DATA SHEET BIPOLAR ANALOG INTEGRATED CIRCUIT PC8187TB UE D SILICON MMIC HI-IP3 FREQUENCY UP-CONVERTER FOR WIRELESS TRANSCEIVER DESCRIPTION The PC8187TB is a silicon monolithic integrated circuit designed as frequency up-converter for wireless transceiver. This IC is higher operating frequency, lower distortion and higher conversion gain than conventional PC8163TB. This IC is manufactured using NEC's 30 GHz fmax UHS0 (Ultra High Speed Process) silicon bipolar process. IN FEATURES * High output frequency : fRFout = 0.8 to 2.5 GHz * High-density surface mounting : 6-pin super minimold package : VCC = 2.7 to 3.3 V * Higher IP3 : OIP3 = +10 dBm @ fRFout = 1.9 GHz APPLICATION * TDMA, PCS, CDMA etc. NT * Supply voltage ORDERING INFORMATION Part Number Marking 6-pin super minimold C3G SC O PC8187TB-E3-A Package Remark Supplying Form * Embossed tape 8 mm wide. * Pin 1, 2, 3 face the tape perforation side. * Qty 3 kpcs/reel. To order evaluation samples, please contact your local sales office. DI (Part number for sample order: PC8187TB-A) Caution Electro-static sensitive devices The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Document No. P15106EJ2V0DS00 (2nd edition) Date Published January 2001 N CP(K) The mark shows major revised points. PC8187TB CONTENTS PIN CONNECTIONS.............................................................................................................................3 2. SERIES PRODUCTS............................................................................................................................3 3. BLOCK DIAGRAM ...............................................................................................................................3 4. SYSTEM APPLICATION EXAMPLES (SCHEMATICS OF IC LOCATION IN THE SYSTEM) ...............................................................................................................................................4 5. PIN EXPLANATION..............................................................................................................................5 6. ABSOLUTE MAXIMUM RATINGS......................................................................................................6 7. RECOMMENDED OPERATING RANGE............................................................................................6 8. ELECTRICAL CHARACTERISTICS ....................................................................................................6 9. OTHER CHARACTERISTICS, FOR REFERENCE PURPOSES ONLY .........................................7 IN UE D 1. NT 10. TEST CIRCUITS...................................................................................................................................8 10.1 TEST CIRCUIT 1 (fRFout = 0.83 GHz) .........................................................................................................8 10.2 TEST CIRCUIT 2 (fRFout = 1.9 GHz) ...........................................................................................................9 10.3 TEST CIRCUIT 3 (fRFout = 2.4 GHz) .........................................................................................................10 11. TYPICAL CHARACTERISTICS..........................................................................................................12 11.1 fRFout = 0.83 GHz ........................................................................................................................................13 SC O 11.2 fRFout = 1.9 GHz ..........................................................................................................................................17 11.3 fRFout = 2.4 GHz ..........................................................................................................................................21 12. S-PARAMETERS FOR EACH PORT...............................................................................................25 13. S-PARAMETERS FOR MATCHED RF OUTPUT ...........................................................................26 14. PACKAGE DIMENSIONS...................................................................................................................28 15. NOTE ON CORRECT USE ..............................................................................................................29 DI 16. RECOMMENDED SOLDERING CONDITIONS................................................................................29 2 Data Sheet P15106EJ2V0DS PC8187TB 1. PIN CONNECTIONS 1 4 3 5 5 2 6 6 1 Pin Name 1 IFinput 2 GND 3 LOinput 4 GND 5 VCC 6 RFoutput D 2 4 Pin No. UE 3 (Bottom View) C3G (Top View) 2. SERIES PRODUCTS (TA = +25C, VCC = VPS = VRFout = 3.0 V, ZS = ZL = 50 ) fRFout (GHz) PC8187TB 15 0.8 to 2.5 11 PC8106TB 9 0.4 to 2.0 PC8172TB 9 0.8 to 2.5 PC8109TB 5 0.4 to.2.0 PC8163TB 16.5 0.8 to 2.0 IN CG (dB) ICC (mA) Part Number Note @RF 0.9 GHz @RF 1.9 GHz @RF 2.4 GHz 11 10 9 7 - 9.5 8.5 8.0 6 4 - 9 5.5 - NT Part Number PO(sat) (dBm) Note @RF 0.9 GHz @RF 1.9 GHz @RF 2.4 GHz OIP3 (dBm) Note @RF 0.9 GHz @RF 1.9 GHz @RF 2.4 GHz +4 +2.5 +1 +10 +10 +8.5 PC8106TB -2 -4 - +5.5 +2.0 - PC8172TB +0.5 0 -0.5 +7.5 +6.0 +4.0 PC8109TB -5.5 -7.5 - +1.5 -1.0 - PC8163TB +0.5 -2 - +9.5 +6.0 - SC O PC8187TB Note fRFout = 0.83 GHz @ PC8163TB and PC8187TB Remark Typical performance. Please refer to 8. ELECTRICAL CHARACTERISTICS in detail. To know the associated product, please refer to each latest data sheet. DI 3. BLOCK DIAGRAM (Top View) GND LOinput VCC GND RFoutput IFinput Data Sheet P15106EJ2V0DS 3 PC8187TB 4. SYSTEM APPLICATION EXAMPLES (SCHEMATICS OF IC LOCATION IN THE SYSTEM) Low Noise Tr. RX VCO SW /N I Q D DEMOD. PLL UE PLL I 0 TX PC8187TB DI SC O NT IN PA Phase shifter 90 4 Data Sheet P15106EJ2V0DS Q PC8187TB 5. PIN EXPLANATION Pin Voltage (V)Note 1 IFinput - 1.2 2 4 GND GND - LOinput - 2.1 5 VCC 2.7 to 3.3 - 6 RFoutput Same bias as VCC through external inductor Equivalent Circuit This pin is IF input to double balanced mixer (DBM). The input is designed as high impedance. The circuit contributes to suppress spurious signal. Also this symmetrical circuit can keep specified performance insensitive to process-condition distribution. For above reason, double balanced mixer is adopted. GND pin. Ground pattern on the board should be formed as wide as possible. Track Length should be kept as short as possible to minimize ground impedance. 5 6 3 1 Local input pin. Recommendable input level is -10 to 0 dBm. Supply voltage pin. 2 NT 3 Function and Explanation D Applied Voltage (V) UE Pin Name IN Pin No. - This pin is RF output from DBM. This pin is designed as open collector. Due to the high impedance output, this pin should be externally equipped with LC matching circuit to next stage. DI SC O Note Each pin voltage is measured at VCC = VRFout = 2.8 V. Data Sheet P15106EJ2V0DS 5 PC8187TB 6. ABSOLUTE MAXIMUM RATINGS Parameter Symbol Test Conditions Rating Unit VCC TA = +25C 3.6 V Power Dissipation PD Mounted on double-side copperclad 50 x 50 x 1.6 mm epoxy glass PWB, TA = +85C 270 mW Operating Ambient