfer operation is as follows.
<Transfer operation>
This interface performs batch transfer of 16-bit data. The data format for the
µ
PD161645 consists of the command in
the first byte of transfer data, and the data to be set in the second byte. Transfer is performed MSB first.
The transfer start trigger is data write to the control registers for the
µ
PD161645. When data is written to control
registers, GCS, GS0, and GSCLK output automatically starts. Following input of the reset command, the
µ
PD161645
checks the data of the odd bytes to be transferred against the command, and checks the data of the even bytes against
the data for the command.
Perform write to the shift register following the completion of transfer. Thus secure an interval of at least 250
µ
s between
write operations to registers for the
µ
PD161645. Transfer data when performing data write during transfer cannot be
guranteed.
Figure 514.
µ
PD161645 Control Serial Interface Timing Chart
/CS
GSO
GSCLK
12
Command (first 8-bit data) Data set as a command
(2nd byte data)
345678910111213141516
IX7 IX6 IX5 IX4 IX3 IX2 IX1 IX0 D7 D6 D5 D4 D3 D2 D1 D0
Preliminary Product Information S16789EJ2V0PM 35
µ
PD161606
5.2 Partial Display RAM
The RAM holding the dots for display has a configuration of 115,200bits (240 X 5 bits) X 96 bits. Any pixel can be
accessed by specifying the X address and Y address.
Figure 515 shows the configuration of the display data RAM.
The partial display RAM has a 5-bit configuration, and bits D0 to D2 are the display data bits. Bits D3 and D4 are used
for the OSD function, and are enabled when this function is selected. Figure 516 shows the operation when the OSD
function is enabled.
Figure 515. Display RAM/Bit Configuration
RAM bit D4 D3 D2 D1 D0
Display data Function α1 α2
R data G data B data
Pixel 1 pixel
Pixel 1 Pixel 2 Pixel 3 Pixel 4 Pixel 5 Pixel 6 Pixel 7 Pixel 8
Pixel 1 Pixel 2 Pixel 3 Pixel 4 Pixel 5 Pixel 6 Pixel 7 Pixel 8
LCD panel
Figure 516. Transmittance when α Blending Function is Selected
OSD function α1 α2 Display RAM data transmittance
Invalid x x Transmittance 0% (base image 100%)
Valid 0 0 Transmittance 0% (base image 100%)
Valid 0 1 Transmittance 50% (base image 50%)
Valid 1 0 Transmittance 75% (base image 25%)
Valid 1 1 Transmittance 100% (base image 0%)
Remark x: Don’t care
5.2.1 X address circuit
An X address of the display data RAM is specified by using the X address register (R6) as shown in Figure 518.
The specified X address is incremented by one each time display data is written or read.
In the X address increment mode, the X address is incremented up to EFH. If more display data is written or read, the Y
address is incremented, and the X address returns to 00H.
The relationship between the X address and source output can be inverted by the ADX flag of control register 1 as shown
in Figure 518. After switched ADX, the input data can be rotated 90 degrees and displayed by changing the ADR function
and address increment direction between X and Y.
Preliminary Product Information S16789EJ2V0PM
36
µ
PD161606
5.2.2 Y address circuit
The Y address of the display data RAM is specified by using the Y address register (R7) as shown in Figure 518.
The Y address is incremented each by one when one each time display is written or read and X address is incremented
to last address.
When the Y address has been incremented up to 5FH and the X address up to the final address, if further display data is
read or written, the X and Y addresses return to 00H.
As shown in Figure 518, the relationship between the Y address and gate output can be inverted by the ADR flag of the
control register. The data written to the display can be rotated 90 degrees and output by changing the ADX function and
address increment direction between X and Y.
Table 57. Data Access Control (R5) Settings
INC Setting
0 During data access, addresses are continuously incremented in the X direction.
1 During data access, addresses are continuously incremented in the Y direction.
Figure 517. Example of 90-degree Rotation
ADX = 0, ADR = 1
Y address increment (INC = 1)
ADX = 0, ADR = 0
X address increment (INC = 0)
Display image
Preliminary Product Information S16789EJ2V0PM 37
µ
PD161606
Figure 518.
µ
PD161606 RAM Addressing
1) ADX=0
ADC=0 S1 S2 S3 S4 S5 S6 --- --- S715 S716 S717 S718 S719 S720
ADC=1 S720 S719 S718 S717 S716 S715 --- --- S6 S5 S4 S3 S2 S1
X-address --- ---
Column address 000H 001H 002H 003H 004H 005H --- --- 2CAH 2CBH 2CCH 2CDH 2CEH 2CFH
D2 D1 D0 D2 D1 D0 D2 D1 D0 D2 D1 D0
ADY=0 ADY=1
00H 5FH
01H 5EH
||
||
56H 59H
57H 58H Display area
58H 57H
59H 56H
||
||
5EH 01H
5FH 00H
2) ADX=1
ADC=0 S1 S2 S3 S4 S5 S6 --- --- S715 S716 S717 S718 S719 S720
ADC=1 S720 S719 S718 S717 S716 S715 --- --- S6 S5 S4 S3 S2 S1
X-address --- ---
Column address 2CFH 2CEH 2CDH 2CCH 2CBH 2CAH --- --- 005H 004H 003H 002H 001H 000H
D2 D1 D0 D2 D1 D0 D2 D1 D0 D2 D1 D0
ADY=0 ADY=1
00H 5FH
01H 5EH
||
||
56H 59H
57H 58H Display area
58H 57H
59H 56H
||
||
5EH 01H
5FH 00H
EEH EFH
239th Pixel
001H
2nd Pixel 240th Pixel
Source output
Source output
000H
EFH
1st Pixel
Y-address
240th Pixel 239th Pixel 2nd Pixel
Y-address
000HEEH 001H
1st Pixel
Preliminary Product Information S16789EJ2V0PM
38
µ
PD161606
5.2.3 Arbitrary address area access (window access mode (WAS))
With the
µ
PD161606, any area of the display RAM selected by the MIN., X/Y address registers (R8 and R10) and MAX.,
X/Y address registers (R9 and R11) can be accessed.
First, select the area to be accessed by using the MIN.·X/Y address registers and MAX.·X/Y address registers. When
WAS of data access control register (R5) is set to 1, the window access mode is then selected. The address scanning
setting is also valid in this mode, in the same manner as when data is normally written to the display RAM. In addition,
data can be written from any address by specifying the X address register (R6) and Y address register (R7).
Figure 519. Example of Incrementing Address when in Window Access Mode
Start point
End point
5FH
00H
EFH
00H
MIN. X address
MIN. Y address
MAX. Y address
MAX. X address
.
.
.
Cautions 1. When using the window access mode, the relationship between the start point and end point
shown in the table below must be established.
Item Address Relationship
X address 00H MIN.·X address X address (R6) MAX.·X address EFH
Y address 00H MIN.·Y address Y address (R7) MAX.·Y address 5FH
2. If invalid address data is set as the MIN./MAX. address, operation is not guarateed.
Preliminary Product Information S16789EJ2V0PM 39
µ
PD161606
Example of Sequence in Window Access Mode
The settings of the MIN. X address register (R8), MIN. Y address register (R10), MAX. X address register (R9), and MAX.
Y address register (R11) van be performed in any order.
No
Data access control register (R5)
MIN.
Data
Writing complete?
Sets start point.
Ye s
(WAS = 1)
Sets end point.
Sets window access mode.
.X address register (R8)
MIN. .Y address register (R10)
MAX. .X address register (R9)
MAX. .Y address register (R11)
X address register (R6)
Y address register (R7)
Write display data
Start
End
Preliminary Product Information S16789EJ2V0PM
40
µ
PD161606
5.3 Oscillator
The
µ
PD161606 allows selection of the on-chip oscillator (OSC2SEL = L: CR on-chip type) or an external oscillator
(OSC2SEL = H: R external) as the oscillator generating the display clock by setting the OSC2SEL pin.
Moreover, the on-chip oscillator contains two oscillation circuits. One of these oscillation circuits (OSC2) is used to
generate the liquid crystal display output timing, while the other oscillation circuit (OSC1) is used when executing frame
frequency calibration.
D4 bit of R1 (OSC1OFF) 0
D3 bit of R1 (OSC2OFF) 0
Internal oscillation start
WAIT time: T.B.D.
µ
s (Oscillation stabilization time wait)
D0 bit of R45 (OC) 1 Calibration start
It is WAIT about the time for one line of frame frequency to set up.
D0 bit of R45 (OC) 0 Calibration stop
WAIT time: T.B.D.
µ
s(Calibration processing time)
D4 bit of R1 (OSC1OFF) 1 Oscillation circuit stop for calibrations
Since the oscillation circuit for calibrations comes to unnecessary after calibration execution, in order to lower power
consumption, suspend an oscillation ("1" is set to OSC1OFF of D4 bit of R1). In addition, when set calibration again once
performing a calibration, start oscillation operation again.
Moreover, the frame frequency by which the calibration was carried out is eliminated by command reset. Therefore, when
command reset is input, set a calibration again.
When selecting an external oscillator (OSCSEL = H), connect a T.B.D. resistor to the OSCIN pin and the OSCOUT pin.
When the internal oscillator is selected, leave both pins unconnected.
Cautions 1. If DIVSL (R46), HCKSL (R46), LNSEL (R50) are changed from their initial values, calibration is
prohibited.
2. When an external oscillator is selected, calibration is prohibited.
Preliminary Product Information S16789EJ2V0PM 41
µ
PD161606
5.4 Display Timing Generator
The display timing generator generates the timing signals for the internal timing of the source driver and for the gate
driver.
Horizontal interval
The timing of the following signals is controlled by register setting.
·GCLK
·GSTB
·GOE1
·EQ
·Amplifier drive period
In addition, a timing chart is shown next page.
Preliminary Product Information S16789EJ2V0PM
42
µ
PD161606
Figure 520. Display Driving Signal Timing Chart (RGB interface: 16/18-bit batch transfer, line inversion)
16, 18-bit Mode display timing chart <line inversion, 720 output, VSYNC width = 1H, non-dummy line>
(1) HSYNC unit (Horizon period back porch (R75) = 3H)
*VSEG = L, HSEG = L, DCKEG = L
*Display CLK address value turns into a value which counted DOTCLK.
*When [ all ] it puts in 245 CLK or more in 1H period, it is added after display CLK address(Hcnt) value 244 address.
HSYNC tHSW (MIN. 1 DOTCLK)
tHS (MIN. 245 DOTCLK)
DOTCLK
tHBP (MIN. 3 DOTCLK)
RGB Data Invalid Invalid
Hcnt
GCLK
Polarity reversal is possible
GSTB-GCLK (MIN. 4 DOTCLK)
GSTB
GOE1
*At the time of a display = H. It changes with the time of standby, or 59DR1 (GOE2ON) commands.
GOE2
EQ
AP
S1 to S720
VCOUT
Gn OUT
Gn+1 OUT
245 1
240230
-89012345-- #226 227 228 2 29 230 231 23 2 238 239 240233 234 235 236 237 241 242 243 244 01 423 56789
78946
67-
5123 222 227 228 2 29 230 231 23 2 233 234
#224 225 226 239 240235 236 237 23 8 123456789
Hi-Z
GOST[7:0] GOED[7:0]
EQST[7:0] EQED[7:0]
APST[7:0] APED[7:0]
Hi-Z
Equalize drive period Amplifier drive period
r-resistance direct drive period
GCED[7:0]
* The MIN. value of EQST, APST, and GOST is set to 1.
* The MIN. value of GCED is set to 2.
* When the position of a standup and falling is the same, an
output serves as L fixation.
Preliminary Product Information S16789EJ2V0PM 43
µ
PD161606
Figure 521. Display Driving Signal Timing Chart (RGB interface: 6-bit batch transfer, line inversion)
6 bit Mode display timing chart <line inversion, 720 output, VSYNC width = 1H, non-dummy line>
* VSYNC and HSYNC operate for every 3 DOTCLK at the time of 6bit Mode.
(1) HSYNC unit (Horizon period back porch (R75) = 3H)
* VSEG = L, HSEG = L, DCKEG = L
*
Display CLK address value (Hcnt) turns into a value which counted DOTCLK.
HSYNC tHSW (MIN. 3 DOTCLK)
tHS (MIN. 735 DOTCLK)
DOTCLK
CLK
(Internal CLK)
RGB Data Invalid Invalid
Hcnt
GCLK
Polarity reversal is possible
GSTB
GOE1
*At the time of a display = H. It changes with the time of standby, or 59DR1 (GOE2ON) commands.
GOE2
EQ
AP
S1 to S720
VCOUT
Gn OUT
Gn+1 OUT
11 12
D2 D3
910
8
D2 D3 D1 D2 D3 D1 D2 D3 D1
567
D3
5
34
D1D1 D2 D3 D1 D2
12
D1 D2
123
D3D3
10 11
D3 D1 D2 D3D3 D1 D2
D
D1 D2 D3 D2D1 D2 D3 D1 D2 D3
013
D1 D2 D2 D3
83
D1D3D2 D3 D1 D2 D2
76244 0 1 2241 242 243 411 238 239 240
D2 D3
89
D1 D2 D3 D3 D1
10
D3
-
D2 D3
23-- 1
D1
237
D3 D1D1
4567
D2 D3 D1D1 D2
924067
D1
9
D2 D3
236 238 239
D1 D2
845
D1
735720 730
Hi-Z
GOST[5:0] GOED[5:0]
EQST[5:0] EQED[5:0]
APST[5:0] APED[5:0]
Hi-Z
Equalize drive period Amplifier drive period r-resistance direct drive period
GCED[5:0]
tHBP (MIN. 9 Dotclk)
Preliminary Product Information S16789EJ2V0PM
44
µ
PD161606
Figure 522. Display Driving Signal Timing Chart (partial display, line inversion)
Display timing chart (Partial display)
(1) HCNT unit
*Display CLK address value (Hcnt) turns into a value which counted DOTCLK.
* Horizontal, perpendicular address: MIN. setup
CLK
Hcnt
GCLK
Polarity reversal is possible
GSTB
GOE1
*At the time of a display = H. It changes with the time of stand-by, or 59DR1 (GOE2ON) commands.
GOE2
EQ
AP
S1 to S720
VCOUT
Gn OUT
Gn+1 OUT
1110 1211107645 89321029286789 2712345029 25 2612 22 23 2412
Hi-Z
PGOST[7:0] PGOED[7:0]
PEQST[7:0] PEQED[7:0]
PAPST[7:0] PAPED[7:0]
Hi-Z
Equalize drive period Amplifier drive period r-resistance direct drive period
PGCED[7:0]
* The MIN. value of EQST, APST, and GOST is set to 1.
* The MIN. value of GCED is set to 2.
* When the position of a standup and falling is the same, an output
serves as L fixation.
Preliminary Product Information S16789EJ2V0PM 45
µ
PD161606
5.5
γ
- Curve Correction Circuit
The
µ
PD161606 has an on-chip
γ
- curve correction power supply circuit. If the internal
γ
- curve correction matches the
LCD characteristics, no external parts are required. This circuit incorporates one
γ
- curve correction resistor and adjusts
γ
- Inclination and amplitude by switching between positive and negative polarity according to register settings.
Figure 523.
γ
- Curve Correction Circuit
Amplitude adjustment
(fixed)
Amplitude adjustment
(fixed)
Amplitude adjustment
(fixed)
Amplitude adjustment
(fixed)
Amplitude adjustment
Amplitude adjustment
Inclination adjustment
Inclination adjustment
Fine tunig adjustment 64 gray-scale
-register switch φφ
φφ
γ
-register switch
γ
Preliminary Product Information S16789EJ2V0PM
46
µ
PD161606
5.5.1 Amplitude adjustment with internal amplifier
Amplitude adjustment can select two ways, the method of adjusting with internal amplifier, and the method of adjusting
by internal resistance. Each register of R101 (GPH [5:0]), R102 (GNH [5:0]), R103 (GPL [5:0]), and R104 (GNL [5:0])
performs adjustment with amplifier. Refer to Figure 524.
Figure 524. Amplitude Adjustment 1
(This figure is a circuit by the side of positive-polarity. Use GPH reading it as GNH, GPL to GNL, VPH to VNH, and
VPL to VNL if negative-polarity side's reading)
VD127
to VD64
VD63
to VD0 D/A
GPL [5:0]
GPH [5:0]
D/A
V
S
V
S
VPH
VPL
V
SS1
V
SS1
Figure 525. Relationship of TFT Drive Voltage (Normally White)
VPH
VNH
VPL
VNL
V
S
V
SS1
Positive polarity Negative polarity
White
Black
Drive Level Setting Register
VPH Positive polarity, black Contrast value setting register 1 R101
VNH Negative polarity, white Contrast value setting register 2 R102
VPL Negative polarity, white Contrast value setting register 3 R103
VNL Positive polarity, black Contrast value setting register 4 R104
Preliminary Product Information S16789EJ2V0PM 47
µ
PD161606
The value of each amplifier output can be expressed as follows and the value of β can be set as shown in Table 58 and
59 by using the contrast value registers (R101, R102, R103, and R104)
VNL, VPL, VNH, VPH = (β ÷ 129) x VS
Caution The usable range in which each output level of VPH, VNH, VPL, and VNL can be set depends on the
γ
-
curve.
Table 58.
γ
- Contrast Value Setting and Electronic Volume Register β Setting 1 (VPH, VNL)
R101 VPH5 VPH4 VPH3 VPH2 VPH1 VPH0
R102 VNH5 VNH4 VNH3 VNH2 VNH1 VNH0
β value Setting or
Status Setting
00H 0 0 0 0 0 0 65
01H 0 0 0 0 0 1 66
02H 0 0 0 0 1 0 67
03H 0 0 0 0 1 1 68
3EH 1 1 1 1 1 0 127
3FH 1 1 1 1 1 1 128
Table 59.
γ
- Contrast Value Setting and Electronic Volume Register β Setting 2 (VPL, VNL)
R103 VPL5 VPL4 VPL3 VPL2 VPL1 VPL0
R104 VNL5 VNL4 VNL3 VNL2 VNL1 VNL0
β value Setting or
Statement Setting
00H 0 0 0 0 0 0 1
01H 0 0 0 0 0 1 2
02H 0 0 0 0 1 0 3
03H 0 0 0 0 1 1 4
3EH 1 1 1 1 1 0 63
3FH 1 1 1 1 1 1 64
Preliminary Product Information S16789EJ2V0PM
48
µ
PD161606
5.5.2 Amplitude adjustment by built-in resistance
The 4-bit data set as registers R105 and R109 sets amplitude adjustment by built-in resistance. Refer to Figure 526.
Figure 526. Amplitude Adjustment
Voltage
Scale Data
V0
V0RP[3:0]
V63
GH
GL
VDR
VSR
V
S
V
SS1
(V0RP[3:0])
0000 5R
VDRP
10R
15R
20R
25R
30R
35R
40R
45R
50R
55R
60R
65R
70R
75R
80R
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
V0RN[3:0]
(V0RN[3:0])
0000 5R
VDNP
10R
15R
20R
25R
30R
35R
40R
45R
50R
55R
60R
65R
70R
75R
80R
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
Preliminary Product Information S16789EJ2V0PM 49
µ
PD161606
5.5.3 Inclination adjustment
Internal resistance also adjusts inclination adjustment. R106 and R110 register set adjustment. Refer to Figure 527.
Figure 5–27. Inclination Adjustment
V0
V63
GH
GL
VGR4
V4
V59
Voltage
ScaleData
VLR
VGR5
VGR6
VHR
VGR7
V3
V2
V1
V61
V60
V62
VHRP[3:0]
(VLRP[3:0])
0000 2R
VHRP
4R
6R
8R
10R
12R
14R
16R
18R
20R
22R
24R
26R
28R
30R
32R
2R
4R
6R
8R
10R
12R
14R
16R
18R
20R
22R
24R
26R
28R
30R
32R
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
V0R4P[2:0]
(V0R7P[2:0])
000 8R
VDR4(7)P
16R
24R
32R
40R
48R
56R
64R
001
010
011
100
101
110
111
V0R4N[2:0]
(V0R7N[2:0])
000 8R
VDR4(7)N
16R
24R
32R
40R
48R
56R
64R
001
010
011
100
101
110
111
V0R5P[2:0]
(V0R6P[2:0])
000 4R
VDR5(6)P
8R
12R
16R
20R
24R
28R
32R
001
010
011
100
101
110
111
V0R5N[2:0]
(V0R6N[2:0])
000 4R
VDR5(6)N
8R
12R
16R
20R
24R
28R
32R
001
010
011
100
101
110
111
VHRN[3:0]
(VLRN[3:0])
0000
VHRN
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
Preliminary Product Information S16789EJ2V0PM
50
µ
PD161606
5.5.4 Fine tuning adjustment
Internal resistance also sets fine tuning. Please adjust by R107, R108, R111, and R112 register. Refer to Figure 528.
Figure 5–28. Fine Tuning
V0
V63
GH
GL
V8
V20
V43
V55
VGR0
VGR1
R
í
VGR2
VGR3
R0
R1
R
R2
R3
R0:VGR0=R1:VGR1=R2:VGR2
=R3:VGR3=R:R'=1:1
Default
V8
r00
r01
r04
R0
Default:ON
VGRnP[2:0]
0 0 0 60R
VGR0P
56R
52R
48R
44R
40R
36R
32R
001
010
011
100
101
110
111
60R
VGR1P
56R
52R
48R
44R
40R
36R
32R
32R
VGR2P
36R
40R
44R
48R
52R
56R
64R
32R
VGR3P
36R
40R
44R
48R
52R
56R
64R
VGRnN[2:0]
000 60R
VGR0N
56R
52R
48R
44R
40R
36R
32R
001
010
011
100
101
110
111
60R
VGR1N
56R
52R
48R
44R
40R
36R
32R
32R
VGR2N
36R
40R
44R
48R
52R
56R
64R
32R
VGR3N
36R
40R
44R
48R
52R
56R
64R
Preliminary Product Information S16789EJ2V0PM 51
µ
PD161606
5.6 Partial Display Function
The
µ
PD161606 contains a partial display function. When this function is used, the display control clock becomes the
internal oscillation clock, and the display image shows only the data written to the partial display RAM. Moreover, the
partial non-display area displays the partial non-display area color set with the R23 register. Refer to Figure 529.
Table510 shows a comparison of the regular operation and the partial display operation.
Table 510. Comparison of Regular Operation and Partial Display Operation
Regular Operation Partial Display Operation
Display control clock DOTCLK, HDYNC, VSYNC Internal oscillation clock
Partial RAM display Displayed only when OSD function is enabled Always displayed.
OSD function Enabled. α1 bit and α2 bit settings are enabled. Disabled. Regardless of the α1 bit and α2 bit
settings, the data written to the partial RAM is
always enabled.
Display outside partial
RAM display
Input data displayed via RGB interface Partial non-display area color set with R23 is
displayed.
Figure 529. Partial Display
i80/M68 interface
or
It rewtite by the
serial interface
Data RAM display area
Partial non-display area
Color set by R23
R17, R18: Partial RAM display area 1
display start line
R21, R22: Partial RAM display area 2
display start line
10 / 23 [TUE] 10 : 35
Partial display data RAM
R15: Partial RAM display area 1
start Y address
R16: Partial RAM display area 1
line count
R19: Partial RAM display area 2
start Y address
R20: Partial RAM display area 2
line count
RGB interface input data
Actually display screen
10 / 23 [TUE] 10 : 35
"Invalid"
Preliminary Product Information S16789EJ2V0PM
52
µ
PD161606
5.7 Stand-by
The
µ
PD161606 has a stand-by function that allows two types of operation as stand-by operation, either of which can be
selected.
5.7.1 Stand-by mode 1
Stand-by mode 1 is selected by setting STBSEL (R0, D2) = 0.
By setting control register 1 (R0): STBY = 1, white display is performed, and during the frame dummy line interval, all
gate outputs are set to ON and the panel charge is discharged. By setting the control register (R24): DCON = 0 after all
gate outputs have become ON, regulator OFF and DC/DC converter OFF are executed, and by setting R1: OSC2OFF = 1,
full stand-by mode is entered after the internal oscillator stops.
<Stand-by sequence>
STBY bit of R0= 1
(WAIT in one frame period)
DCON bit of R24= 0
OSC2OFF bit of R1 = 1
The transition from the stand-by mode to the regular mode is the opposite sequence from the stand-by sequence, and is
executed in the order of OSC2OFF = 0, DCON = 1, and STBY = 0.
Figure 5–30. Outline of Operation during Stand-by Mode 1 Execution
Stand-by command exectuion (STBY = 1)
Sourse output OFF level output start
(white level when VCOUT = L)
VCOUTn VSS level output
Operation of stand-by command execution
GOE2 output VSS level output
Source output VSS level output
After an one-frame end
Remark In the stand-by mode (STBY = 1), display data RAM access, display data RAM hold, and register access are
possible even during DC/DC converter OFF and internal oscillation stop, as long as power is supplied to VCC1,
VCC2, and VCC3 (including when power is supplied to VCC1 from SF_VCC1).
Preliminary Product Information S16789EJ2V0PM 53
µ
PD161606
5.7.2 Stand-by mode 2
Stand-by mode 2 is selected by setting STVSEL (R0, D2) = 1.
By setting control register 1 (R0): STBY = 1, white display starts. After white output has been performed until the next
frame after STBY = 1 has been set, GO21 = Low is executed for 2 frames. Then the source output becomes VSS level.
After the source output becomes VSS level, by setting control register (R24): DCON = 0, regulator OFF and DC/DC
converter OFF are executed, and by setting R1: OSC2OFF, the full stand-by mode is entered after the internal oscillator
stops.
<Stand-by sequence>
STBY bit of R0= 1
(WAIT in four frame period)
DCON bit of R24= 0
OSC2OFF bit of R1 = 1
The transition from the stand-by mode to the regular mode is the opposite sequence from the stand-by sequence, and is
executed in the order of OSC2OFF = 0, DCON = 1, and STBY = 0.
The outline of the operation during stand-by mode 2 execution is shown on the next page.
Preliminary Product Information S16789EJ2V0PM
54
µ
PD161606
Figure 531. Outline of Operation during Stand-by Mode 2 Execution
Stand-by command execution (STBY = 1)
Source output OFF level output start
(White display)
VCOUTn Inverted operation
.
.
White
output
1st frame
2nd frame
3rd and 4th frame
5th frame
GOE1 = Low output
Source output V
SS
level
VCOUT V
SS
level
Remark In the stand-by mode (STBY = 1), display data EAM access, display data RAM hold, and register access are
possible even during DC/DC converter OFF and internal oscillation stop, as long as power is supplied to VCC1,
VCC2, and VCC3 (including when power is supplied to VCC1 from SF_VCC1).
Preliminary Product Information S16789EJ2V0PM 55
µ
PD161606
(1) Stand-by sequence
As power supply control, the example of a sequence at the time of performing an internal sequence is shown.
µ
PD161606 stand-by set
R0
RS D7 D6 D5 D4 D3 D2 D1 D0
0 0 0 0 0 0 0 0
D7 D6 D5 D4 D3 D2 D1 D0
µ
PD161606 stand-by mode set
(R0 Register)
L
X X X X 1 X X X
The electric charge of the panel is discharge. It
will become white display if it is normally white
panel.
X: Set in accordance with the usage conditions.
1 frame time wait (in case stand-by mode 1)
(In stand-by mode 2, 4 frames time wait)
R24
RS D7 D6 D5 D4 D3 D2 D1 D0
0 0 0 1 1 0 0 0
D7 D6 D5 D4 D3 D2 D1 D0
µ
PD161645 power supply OFF setting
(R24 Register)
L
0 X X X X X X 0
The Power OFF completed !
X: Set in accordance with the usage conditions.
T.B.D.
µ
s MIN. wait
R24
RS D7 D6 D5 D4 D3 D2 D1 D0
0 0 0 0 0 0 0 1
D7 D6 D5 D4 D3 D2 D1 D0
µ
PD161606 internal oscillation OFF setting
(R1 Register)
L
X X X X 1 X X X
Oscillation stop
(Stand-by status)
X: Set in accordance with the usage conditions.
Preliminary Product Information S16789EJ2V0PM
56
µ
PD161606
(2) Stand-by release sequence
As power supply control, the example of a sequence at the time of performing an internal sequence is shown.
µ
PD161606 stand-by mode release
R1
RS D7 D6 D5 D4 D3 D2 D1 D0
0 0 0 0 0 0 0 1
D7 D6 D5 D4 D3 D2 D1 D0
µ
PD161606 internal oscillation ON setting
(R1 Register)
L
X X X X 0 X X X
Oscillation start
X: Set in accordance with the usage conditions.
R24
RS D7 D6 D5 D4 D3 D2 D1 D0
0 0 0 1 1 0 0 0
D7 D6 D5 D4 D3 D2 D1 D0
µ
PD161645 power supply ON setting
(R24 Register)
L
0 X X X X X X 1
Power ON after time set to PUPT0/PUPT1 of R33
register has lapsed!
X: Set in accordance with the usage conditions.
T.B.D.
µ
s MIN. wait
R0
RS D7 D6 D5 D4 D3 D2 D1 D0
0 0 0 0 0 0 0 0
D7 D6 D5 D4 D3 D2 D1 D0
µ
PD161606 stand-by mode release
(R0 Register)
L
X X X X 0 X X X
Complete return to regular mode!
X: Set in accordance with the usage conditions.
Preliminary Product Information S16789EJ2V0PM 57
µ
PD161606
6. POWER SUPPLY INJECTION/INTERCEPTION
An example of powering injection/interception a chip set for TFT-LCD panel driving using the
µ
PD161606 is shown
below.
6.1
µ
PD161606 Power Supply Injection Setting Sequence Example
Hard reset
µ
PD161606 register.
Reset
µ
PD161606 register
R3
RS D15 D14 D13 D12 D11 D10 D9 D8
0 0 0 0 0 0 1 1
D7 D6 D5 D4 D3 D2 D1 D0
µ
PD161606 command reset
(R3 register)
L
0 0 0 0 0 0 0 1
Start
µ
PD161606 internal oscillation
R1
RS D7 D6 D5 D4 D3 D2 D1 D0
0 0 0 0 0 0 0 1
D7 D6 D5 D4 D3 D2 D1 D0
µ
PD161606 internal oscillation ON setting
(R1 register)
L
X X X 0 0 X X X
Oscillation start
X: Set in accordance with the usage conditions.
Reset
µ
PD161645 register
R25
RS D15 D14 D13 D12 D11 D10 D9 D8
0 0 0 1 1 0 1 0
D7 D6 D5 D4 D3 D2 D1 D0
µ
PD161645 command reset
(R34 register)
L
X 1 X X X X X X
X: Set in accordance with the usage conditions.
T.B.D.
µ
s MIN. wait
Set
µ
PD161606
γ
Rxx The setting order Rxx to Rxx are any order
to Rxx RS D15 D14 D13 D12 D11 D10 D9 D8
X X X X X X X X
D7 D6 D5 D4 D3 D2 D1 D0
µ
PD161606
γ
setting
(Perform this setting is required.)
L
X X X X X X X X
X: Set in accordance with the usage conditions.
Set
µ
PD161606 horizontal interval timing
Rxx The setting order Rxx to Rxx are any order
to Rxx RS D15 D14 D13 D12 D11 D10 D9 D8
X X X X X X X X
D7 D6 D5 D4 D3 D2 D1 D0
µ
PD161606 horizontal interval timing setting
L
X X X X X X X X
X: Set in accordance with the usage conditions.
Preliminary Product Information S16789EJ2V0PM
58
µ
PD161606
Calibration
R45
D15 D14 D13 D12 D11 D10 D9 D8
0 0 1 0 1 1 0 1
D7 D6 D5 D4 D3 D2 D1 D0
µ
PD161606 power supply setting
(R45 register)
L
X X X X X X X X
X: Set in accordance with the usage conditions.
R1
RS D7 D6 D5 D4 D3 D2 D1 D0
0 0 0 0 0 0 0 1
D7 D6 D5 D4 D3 D2 D1 D0
µ
PD161606 calibration internal oscillation OFF
setting
(R1 register)
L
X X X 1 0 X X X
X: Set in accordance with the usage conditions.
Power supply setting
R25
D15 D14 D13 D12 D11 D10 D9 D8
0 0 0 1 1 0 0 1
D7 D6 D5 D4 D3 D2 D1 D0
µ
PD161645 power supply setting
(R25 register)
L
0 0 X X X X 1 0
X: Set in accordance with the usage conditions.
T.B.D.
µ
s MIN. wait
R26
D15 D14 D13 D12 D11 D10 D9 D8
0 0 0 1 1 0 1 0
D7 D6 D5 D4 D3 D2 D1 D0
µ
PD161645 power supply setting
(R26 register)
L
0 0 0 0 0 1 0 1
X: Set in accordance with the usage conditions.
T.B.D.
µ
s MIN. wait
R27
D15 D14 D13 D12 D11 D10 D9 D8
0 0 0 1 1 0 1 1
D7 D6 D5 D4 D3 D2 D1 D0
µ
PD161645 power supply setting
(R27 register)
L
0 X X X X X X 1
X: Set in accordance with the usage conditions.
T.B.D.
µ
s MIN. wait
R28
RS D15 D14 D13 D12 D11 D10 D9 D8
0 0 0 1 1 1 0 0
D7 D6 D5 D4 D3 D2 D1 D0
µ
PD161645 power supply setting
(R28 register)
L
0 X X X X X X X
X: Set in accordance with the usage conditions.
T.B.D.
µ
s MIN. wait
Preliminary Product Information S16789EJ2V0PM 59
µ
PD161606
R29
RS D15 D14 D13 D12 D11 D10 D9 D8
0 0 0 1 1 1 0 1
D7 D6 D5 D4 D3 D2 D1 D0
µ
PD161645 power supply setting
(R29 register)
L
0 0 0 X X X X X
X: Set in accordance with the usage conditions.
T.B.D.
µ
s MIN. wait
R30
RS D15 D14 D13 D12 D11 D10 D9 D8
0 0 0 1 1 1 1 0
D7 D6 D5 D4 D3 D2 D1 D0
µ
PD161645 power supply setting
(R30 register)
L
0 0 0 X X X 0 0
X: Set in accordance with the usage conditions.
T.B.D.
µ
s MIN. wait
R31
RS D15 D14 D13 D12 D11 D10 D9 D8
0 0 0 1 1 1 1 1
D7 D6 D5 D4 D3 D2 D1 D0
µ
PD161645 power supply setting
(R31 register)
L
X X X X X X X X
X: Set in accordance with the usage conditions.
T.B.D.
µ
s MIN. wait
R32
RS D15 D14 D13 D12 D11 D10 D9 D8
0 0 1 0 0 0 0 0
D7 D6 D5 D4 D3 D2 D1 D0
µ
PD161645 power supply setting
(R32 register)
L
0 0 0 X X X X X
X: Set in accordance with the usage conditions.
T.B.D.
µ
s MIN. wait
R33
RS D15 D14 D13 D12 D11 D10 D9 D8
0 0 1 0 0 0 0 1
D7 D6 D5 D4 D3 D2 D1 D0
µ
PD161645 power supply setting
(R33 register)
L
0 0 1 0 1 1 1 1
X: Set in accordance with the usage conditions.
T.B.D.
µ
s MIN. wait
R24
RS D15 D14 D13 D12 D11 D10 D9 D8
0 0 0 1 1 0 0 0
D7 D6 D5 D4 D3 D2 D1 D0
µ
PD161645 power supply setting
(R24 register)
L
0 X X X X X X 1
Power ON after time set to PUPT0/PUPT1 of R33
register has lapsed!
X: Set in accordance with the usage conditions.
T.B.D.
µ
s MIN. wait
Preliminary Product Information S16789EJ2V0PM
60
µ
PD161606
Display data input start
Data input start by the RGB interface
Display start setting
R59
RS D15 D14 D13 D12 D11 D10 D9 D8
0 0 1 1 1 0 1 1
D7 D6 D5 D4 D3 D2 D1 D0
µ
PD161606 GOE1, GOE2 signal setting
(R59 register)
L
0 0 0 0 0 0 0 1
After 1-frame time, all whites or all blacks are displayed.
R0
RS D15 D14 D13 D12 D11 D10 D9 D8
0 0 0 0 0 0 0 0
D7 D6 D5 D4 D3 D2 D1 D0
µ
PD161606 display setting
(R0 register)
L
0 0 X 0 0 0 0 0
RAM data display start
X: Set in accordance with the usage conditions.
Regular RAM data display through DISP1, DISP0 cancellation
Preliminary Product Information S16789EJ2V0PM 61
µ
PD161606
6.2
µ
PD161606 Power Supply Interception Setting Sequence Example
µ
PD161606 to the stand-by mode
R0
RS D7 D6 D5 D4 D3 D2 D1 D0
0 0 0 0 0 0 0 0
D7 D6 D5 D4 D3 D2 D1 D0
µ
PD161606 stand-by mode setting
(R0 register)
L
X X X X 1 X X X
Discharge of the electric charge of panel is carried
out. It will become white display if it is normally
white panel.
X: Set in accordance with the usage conditions.
1 frame time wait
(In stand-by mode 2, 4 frames times wait)
R24
RS D7 D6 D5 D4 D3 D2 D1 D0
0 0 0 1 1 0 0 0
D7 D6 D5 D4 D3 D2 D1 D0
µ
PD161645 power supply OFF setting
(R24 register)
L
0 X X X X X X 0
X: Set in accordance with the usage conditions.
T.B.D.
µ
s MIN. wait
R1
RS D7 D6 D5 D4 D3 D2 D1 D0
0 0 0 0 0 0 0 1
D7 D6 D5 D4 D3 D2 D1 D0
µ
PD161606 power supply OFF setting
(R1 register)
L
X X X X 1 X X X
Oscillation stop
(Stand-by status)
X: Set in accordance with the usage conditions.
Preliminary Product Information S16789EJ2V0PM
62
µ
PD161606
7. E2PROM INTERFACE
The
µ
PD161606 builds in the interface function to E2PROM corresponding to the micro-wire interface.
However, the capacity of E2PROM corresponds 4k-bit article.
7.1 The
µ
PD161606 and E2PROM Connection
Connection with E2PROM is made as shown in the following figure.
ECS
ESK
LCD
Controller/
Driver IC
Microwire
E
2
PROM
EDO
EDI
CS
CLK
DIN
DOUT
LCD controller side signal
Pin Function
ECS Chip select signal over E2PROM.
With outputting ECS = 1, E2PROM is made into an active state and data is transmitted after that.
It connects with CS (chip select pin) of E2PROM.
ESK Clock signal over E2PROM.
In falling of ESK, data is outputted from EDO to E2PROM.
It connects with CLK (shift clock pin) of E2PROM.
EDO Data output pin.
Data is outputted to E2PROM.
It connects with DIN (data in pin) of E2PROM
EDI Data input pin.
It is used for reading of the data of E2PROM.
It connects with DOUT (data out pin) of E2PROM.
Preliminary Product Information S16789EJ2V0PM 63
µ
PD161606
7.2 Each Operation
The
µ
PD161606 can perform writing of register data, reading of a register date and elimination of E2PROM data to
E2PROM. Selection of each operation is performed using R118 register.
R118 Register
E2OPC2 E2OPC1 E2OPC0 E2PROM Command
0 0 0 Setting prohibited
0 0 1 EPSAVE: Writing to E2PROM
0 1 0 MASKON: Permission of the writing and elimination to E2PROM
0 1 1 MASKOF: Prohibition of the writing and elimination to E2PROM
1 0 0 EPCLR: All area elimination of E2PROM
1 0 1 EPWALL: FFH is written in all the area of E2PROM
1 1 0 EPREAD: Reading from E2PROM
1 1 1 Setting prohibited
In addition, explain each operation below.
[E2PROM read command: Reading from E2PROM]
From the "E2PROM address" set as "the E2PROM reading start address register (R124)", it reads in order of "index" + "a
register value" (a total of 16 bits) and the register data stored in E2PROM is saved to the applicable index of the
µ
PD161606. In addition, reading operation is continuously performed until it reads the reading end ID (FFFFH or 7FFFH).
When FFFFH or 7FFFH are not read, reading operation is stopped if reading exceeds 128 times.
Command input R124: Setting of reading start address
R118: E2PROM read execution (06H)
E2PROM read
Writing to IR register
Register data reading is repeated until it
reads FFFF
Completion
Completion of processing
Preliminary Product Information S16789EJ2V0PM
64
µ
PD161606
[EPSAVE command: Writing of the data to E2PROM]
The register data of the
µ
PD161606, data is written in the E2PROM address based on R119 (E2PROM address) and
R120 (IR data).
Elimination/writing permission and
command input
R118: Elimination/writing permission carry out (MASKON command = 02H)
EWEN issue To elimination/writing permission state
E2PROM writing address specification It writes in R119 and is specification of address.
Remark Since increment is not carried out, it is required.
Writing index specification of E2PROM The index which wants to write in R120 is set up.
(As for the data of an index, the register value in
µ
PD161606 is written in.)
The data transmission command input
to E2PROM
R118: Data transmission execution to E2PROM (EPSAVE command = 01H)
Wait It is wait time in order to write in ROM. It is needed.
Insert wait time after confirming the specification of E2PROM used.
Completion
Elimination/writing protected and
command input
R118: Elimination/writing protected execution (03H)
EWDS It passes elimination/writing protected.
About the data of E2PROM, they are elimination or the disposal for making it not
rewrite carelessly.
Completion of processing
Preliminary Product Information S16789EJ2V0PM 65
µ
PD161606
[MASKON command: Writing/elimination permission to E2PROM]
Elimination/writing to E2PROM are permitted.
Command input R118 = 02H
EWEN <Erase write enable> To an elimination/writing permission state
Completion of processing
[MASKOF: Writing protected to E2PROM]
Elimination/writing to E2PROM are protected (Reading of data is possible).
Command input R118 = 03H
EWDS <Erase write disable> It passes elimination/writing protected.
Completion of processing
Preliminary Product Information S16789EJ2V0PM
66
µ
PD161606
[EPCLR command: E2PROM elimination] :
The data of E2PROM is initialized.
Elimination/writing permission and
command input
R118 = 02H
EWEN To elimination/writing permission state
ERAL <Erase All> All data elimination of E2PROM
E2PROM elimination and command
input
R118 = 04H
Wait
After a command input (CS = L H) in order to access ROM, ERAL is
needed wait time like a data write.
Insert wait time after confirming the specification of E2PROM used.
Completion of processing
Elimination/write-protected and
command input
R118 = 03H
EWDS It passes elimination/write-protected.
Completion of processing
Preliminary Product Information S16789EJ2V0PM 67
µ
PD161606
[EPWALL] :
"Index = 7FH"+ "Data = FFH" is written in all the data of E2PROM.
At the time of E2PROM initialization, it reads to all E2PROM data, an end command (R127) is written and the infinite loop
of reading by the noise etc. is prevented.
Elimination/writing permission and
command input
R118 = 02H
EWEN To elimination/writing permission state
EPWALL command input R118 = 05H
WRAL <Erase All> “Index = 7FH (R127) “+ “Data = FFH“ is written in to all the data of E2PROM.
Wait
After a command input (CS = L H) in order to access ROM, WRAL is
needed wait time like a data write.
Insert wait time after confirming the specification of E2PROM used.
Elimination/write-protected and
command input
R118 = 03H
EWDS It passes elimination/write-protected.
Completion of processing
Preliminary Product Information S16789EJ2V0PM
68
µ
PD161606
8. RESET
If the /RESET input becomes L or the reset command is input, the internal timing generator is initialized. The reset
command will also initialize each register to its default value. These default values are listed in the table below. When the
RSEL pin is set to High-level, initialization is performed up to the reset command range by setting /RESET input to Low-
level.
(1/3)
Register /RESET Pin Note Reset Command Default Value
Control register 1 R0 X O 80H
Control register 2 R1 X O 18H
RGB interface register R2 X O 00H
Command reset register R3 X O 00H
Output amplitude power supply setup register for 8-color
display register
R4 X O 0FH
Data access control register R5 X O 00H
X address register R6 X O 00H
Y address register R7 X O 00H
MIN. X address register R8 X O 00H
MAX. X address register R9 X O EFH
MIN. Y address register R10 X O 00H
MAX. Y address register R11 X O 5FH
Partial RAM display area 1 start Y address register R15 X O 00H
Partial RAM display area 1 line count register R16 X O 00H
Partial RAM data display area 1 start line register R17 X O 00H
Partial RAM data display area 1 start line register R18 X O 01H
Partial RAM display area 2 start Y address register R19 X O 00H
Partial RAM display area 2 line count register R20 X O 00H
Partial RAM data display area 2 start line register R21 X O 00H
Partial RAM data display area 2 start line register R22 X O 01H
Partial OFF area color register R23 X O 07H
Power supply control register 1 R24 X O 00H
Power supply control register 2 R25 X O 00H
Power supply control register 3 R26 X O 00H
Power supply control register 4 R27 X O 00H
Power supply control register 5 R28 X O 00H
Gate scan setting register R29 X O 00H
Common setting register R30 X O 00H
Common amplitude setting register R31 X O 00H
Common center voltage setting register R32 X O 00H
Power supply rising select register R33 X O 00H
Power supply command reset register 5 R34 X O 00H
Remark O: Default value set, X: Default value not set
Note In the case of reset via the /RESET pin, only internal counters are initialized. At power application, be sure to
perform reset via the /RESET pin.
Preliminary Product Information S16789EJ2V0PM 69
µ
PD161606
(2/3)
Register /RESET Pin Note Reset Command Default Value
Calibration register R45 X O 00H
Partial display/horizontal interval clock setting register R46 X O 00H
Gate scan line count select register R50 X O 2BH
Line count specify during line inversion register R51 X O 00H
Partial display OFF area gate scan cycle set register R52 X O 00H
GOE1 output control register R59 X O 01H
DCCLK frequency set register R65 X O 00H
Horizontal back porch set register R75 X O 03H
Vertical back porch set register R76 X O 01H
Dummy line control select register R77 X O 00H
GCLK, GSTB polarity select register R78 X O 00H
GCLK inversion timing set register R79 X O 10H
Equalize interval start position set register R80 X O 01H
Equalize interval end position set register R81 X O 15H
Amplifier drive start position set register R82 X O 18H
Amplifier drive end position set register R83 X O B8H
GOE1 start position set register R86 X O 18H
GOE1 end position set register R87 X O E8H
Partial mode GCLK inversion timing set register R88 X O 03H
Partial mode equalize interval start position set register R89 X O 01H
Partial mode equalize interval end position set register R90 X O 03H
Partial mode amplifier drive start position set register R91 X O 04H
Partial mode amplifier drive end position set register R92 X O 15H
Partial mode GOE1 start position set register R93 X O 05H
Partial mode GOE1 end
p
osition set re
g
iste
r
R94 X O 1BH
Bias adjustment register 1 R95 X O 12H
Bias adjustment register 2 R96 X O 22H
γ
- adjustment register R100 X O 0FH
γ
- adjustment register R101 X O 35H
γ
- adjustment register R102 X O 30H
γ
- adjustment register R103 X O 16H
γ
- adjustment register R104 X O 1CH
γ
- adjustment register R105 X O 37H
Remark O: Default value set, X: Default value not set
Note In the case of reset via the /RESET pin, only internal counters are initialized. At power application, be sure to
perform reset via the /RESET pin.
Preliminary Product Information S16789EJ2V0PM
70
µ
PD161606
(3/3)
Register /RESET Pin Note Reset Command Default Value
γ
- adjustment register R106 X O 67H
γ
- adjustment register R107 X O 70H
γ
- adjustment register R108 X O 07H
γ
- adjustment register R109 X O 00H
γ
- adjustment register R110 X O 00H
γ
- adjustment register R111 X O 95H
γ
- adjustment register R112 X O 33H
γ
- adjustment register R113 X O 70H
γ
- adjustment register R114 X O 07H
γ
- adjustment register R115 X O 00H
γ
- adjustment register R116 X O 00H
NW/NB polarity select register R117 X O 00H
E2PROM OPC setting R118 X O 00H
E2PROM writing address specification R119 X O 00H
E2PROM writing register address specification R120 X O 00H
E2PROM products information register R121 X O 00H
E2PROM products information register R122 X O 00H
E2PROM products information register R123 X O 00H
E2PROM reading address specification R124 X O 00H
E2PROM OSC divide register R125 X O 01H
µ
PD161645 OSC divide register R126 X O 00H
E2PROM read stop register R127 X O FFH
Remark O: Default value set, X: Default value not set
Note In the case of reset via the /RESET pin, only internal counters are initialized. At power application, be sure to
perform reset via the /RESET pin.
Cautions 1. Whether reset is performed via the /RESET pin or the reset command, the contents of the display
RAM are held.
However, the RAM contents are undefined immediately following power application.
2. Calibration setting time tcal is set to the following value using the reset command.
tcal = 1/fOSC x 30
Preliminary Product Information S16789EJ2V0PM 71
µ
PD161606
9. COMMAND
9.1 Command List
(1/9)
Register Bit Symbol Function
D7 DISP1 This command performs the same output as when all data is 1, independently of the internal RAM
data (white display in the case of normally white).
This command is executed, after it has been transferred, when the next line is output.
0: Normal operation
1: Ignores data of RAM and outputs all data as 1.
DISP1 takes precedence over DISP0. When DISP1 = H, DISP0 = H is ignored.
D6 DISP0 This command performs the same output as when all data is 0, independently of the internal RAM
data (black display in the case of normally white).
This command is executed, after it has been transferred, when the next line is output.
0: Normal operation
1: Ignores data of RAM and outputs all data as 0.
D5 INV This command selects a line reversal function and a frame reversal function.
Execution in the mode set by this command is from the timing which gate scan at the time of
command execution ends to 360 lines, and the following scan starts.
0: Line inversion
1: frame inversion
D4 DTY Selects the partial function. Execution of the mode selected with this command starts after gate scan
during command execution completes 360 lines and the next scan starts.
0: Normal display mode
1: Partial display mode
D3 STBY This bit selects the stand-by function. When the stand-by function is selected, a display OFF
operation is executed, the amplifiers, and oscillator at each output stage are stopped.
After executing the stand-by function using this bit, set the regulator for gate power supply Block to
OFF and set the DC/DC converter to OFF. For the sequence, refer to the preliminary product
information machine.
Note that when releasing stand-by, perform the opposite operation, i.e., after setting the DC/DC
converter to ON and setting the regulators to ON, set to 0 on this bit and execute the normal
operation command.
0: Normal operation
1: Stand-by function
D2 STBSEL Stand-by mode is chosen from two kinds of operation (Stand-by mode 1, Stand-by mode 2).
Refer to 5.7 Stand-by for details of operation.
0: Stand-by mode 1
1: Stand-by mode 2
D1 OSD Selects the OSD function. Execution of the mode selected with this command starts after gate scan
during command execution completes 360 lines and the next scan starts.
This command becomes invalid at the time of partial display mode.
0: Normal display mode
1: OSD display mode
R0
D0 GSM Sets output of the gate scanning signal during partial display.
If this bit is set to 1, the gate scan of the lines set in the partial non-display area is it carries out for
every frame cycle set up by R52 register.
0: Normal mode
1: Gate scanning in partial non-display area is determined with the setting value to the setting value
of R52
Preliminary Product Information S16789EJ2V0PM
72
µ
PD161606
(2/9)
Register Bit Symbol Function
D7 ADX Addressing of X address is inverted. For more details, refer to Figure 518.
D6 ADY Addressing of Y address is inverted. For more details, refer to Figure 518.
D5 ADC The direction of a column address.
The direction of a sauce driver output can be select. For more details, refer to Figure 516.
D4 OSC1OFF This is oscillator circuit stop bit for calibration. This command is stop when in stand-by mode.
0: Oscillator operation
1: Oscillator stop
D3 OSC2OFF This is oscillator circuit stop bit for LCD display. Regardless of setup of this bit, oscillation for LCD
display is stop at the time of stand-by.
0: Oscillator operation
1: Oscillator stop
D2 COLOR Switches the 260K color mode and 8 colors mode. Execution of the mode selected with this
command starts after gate scan during command execution completes 360 lines and the next scan
starts.
0: 262,144 colors
1: 8 colors
D1 LTS Selects set time of calibration.
The calibration function adjusts the frame frequency by setting time of one line. This command can
select the set time of aline form the following.
0: 1-line time = tcal
1: 1-line time = tcal x 2
(tcal: Calibration set time = 1 ÷ Frame frequency ÷ Number of displayed lines)
R1
D0 BGR In addition to changing the sequence of RGB data during RAM write, switches the relationship
between the data input from RGB interface and the RGB data of the source output. (The R and B
data are switched.)
0: Normal operation
1: Switch R and B data and perform write.
D6 DCKEG Selects the DOTCLK active level.
0: High active
1: Low active
D5 VSEG Selects the VSYNC active level.
0: High active
1: Low active
R2
D4 HSEG Selects the HSYNC active level.
0: High active
1: Low active
Source output
(n = 1, 4, 7, ….)
Sn Sn+1 Sn+2
Data bus RGB05 to RGB00 RGB15 to RGB10 RGB25 to RGB20
RAM D2 D1 D0
Source output
(n = 1, 4, 7, ….)
Sn Sn+1 Sn+2
Data bus RGB25 to RGB20 RGB15 to RGB10 RGB05 to RGB00
RAM D2 D1 D0
Preliminary Product Information S16789EJ2V0PM 73
µ
PD161606
(3/9)
Register Bit Symbol Function
R3 D0 RES Command reset function. Be sure to execute this bit after power ON.
Command reset automatically clears this bit following execution (CRES = 1). Therefore, it is not
necessary to set 0 (select normal operation) again by software. Moreover, since the time required
for the value of this bit to change (1 0) following command reset execution is extremely short, it
is not necessary to secure time until the command is set following command reset setting.
0: Normal operation
1: Command reset
D3 DSELPH When the 8 colors mode is selected, sets the positive side black data drive method.
0: Inverter drive
1: Amplifier drive
D2 DSELNH When the 8 colors mode is selected, sets the positive side black data drive method.
0: Inverter drive
1: Amplifier drive
D1 DESLPL When the 8 colors mode is selected, sets the positive side black data drive method.
0: Inverter drive
1: Amplifier drive
R4
D0 DSELNL When the 8 colors mode is selected, sets the positive side black data drive method.
0: Inverter drive
1: Amplifier drive
D4 WAS Window access mode setting
When the window access mode is set, the address is incremented/decremented only in the range
set by the MIN. X address setting register (R8), MAX. X address setting register (R9), MIN. Y
address setting register (R10), and MAX. Y address setting register (R11).
0: Normal operation
1: Window access mode
R5
D2 INC This bit selects the direction in which the address is to be incremented.
0: Increments X address
1: Increments Y address
R6 D7 to D0 XAn This register sets the X address of the display RAM.
Set a value between 00H and EFH.
R7 D6 to D0 YAn This register sets the Y address of the display RAM.
Set a value between 00H and 5FH.
R8 D7 to D0 XMINn Sets the minimum value of the X address in the window access mode.
The X address is incremented up to the maximum value set by the MAX. X address register (R9),
and then initialized to the address value set by this command.
Set this register to 00H to EFH.
R9 D7 to D0 XMAXn Sets the maximum value of the X address in the window access mode.
The X address is incremented up to the maximum value set by the MIN. X address register (R8),
and then initialized to the address value set by this command.
Set this register to 00H to EFH.
R10 D6 to D0 YMINn Sets the minimum value of the Y address in the window access mode.
The Y address is incremented up to the maximum value set by the MAX. Y address register (R11),
and then initialized to the address value set by this command.
Set 00H to 5FH.
R11 D6 to D0 YMAXn Sets the maximum value of the Y address in the window access mode.
The Y address is incremented up to the address value set by this command, and then initialized to
the minimum address value set by the MIN. Y address register (R10).
Set 00H to 5FH.
Preliminary Product Information S16789EJ2V0PM
74
µ
PD161606
(4/9)
Register Bit Symbol Function
R15 D6 to D0 P1SLn This is the start Y address register (00H to 5FH) of partial RAM data display area 1.
During partial display or OSD display, the RAM data display area extends up to the line set with
this command and the line count register (R16) of the partial RAM data display area 1.
R16 D6 to D0 P1AWn This is the line count register (00H to 60H) of partial RAM data display area 1.
During partial display or OSD display, the RAM data display area is from to the line set with this
command and the start Y address register (R15) of partial RAM data display area 1.
R17 D0 P1DLn Sets the display start line of partial RAM data display area 1 (00H to 168H).
The display start line of area 1 is specified with R17 and R18.
Perform settings so as to preserve the following relationship.
R17.R18+R16R21.R22
R18 D7 to D0 P1DLn Sets the display start line of partial RAM display area 1.
R19 D6 to D0 P2STn This is the start Y address register (00H to 5FH) of partial RAM data display area 2.
During partial display or OSD display, the RAM data display area extends up to the line set with
this command and the line count register (R20) of partial RAM data display area 2.
R20 D6 to D0 P2AWn This is the line count register (00H to 60H) of partial RAM data display area 2.
During partial display or OSD display, the RAM data display area is from to the line set with this
command and the start Y address register (R19) of partial RAM data display area 2.
R21 D0 P2DLn Sets the display start line of partial RAM data display area 2 (00H to 168H).
The display start line of area 1 is specified with R21 and R22.
Perform settings so as to preserve the following relationship.
R17.R18+R16R21.R22
R22 D7 to D0 P2DLn Sets the display start line of partial RAM display area 2.
R23 D2,
D1,
D0
PGR,
PGC,
PGB
Partial OFF display color register
Sets the screen color for areas other than the partial display area, during partial display (R0: DTY
= 1). One color can be selected from among 8 colors (1 bit each for R, G, and B) and be set as
the off color.
The relationships between each color data and this register’s bits are as follows. These
relationships do not depend on the ADC value. Following transfer, this command is executed
from the timing at which the next line data is output.
PGR: OFF of R = 0, ON = 1
PGG: OFF of G = 0, ON = 1
PGB: OFF of B = 0, ON = 1
R21 R22 Start line
00H 00H Setting prohibited
00H 01H 1st line
01H 67H 359th line
01H 68H 360th line
R17 R18 Start line
00H 00H Setting prohibited
00H 01H 1st line
01H 67H 359th line
01H 68H 360th line
Preliminary Product Information S16789EJ2V0PM 75
µ
PD161606
When registers R24 to R34 are written to, the serial interface for
µ
PD161645 control is started and data transfer starts.
(5/9)
Register Bit Symbol Function
D6 RGONR For details, refer to the
µ
PD161645 preliminary products information.
D5 VS4ON For details, refer to the
µ
PD161645 preliminary products information.
D4 VS3ON For details, refer to the
µ
PD161645 preliminary products information.
D3 VS2ON For details, refer to the
µ
PD161645 preliminary products information.
D2 VD2ON For details, refer to the
µ
PD161645 preliminary products information.
D1 VD1ON For details, refer to the
µ
PD161645 preliminary products information.
R24
D0 DCON For details, refer to the
µ
PD161645 preliminary products information.
D4 VRSEL2 For details, refer to the
µ
PD161645 preliminary products information.
D3 VRSEL1 For details, refer to the
µ
PD161645 preliminary products information.
D2 VRSEL0 For details, refer to the
µ
PD161645 preliminary products information.
D1 VMS For details, refer to the
µ
PD161645 preliminary products information.
R25
D0 VCD2 For details, refer to the
µ
PD161645 preliminary products information.
D6 FUP For details, refer to the
µ
PD161645 preliminary products information.
D5 CLS1 For details, refer to the
µ
PD161645 preliminary products information.
D4 CLS0 For details, refer to the
µ
PD161645 preliminary products information.
D3 FS3 For details, refer to the
µ
PD161645 preliminary products information.
D2 FS2 For details, refer to the
µ
PD161645 preliminary products information.
D1 FS1 For details, refer to the
µ
PD161645 preliminary products information.
R26
D0 FS0 For details, refer to the
µ
PD161645 preliminary products information.
D6 ACS1 For details, refer to the
µ
PD161645 preliminary products information.
D5 ACS0 For details, refer to the
µ
PD161645 preliminary products information.
D4 EXRV For details, refer to the
µ
PD161645 preliminary products information.
D3 VSEL2 For details, refer to the
µ
PD161645 preliminary products information.
D2 VSEL1 For details, refer to the
µ
PD161645 preliminary products information.
D1 VSEL0 For details, refer to the
µ
PD161645 preliminary products information.
R27
D0 RGON For details, refer to the
µ
PD161645 preliminary products information.
D6 LACS1 For details, refer to the
µ
PD161645 preliminary products information.
D5 LACS0 For details, refer to the
µ
PD161645 preliminary products information.
D4 LFS3 For details, refer to the
µ
PD161645 preliminary products information.
D3 LFS2 For details, refer to the
µ
PD161645 preliminary products information.
D2 LFS1 For details, refer to the
µ
PD161645 preliminary products information.
D1 LFS0 For details, refer to the
µ
PD161645 preliminary products information.
R28
D0 LPM For details, refer to the
µ
PD161645 preliminary products information.
D5 0E2SEL For details, refer to the
µ
PD161645 preliminary products information.
D4 0E1SEL For details, refer to the
µ
PD161645 preliminary products information.
D3 STVSEL For details, refer to the
µ
PD161645 preliminary products information.
D2 SCN2 For details, refer to the
µ
PD161645 preliminary products information.
D1 SCN1 For details, refer to the
µ
PD161645 preliminary products information.
R29
D0 SCN0 For details, refer to the
µ
PD161645 preliminary products information.
D4 COMHI For details, refer to the
µ
PD161645 preliminary products information.
D3 COMSEL For details, refer to the
µ
PD161645 preliminary products information.
R30
D2 COMON For details, refer to the
µ
PD161645 preliminary products information.
R31 D7 to D0 Dan For details, refer to the
µ
PD161645 preliminary products information.
R32 D7 to D0 CDAn For details, refer to the
µ
PD161645 preliminary products information.
D5 PONM For details, refer to the
µ
PD161645 preliminary products information.
D4 PON For details, refer to the
µ
PD161645 preliminary products information.
D3 DUPF1 For details, refer to the
µ
PD161645 preliminary products information.
D2 DUPF0 For details, refer to the
µ
PD161645 preliminary products information.
D1 PUPT1 For details, refer to the
µ
PD161645 preliminary products information.
R33
D0 PUPT0 For details, refer to the
µ
PD161645 preliminary products information.
R34 D0 RSE For details, refer to the
µ
PD161645 preliminary products information.
Preliminary Product Information S16789EJ2V0PM
76
µ
PD161606
(6/9)
Register Bit Symbol Function
R45 D0 OC This bit is used for calibration.
The time from calibration start command execution until calibration stop command execution
becomes the time for 1 line.
0: Calibration stop
1: Calibration start
D5, D4 DIVSLn Selects the horizontal interval clock division ratio.
R46
D3 to D0 HCKSLn Selects horizontal interval clock count during partial mode.
Horizontal interval clock = [30 + (2 x HCKSLn setting value)] clock
R50 D5 to D0 LNSELn Selects gate scan line count.
R51 D1, D0 NLINE1
NLINE0
Selects n line inversion line count.
R52 D1, D0 GSMLN1
GSMLN0
Selects partial non-display area gate scan operation.
GSMLN1 GSMLN0 Partial non-display area gate scan
0 0 Gate scan stop
0 1 Gate scan during 3 frames interval
1 0 Gate scan during 5 frames interval
1 1 Setting prohibited
DIVSL1 DIVSL0 Division ratio Horizontal interval time
0 0 1 1 x HCKSLn setting value
0 1 2 2 x HCKSLn setting value
1 0 4 4 x HCKSLn setting value
1 1 Setting prohibited
HCKSL3 HCKSL2 HCKSL1 HCKSL0 Horizontal
interval clock
count
Horizontal interval time
0 0 0 0 30 30 x DIVSLn setting value
0 0 0 1 32 32 x DIVSLn setting value
0 0 1 0 34 34 x DIVSLn setting value
1 1 1 0 58 58 x DIVSLn setting value
1 1 1 1 Setting
prohibited
LNSEL5 LNSEL4 LNSEL3 LNSEL2 LNSEL1 LNSEL0 Line count
0 0 0 0 0 0 16 lines
0 0 0 0 0 1 24 lines
0 0 0 0 1 0 32 lines
1 0 1 0 1 1 360 lines
Settings other than above prohibited
NLINE1 NLINE0 n line inversion line count
0 0 n = 1
0 1 n = 2
1 0 n = 4
1 1 n = 8
Preliminary Product Information S16789EJ2V0PM 77
µ
PD161606
(7/9)
Register Bit Symbol Function
D1 GOE2ON Controls GOE2 output.
0: Normal operation
1: GOE2 output fixed to Low-level. (All gates ON)
R59
D0 GOE1ON Selects gate scan ON/OFF based on GOE1 output.
0: Gate scan OFF (GOE1 fixed to Low-level)
1: Normal operation
R65 D1, D0 DCSELn Selects DCCLK frequency.
R75 D7 to D0 HBPn Sets horizontal direction back porch interval for RGB interface.
Horizontal back port interval = Setting value x DOTCLK unit
Set the horizontal back porch interval to 3 or higher.
R76 D7 to D0 VBPn Sets vertical direction back porch interval for RGB interface.
Vertical back porch interval = Setting value x HSYNC unit
Set the horizontal back porch interval to 1 or higher.
R77 D0 DMSEL Sets whether or not to perform dummy output to the first line of a frame.
0: Dummy line
1: No dummy line
D1 GSSEL Inverts the GSTB signal polarity.
0: Low active
1: High active
R78
D0 GCSEL Inverts the GCLK signal’s polarity.
0: When the HSYNC active level is input, GCLK = High results and changes to Low at the timing
set to R79.
1: When the HSYNC active level is input, GCLK = Low results and changes to High at the timing
set to R79.
R79 D7 to D0 GCEDn Sets the GCLK inversion timing during normal operation.
R80 D7 to D0 EQSTn Sets the equalize interval start position in the horizontal interval during normal operation.
R81 D7 to D0 EQEDn Sets the equalize interval end position in the horizontal during normal operation.
R82 D7 to D0 APSTn Sets the start position of the amplifier driver interval in the horizontal interval during normal
operation.
R83 D7 to D0 APEDn Sets the end position of the amplifier driver interval in the horizontal interval during normal
operation.
R86 D7 to D0 GOSTn Sets the start position (rising edge position) of the GOE1 signal in the horizontal interval during
normal operation
R87 D7 to D0 GOEDn Sets the stop position (falling edge position) of the GOE1 signal in the horizontal interval during
normal operation
R88 D5 to D0 PGCEDn Sets the GCLK inversion timing in the partial display mode.
R89 D5 to D0 PEQSTn Sets the start position of the equalize interval in the horizontal interval in the partial display mode.
R90 D5 to D0 PEQEDn Sets the stop position of the equalize interval in the horizontal interval in the partial display mode.
R91 D5 to D0 PAPSTn Sets the start position of the amplifier drive interval in the horizontal interval in the partial display
mode.
R92 D5 to D0 PAPEDn Sets the stop position of the amplifier drive interval in the horizontal interval in the partial display
mode.
R93 D5 to D0 PGOSTn Sets the start position (rising edge position) of the GOE1 signal in the horizontal interval during
the partial display mode.
R94 D5 to D0 PGOEDn Sets the stop position (falling edge position) of the GOE1 signal in the horizontal interval during
the partial display mode.
DCSEL1 DCSEL0 Output frequency
0 0 Output stop
0 1 fOSC/30
1 0 fOSC/20
1 1 fOSC/10
Preliminary Product Information S16789EJ2V0PM
78
µ
PD161606
(8/9)
Register Bit Symbol Function
D4 to D2 RBIASn Adjust the bias of the
γ
- operational amplifier. R95
D1, D0 BBIASn Adjust the bias of the operational amplifier in the bias circuit.
D5 to D2 ABIASn Adjust the bias of the output operational amplifier. R96
D1, D0 OPADJn Adjust the capacity of the output operational amplifier.
D3 GSELPH Sets the output source power supply for the black data on the positive side of the
γ
- compensation
resistor.
0: Sets power supply voltage. (Outputs VS, VSS potential)
1: Uses internal
γ
- output adjustment circuit. (Uses VPH, VNH, VPL, and VNL outputs)
D2 GSELNH Sets the output source power supply for the white data on the negative side of the
γ
- compensation
resistor.
0: Sets power supply voltage. (Outputs VS, VSS potential)
1: Uses internal
γ
- output adjustment circuit. (Uses VPH, VNH, VPL, and VNL outputs)
D1 GSELPL Sets the output source power supply for the white data on the positive side of the
γ
- compensation
resistor.
0: Sets power supply voltage. (Outputs VS, VSS potential)
1: Uses internal
γ
- output adjustment circuit. (Uses VPH, VNH, VPL, and VNL outputs)
R100
D0 GSELNL Sets the output source power supply for the black data on the negative side of the
γ
- compensation
resistor.
0: Sets power supply voltage. (Outputs VS, VSS potential)
1: Uses internal
γ
- output adjustment circuit. (Uses VPH, VNH, VPL, and VNL outputs)
R101 D5 to D0 GPHn Positive-polarity
γ
- amplitude adjustment register.
Refer to 5.5.1 Amplitude adjustment with internal amplifier.
R102 D5 to D0 GNHn Negative-polarity
γ
- amplitude adjustment register.
Refer to 5.5.1 Amplitude adjustment with internal amplifier.
R103 D5 to D0 GPLn Positive-polarity
γ
- amplitude adjustment register.
Refer to 5.5.1 Amplitude adjustment with internal amplifier.
R104 D5 to D0 GNLn Negative-polarity
γ
- amplitude adjustment register.
Refer to 5.5.1 Amplitude adjustment with internal amplifier.
D7 to D4 VDRPn Positive-polarity
γ
- amplitude adjustment register.
Refer to 5.5.2 Amplitude adjustment by built-in resistance.
R105
D3 to D0 VSRPn Positive-polarity
γ
- amplitude adjustment register.
Refer to 5.5.2 Amplitude adjustment by built-in resistance.
D7 to D4 VLRPn Positive-polarity
γ
- tilt adjustment register. Refer to 5.5.3 Inclination adjustment. R106
D3 to D0 VHRPn Positive-polarity
γ
- tilt adjustment register. Refer to 5.5.3 Inclination adjustment.
D6 to D4 VGR1Pn Positive-polarity
γ
- fine adjustment register. Refer to 5.5.4 Fine tunig adjustment. R107
D2 to D0 VGR0Pn Positive-polarity
γ
- fine adjustment register. Refer to 5.5.4 Fine tunig adjustment.
D6 to D4 VGR3Pn Positive-polarity
γ
- fine adjustment register. Refer to 5.5.4 Fine tunig adjustment. R108
D2 to D0 VGR2Pn Positive-polarity
γ
- fine adjustment register. Refer to 5.5.4 Inclination adjustment.
D6 to D4 VGR5Pn Positive-polarity
γ
- tilt adjustment register. Refer to 5.5.3 Inclination adjustment. R109
D2 to D0 VGR4Pn Positive-polarity
γ
- tilt adjustment register. Refer to 5.5.3 Inclination adjustment.
D6 to D4 VGR7Pn Positive-polarity
γ
- tilt adjustment register. Refer to 5.5.3 Inclination adjustment. R110
D2 to D0 VGR6Pn Positive-polarity
γ
- tilt adjustment register. Refer to 5.5.3 Inclination adjustment.
D7 to D4 VDRNn Negative-polarity
γ
- amplitude adjustment register.
Refer to 5.5.2 Amplitude adjustment by built-in resistance.
R111
D3 to D0 VSRNn Negative-polarity
γ
- amplitude adjustment register.
Refer to 5.5.2 Amplitude adjustment by built-in resistance.
D7 to D4 VLRNn Negative-polarity
γ
- inclination adjustment register. Refer to 5.5.3 Inclination adjustment. R112
D3 to D0 VHRNn Negative-polarity
γ
- inclination adjustment register. Refer to 5.5.3 Inclination adjustment.
D6 to D4 VGR1Nn Negative-polarity
γ
- fine adjustment register. Refer to 5.5.4 Fine tunig adjustment. R113
D2 to D0 VGR0Nn Negative-polarity
γ
- fine adjustment register. Refer to 5.5.4 Inclination adjustment.
Preliminary Product Information S16789EJ2V0PM 79
µ
PD161606
(9/9)
Register Bit Symbol Function
D6 to D4 VGR3Nn Negative-polarity
γ
- fine adjustment register. Refer to 5.5.4 Fine tuningadjustment. R114
D2 to D0 VGR2Nn Negative-polarity
γ
- fine adjustment register. Refer to 5.5.4 Fine tuning adjustment.
D6 to D4 VGR5Nn Negative-polarity
γ
- inclination adjustment register. Refer to 5.5.3 Inclination adjustment. R115
D2 to D0 VGR4Nn Negative-polarity
γ
- inclination adjustment register. Refer to 5.5.3 Inclination adjustment.
D6 to D4 VGR7Nn Negative-polarity
γ
- inclination adjustment register. Refer to 5.5.3 Inclination adjustment. R116
D2 to D0 VGR6Nn Negative-polarity
γ
- inclination adjustment register. Refer to 5.5.3 Inclination adjustment.
R117 D0 NWBSL Switches normally white and normally black.
0: Normally white
1: Normally black
R118 D2 to D0 E2PROM OPC set
R119 D7 to D0 E2PROM write address specify
R120 D6 to D0 E2PROM write register address specify
R121 D7 to D0 E2PROM fabrication information register
R122 D7 to D0 E2PROM fabrication information register
R123 D7 to D0 E2PROM fabrication information register
R124 D7 to D0 E2PROM read start address specify
R125 D1, D0 E2PROM OSC divide register
Selects the serial clock frequency of E2PROM interface.
R126 D1, D0
µ
PD161645 OSC divide register
Selects the serial clock frequency of the
µ
PD161645 interface.
R127 D7 to D0 E2PROM read stop register
D1 D0 E2PROM interface serial clock frequency
0 0 Interface oscillation frequency/2
0 1 Interface oscillation frequency/4
1 0 Interface oscillation frequency/8
1 1 Interface oscillation frequency/16
D1 D0
µ
PD161645 interface serial clock frequency
0 0 Interface oscillation frequency/1
0 1 Interface oscillation frequency/2
1 0 Interface oscillation frequency/4
1 1 Interface oscillation frequency/6
D1 D0 E2PROM interface serial clock frequency
0 0 Interface oscillation frequency/2
0 1 Interface oscillation frequency/4
1 0 Interface oscillation frequency/8
1 1 Interface oscillation frequency/16
Preliminary Product Information S16789EJ2V0PM
80
µ
PD161606
10. ELECTRICAL SPECIFICATIONS
Absolute Maximum Ratings (TA = 25°C, VSS = 0 V)
Parameter Symbol Ratings Unit
Power supply voltage VCC1 –0.5 to +3.0 V
Power supply voltage VCC2 –0.5 to +6.0 V
Power supply voltage VCC3 –0.5 to +6.0 V
Power supply voltage VS –0.5 to +6.0 V
Power supply voltage VSG –0.5 to +6.0 V
Input voltage VI1 Note1 –0.5 to VCC2 + 0.5 V
Input voltage VI2 Note2 –0.5 to VS + 0.5 V
Input current II ±10 mA
Output current IO ±10 mA
Operating ambient temperature TA –40 to +85 °C
Storage temperature Tstg –55 to +125 °C
Notes 1. Power supply system is pin of VCC2.
2. Power supply system is pin of VS.
Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for
any parameter. That is, the absolute maximum ratings are rated values at which the product is on the
verge of suffering physical damage, and therefore the product must be used under conditions that
ensure that the absolute maximum ratings are not exceeded.
Recommended Operating Conditions (TA = 40 to +85°C, VSS = 0 V)
Parameter Symbol MIN. TYP. MAX. Unit
Power supply voltage VCC1 1.65 2.5 V
Power supply voltage VCC2 1.65 3.3 V
Power supply voltage VCC3 1.65 3.3 V
Power supply voltage VS 4.0 5.0 5.5 V
Power supply voltage VSG 4.0 5.0 5.5 V
Input voltage VI1 Note1 0 VCC2 V
Input voltage VI2 Note2 0 VS V
Notes 1. Power supply system is pin of VCC2.
2. Power supply system is pin of VS.
Preliminary Product Information S16789EJ2V0PM 81
µ
PD161606
Electrical Specifications (Unless Otherwise Specified, TA = 40 to +85°C, VCC1 = 1.7 to 2.5 V, VCC2 = 1.7 to 3.3 V,
VCC3 = 1.7 to 3.3 V, VSS = 0 V)
Parameter Symbol Condition MIN.
TYP.Note1 MAX. Unit
Input leakage ILI ±10
µ
A
High level input voltage VIH VCC2 0.8 VCC2 V
Low level input voltage VIL VCC2 0.2 VCC2 V
VOH1 VCC2, IOUT = 100
µ
A 0.8 VCC2 V High level output voltage
VOH2 VCC3, IOUT = 100
µ
A 0.8 VCC3 V
Low level output voltage VOL1 VCC2, IOUT = 100
µ
A 0.2 VCC2 V
VOL2 VCC3, IOUT = 100
µ
A 0.2 VCC3 V
High level input current IIH VCC2 3
µ
A
Low level input current IIL VCC2 3
µ
A
SF_VCC1 output voltage SF_VCC1 ISFVCC1 = 10 mA 1.65 2.0 2.5 V
SF_VCC1 output resistor RSFVCC1 1 10
Source driver output voltage
range
VP-P VSS + 0.1 VS 0.1 V
IVOH VOUT = VS 0.1,
VX = VOUT 0.5 V
T.B.D.
µ
A Source driver output current
IVOL VOUT = VSS + 0.1,
VX = VOUT + 0.5 V
T.B.D.
µ
A
Source driver output bias VO T.B.D. T.B.D. mV
tPHLSI CL = T.B.D. pF T.B.D. T.B.D.
µ
s Source driver output delay
time tPLHSI CL = T.B.D. pF T.B.D. T.B.D.
µ
s
ICC1 VCC1 (when non-access CPU) T.B.D. T.B.D.
µ
A
ICC2 VCC2 (when non-access CPU) T.B.D. T.B.D.
µ
A
ICC3 VCC3 (when non-access CPU) T.B.D. T.B.D.
µ
A
IS VS T.B.D. T.B.D.
µ
A
ISC VSG T.B.D. T.B.D.
µ
A
VCC1 (stand-by mode) 10
µ
A
VCC2 (stand-by mode) Note 2 10
µ
A
VCC3 (stand-by mode) 10
µ
A
VS (stand-by mode) 10
µ
A
Current consumption
ISTBY
VSG (stand-by mode) 10
µ
A
Notes 1. TYP. values are reference values when TA = 25°C
2. VSTBY = L
Preliminary Product Information S16789EJ2V0PM
82
µ
PD161606
AC Characteristics (Unless Otherwise Specified, TA = 40 to +85°C, VCC1 = 1.7 to 2.5 V, VCC2 = 1.7 to 3.3 V,
VCC3 = 1.7 to 3.3 V, VSS = 0 V)
(a) 18-/16-bit RGB interface
DOTCLK
RGB
00
to RGB
25
HSYNC
VSYNC
Horizontal system
Vertiacal system
RGB
00
to RGB
25
VSYNC
1st pixel 2nd pixel Last Data
1st line 2nd line Last line
HSYNC
t
CLK
t
DS
t
DH
t
VSS
t
HSW
t
HS
t
HBP
t
VBP
t
VSW
t
VS
t
HSS
t
HSH
Parameter Symbol Condition MIN. TYP. MAX. Unit
Dot clock cycle time tCLK 114 ns
Dot clock high level pulse width tCLKH 40 ns
Dot clock low level pulse width tCLKL 40 ns
Data setup time tDS 10 ns
Data hold time tDH 10 ns
HSYNC pulse width tHSW 1 DOTCLK
HSYNC setup time tHSS 10 ns
HSTNC hold time tHSH 10 ns
Horizon period back porch time tHBP 3 DOTCLK
VSYNC pulse width tVSW 1 HS
VSYNC setup time tVSS 10 ns
Vertical period back porch time tVBP 1 HS
Remarks 1. The input signal's rise/fall times (tr and tf) are rated as 15 ns or less.
2. All timing is rated based on 20 to 80% of VCC1.
3. The minimum number of DOTCLK clocks that should be input per 1 horizontal interval is as follows.
DOTCLK count for 1 horizontal interval (DOTCLK count of HSYNC Low interval)
+ (horizontal back porch interval) + (pixel display interval 240 times) + 1 = 245
4. The number of HSYNC that should be input per 1 frame interval as follows.
HSYNC for 1 frame interval (HSYNC count during VSYNC Low interval) + (vertical back porch interval)
+ (pixel display interval)
Preliminary Product Information S16789EJ2V0PM 83
µ
PD161606
(b) 6-bit RGB interface
DOTCLK
RGB20 to RGB25
RGB20 to RGB25
HSYNC
HSYNC
VSYNC
VSYNC
Last data
Last line
t
CLK
t
DS
t
DH
t
VSS
t
HBP
t
VBP
t
VS
t
VSW
t
HSS
t
HSH
t
HSW
t
HS
ENABLE
R Data G Data B Data
1st line
Horizontal system
Vertical system
Parameter Symbol Condition MIN. TYP. MAX. Unit
Dot clock cycle time tCLK 38 ns
Dot clock high level pulse width tCLKH 15 ns
Dot clock low level pulse width tCLKL 15 ns
Data setup time tDS 10 ns
Data hold time tDH 10 ns
HSYNC pulse width tHSW 3 DOTCLK
HSYNC setup time tHSS 10 ns
HSTNC hold time tHSH 10 ns
Horizon period back porch time tHBP 9 DOTCLK
VSYNC pulse width tVSW 1 HS
VSYNC setup time tVSS 10 ns
Vertical period back porch time tVBP 1 HS
Remarks 1. The input signal's rise/fall times (tr and tf) are rated as 15 ns or less.
2. All timing is rated based on 20 to 80% of VCC1.
3. The minimum number of DOTCLK clocks that should be input per 1 horizontal interval is as follows.
DOTCLK count for 1 horizontal interval (DOTCLK count of HSYNC Low interval)
+ (horizontal back porch interval) + (pixel display interval 240 times * 3) + 3 = 735
4. The number of HSYNC that should be input per 1 frame interval as follows.
HSYNC for 1 frame interval (HSYNC count during VSYNC Low interval) + (vertical back porch interval)
+ (pixel display interval)
Preliminary Product Information S16789EJ2V0PM
84
µ
PD161606
(c) i80 CPU interface
tAS8 tAH8
tCCLW, tCCLR
tCYC8
tCCHR, tCCHW
tDH8
tDS8
tACC8 tOH8
RS
/CS
/WR, /RD
D0 to D7
D0 to D7
(Write)
(Read)
tftr
(Unless Otherwise Specified, TA = 40 to +85°C, VCC1 = 1.7 to 2.5 V, VCC2 = 1.7 to 3.3 V, VCC3 = 1.7 to 3.3 V, VSS = 0 V)
Parameter Symbol Condition MIN. TYP. MAX. Unit
Address hold time tAH8 RS 0 ns
Address setup time tAS8 RS 0 ns
Read (Register) 250 ns
Read (RAM) 450 ns
System cycle time tCYC8
Write 120 ns
Control low-level pulse width (/WR) tCCLW /WR 60 ns
/RD (Register) 140 ns Control low-level pulse width (/RD) tCCLR
/RD (RAM) 320 ns
Control high-level pulse width (/WR) tCCHW /WR 40 ns
/RD (Register) 80 ns Control high-level pulse width (/RD) tCCHR
/RD (RAM) 80 ns
Write Read time TW to R8 /WR (RAM), /RD (RAM) T.B.D. ns
Data setup time tDS8 D0 to D7 50 ns
Data hold time tDH8 D0 to D7 0 ns
/RD access time (Register) 120 ns
/RD access time (RAM)
tACC8 D0 to D7, CL = 100 pF
300 ns
Output disable time tOH8 D0 to D7, CL = 100 pF 100 ns
Remarks 1. The input signal's rise/fall times (tr and tf) are rated as 15 ns or less.
2. All timing is rated based on 20 to 80% of VCC2.
Preliminary Product Information S16789EJ2V0PM 85
µ
PD161606
(d) M68 CPU interface
tAS6 tAH6
tEWHR, tEWHW
tCYC6
tEWLR, tEWLW
tDH6
tDS6
tACC6 tOH6
RS
R,/W
/CS
E
tftr
D0 to D7
D0 to D7
(Write)
(Read)
(Unless Otherwise Specified, TA = 40 to +85°C, VCC1 = 1.7 to 2.5 V, VCC2 = 1.7 to 3.3 V, VCC3 = 1.7 to 3.3 V,
VSS = 0 V)
Parameter Symbol Condition MIN. TYP. MAX. Unit
Address hold time tAH6 RS 0 ns
Address setup time tAS6 RS 0 ns
Read (Register) 250 ns
Read (RAM) 450 ns
System cycle time tCYC6
Write 120 ns
Data setup time tDS6 D0 to D7 50 ns
Data hold time tDH6 D0 to D7 0 ns
Access time (Register) 120 ns
Access time (RAM)
tACC6 D0 to D7, CL = 100 pF
300 ns
Write Read time TW to R6 /WR (RAM), /RD (RAM) T.B.D. ns
Output disable time tOH6 D0 to D7, CL = 100 pF 100 ns
Enable high pulse width Read tEWHR E (Register) 140 ns
E (RAM) 320 ns
Write tEWHW E 60 ns
Enable low pulse width Read tEWLR E (Register) 80 ns
E (RAM) 80 ns
Write tEWLW E 40 ns
Remarks 1. The input signal's rise/fall times (tr and tf) are rated as 15 ns or less.
2. All timing is rated based on 20 to 80% of VCC2.
Preliminary Product Information S16789EJ2V0PM
86
µ
PD161606
(e) Serial interface
SCL
SI
/CS
tCSS tCSH
tSCYC
tftrtSHW
tSLW
tSDS tSDH
tSAS tSAH
RS
tACCS
SO
R,/W
tSWRS tSWRH
tOHS
(Unless Otherwise Specified, TA = 40 to +85°C, VCC1 = 1.7 to 2.5 V, VCC2 = 1.7 to 3.3 V, VCC3 = 1.7 to 3.3 V,
VSS = 0 V)
Parameter Symbol Condition MIN. TYP. MAX. Unit
Read 300 ns Serial clock cycle tSCYC
Write 66 ns
Read 140 ns SCL high level pulse width tSHW
Write 25 ns
Read 140 ns SCL low level pulse width tSLW
Write 25 ns
/CS set up time tCSS /CS 30 ns
/CS hold time tCSH /CS 20 ns
RS set up time tSAS RS 30 ns
RS hold time tSAH RS 20 ns
R,/W set up time tSWRS R,/W 30 ns
R,/W hold time tSWRH R,/W 20 ns
Data set up time tSDS SI 20 ns
Data hold time tSDH SI 10 ns
Access time tACCS SCL = 100 pF 120 ns
Output disable time tOHS SCL = 100 pF 100 ns
Remarks 1. The rise and fall times (tr and tf) of input signals are rated at 15 ns or less.
2. All timing is rated based on 20 to 80% of VCC2.
Preliminary Product Information S16789EJ2V0PM 87
µ
PD161606
(f) Common
Parameter Symbol Condition MIN.
TYP.Note1 MAX. Unit
Calibration setting time tcal Note2, fFRAME = 60 Hz 44.3
µ
s
(frame frequency) (fFRAME0) (60) (Hz)
Frame frequency fFRAME2 Calibrated Note3 60 Hz
Frame frequency fFRAME3 Calibrated Note4 60 Hz
Frame frequency fFRAME4 Before calibration, OSCSEL = L T.B.D. T.B.D. T.B.D. kHz
fOSC1 OSCSEL = L T.B.D. T.B.D. T.B.D. kHz Oscillation frequency
fOSC2 VCC1 = 2.3 V, OSCSEL = H,
R = T.B.D. k Note5
T.B.D. T.B.D. T.B.D. kHz
External oscillation frequency fOSCIN 338 1745 kHz
Reset pulse width at the time
of power supply injection
tVR VSTBY = L, SF_VCC1 = 4.7
µ
F 2 ms
Reset pulse width tRW 2
µ
s
Reset time tR /RESET to interface operation 500 ns
Notes 1. TYP. values are reference values when TA = 25°C.
2. The relationship between the frame frequency and the calibration setting time is as follows.
tcal = 1/(fFRAME x (360 + 16))
3. Measured at TA = –40 to +85°C, after calibration at frame frequency = 60 Hz, TA = 25°C exactly.
4. Measured at ±5°C, after calibration at frame frequency = 60 Hz exactly.
5. Since oscillation frequency is changed with a parasitism capacity value in external resistance, please refer to as
a standard.
Preliminary Product Information S16789EJ2V0PM
88
µ
PD161606
11. EXAMPLE OF
µ
PD161606 AND CPU CONNECTION
Examples of
µ
PD161606 and CPU connection are shown below. In the example below, RS pin control in parallel
interface mode is described for the case when the least significant bit of the address bus is being used.
V
SS
V
DD
/CS
PortorA0
D0toD7
/RD
/WR
/RESET
CPU
(1)i80seriesformat (2)M68seriesformat
µ
PD161606 CPU
µ
PD161606
HSYNC
VSYNC
RGB
00
toRGB
25
DOTCLK
V
SS1
V
DDIO
/CS
RS
D0toD7
/RD
/WR
/RESET
HSYNC
VSYNC
RGB
00
toRGB
25
DOTCLK
V
SS
V
DD
/CS
PortorA0
D0toD7
/RD
/WR
/RESET
HSYNC
VSYNC
RGB
00
toRGB
25
DOTCLK
V
SS1
V
DDIO
/CS
RS
D0toD7
/RD
/WR
/RESET
HSYNC
VSYNC
RGB
00
toRGB
25
DOTCLK
Preliminary Product Information S16789EJ2V0PM 89
µ
PD161606
RIVISION HISTORY
Edition/ Page Description
Date This
edition
Previous
edition
Type of
revision
Location
Preliminary Product Information S16789EJ2V0PM
90
µ
PD161606
1
2
3
4
VOLTAGE APPLICATION WAVEFORM AT INPUT PIN
Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the
CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may
malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed,
and also in the transition period when the input level passes through the area between VIL (MAX) and
VIH (MIN).
HANDLING OF UNUSED INPUT PINS
Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is
possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS
devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed
high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND
via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must
be judged separately for each device and according to related specifications governing the device.
PRECAUTION AGAINST ESD
A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as
much as possible, and quickly dissipate it when it has occurred. Environmental control must be
adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that
easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static
container, static shielding bag or conductive material. All test and measurement tools including work
benches and floors should be grounded. The operator should be grounded using a wrist strap.
Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for
PW boards with mounted semiconductor devices.
STATUS BEFORE INITIALIZATION
Power-on does not necessarily define the initial status of a MOS device. Immediately after the power
source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does
not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the
reset signal is received. A reset operation must be executed immediately after power-on for devices
with reset functions.
NOTES FOR CMOS DEVICES
µ
PD161606
Reference Documents
NEC Semiconductor Device Reliability/Quality Control System (C10983E)
Quality Grades On NEC Semiconductor Devices (C11531E)
The information contained in this document is being issued in advance of the production cycle for the
product. The parameters for the product may change before final production or NEC Electronics
Corporation, at its own discretion, may withdraw the product prior to its production.
No part of this document may be copied or reproduced in any form or by any means without the prior written consent
of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property
rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other
liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
patents, copyrights or other intellectual property rights of NEC Electronics or others.
Descriptions of circuits, software and other related information in this document are provided for illustrative purposes
in semiconductor product operation and application examples. The incorporation of these circuits, software and
information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC
Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of
these circuits, software and information.
While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products,
customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and
anti-failure features.
NEC Electronics products are classified into the following three quality grades: "Standard", "Special", and "Specific".
The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated
"quality assurance program" for a specific application. The recommended applications of an NEC Electronics
product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC
Electronics products before using it in a particular application.
The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to
determine NEC Electronics' willingness to support a given application.
(Note)
M5 02. 11-1
(1)
(2)
"NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its
majority-owned subsidiaries.
"NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as
defined above).
Computers, office equipment, communications equipment, test and measurement equipment, audio and
visual equipment, home electronic appliances, machine tools, personal electronic equipment and
industrial robots.
Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life
support).
Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support
systems and medical equipment for life support, etc.
"Standard":
"Special":
"Specific":