Temperature TA -40 to +85 C Storage Temperature Tstg -55 to +150 C Maximum Input Power Pin +10 dBm MIN. TYP. MAX. Supply Voltage VCC 2.7 2.8 3.3 Operating Ambient Temperature TA -40 Local Input Power PLOin -10 RF Output Frequency fRFout 0.8 fIFin 50 IF Input Frequency Unit V Remarks The same voltage should be applied to pin 5 and 6 IN Symbol +25 +85 C -5 0 dBm ZS = 50 (without matching) - 2.5 GHz With external matching circuit - 400 MHz NT Parameter UE 7. RECOMMENDED OPERATING RANGE D Supply Voltage 8. ELECTRICAL CHARACTERISTICS (TA = +25C, VCC = VRFout = 2.8 V, fIFin = 150 MHz, PLOin = -5 dBm) Parameter ICC No signal SC O Circuit Current Test ConditionsNote Symbol Conversion Gain Saturated Output Power TYP. MAX. Unit 11 15 19 mA CG1 fRFout = 0.83 GHz, PIFin = -20 dBm 8 11 14 dB CG2 fRFout = 1.9 GHz, PIFin = -20 dBm 8 11 14 dB CG3 fRFout = 2.4 GHz, PIFin = -20 dBm 7 10 13 dB PO(sat)1 fRFout = 0.83 GHz, PIFin = 0 dBm +1.5 +4 - dBm PO(sat)2 fRFout = 1.9 GHz, PIFin = 0 dBm 0 +2.5 - dBm PO(sat)3 fRFout = 2.4 GHz, PIFin = 0 dBm -1.5 +1 - dBm Note fRFout < fLOin @ fRFout = 0.83 GHz DI fLOin < fRFout @ fRFout = 1.9 GHz/2.4 GHz 6 MIN. Data Sheet P15106EJ2V0DS PC8187TB 9. OTHER CHARACTERISTICS, FOR REFERENCE PURPOSES ONLY (TA = +25C, VCC = VRFout = 2.8 V, PLOin = -5 dBm) SSB Noise Figure fRFout = 0.83 GHz OIP32 fRFout = 1.9 GHz OIP33 fRFout = 2.4 GHz IIP31 fRFout = 0.83 GHz IIP32 fRFout = 1.9 GHz IIP33 fRFout = 2.4 GHz SSB*NF1 fRFout = 0.83 GHz SSB*NF2 fRFout = 1.9 GHz SSB*NF3 fRFout = 2.4 GHz Note fRFout < fLOin @ fRFout = 0.83 GHz fIFin1 = 150 MHz fIFin2 = 151 MHz +10 dBm +10 dBm +8.5 dBm -1.0 dBm -1.0 dBm -1.5 dBm 11 dB fIFin = 150 MHz 12 dB 12.5 dB DI SC O NT fLOin < fRFout @ fRFout = 1.9 GHz/2.4 GHz fIFin1 = 150 MHz fIFin2 = 151 MHz Unit D Input 3rd Order Distortion Intercept Point OIP31 Value UE Output 3rd Order Distortion Intercept Point Test ConditionsNote Symbol IN Parameter Data Sheet P15106EJ2V0DS 7 PC8187TB 10. TEST CIRCUITS 10.1 TEST CIRCUIT 1 (fRFout = 0.83 GHz) Strip Line 50 C4 L 2.2 nH C3 1 000 pF VCC C5 1 000 pF RFoutput IFinput 1 5 VCC GND 2 4 10 pF C7 C6 6 C1 4 pF GND Signal Generator D 1 000 pF 100 pF 50 UE Spectrum Analyzer LOinput 1 000 pF 3 100 pF C2 Signal Generator 50 IN EXAMPLE OF TEST CIRCUIT 1 ASSEMBLED ON EVALUATION BOARD RFout NT C4 L C1 C3 C5 C6 C7 SC O VCC IFin uPC8187TB C2 Loin COMPONENT LIST Form Value C1, C5, C7 1 000 pF C2, C4 100 pF C6 10 pF C3 4 pF L 2.2 nHNote DI Chip capacitor Symbol Chip inductor (1) 35 x 42 x 0.4 mm polyimide board, double-sided copper clad (2) Ground pattern on rear of the board (3) Solder plated patterns (4) (5) : Through holes : Join patterns with electrical tape Note 2.2 nH: LL1608-FH2N25 (TOKO Co., Ltd.) 8 Data Sheet P15106EJ2V0DS PC8187TB 10.2 TEST CIRCUIT 2 (fRFout = 1.9 GHz) Strip Line 1 000 pF C3 3 pF 50 0.5 pF L C6 1 000 pF 1 5 VCC GND 2 4 10 pF C8 C7 RFoutput IFinput C1 470 nH 1 000 pF VCC 6 GND 1 000 pF LOinput 3 Signal Generator 50 D 100 pF C5 C4 100 pF Signal Generator UE Spectrum Analyzer C2 50 EXAMPLE OF TEST CIRCUIT 2 ASSEMBLED ON EVALUATION BOARD IFin IN RFout C5 C4 C3 C1 NT L C6 C7 C8 VCC SC O uPC8187TB C2 Loin COMPONENT LIST Form Value C1, C6, C8 1 000 pF C2, C3 100 pF C7 10 pF C4 3 pF C5 0.5 pF L 470 nHNote DI Chip capacitor Symbol Chip inductor (1) 35 x 42 x 0.4 mm polyimide board, double-sided copper clad (2) Ground pattern on rear of the board (3) Solder plated patterns (4) : Through holes Note 470 nH: LL2012-FR47 (TOKO Co., Ltd.) Data Sheet P15106EJ2V0DS 9 PC8187TB 10.3 TEST CIRCUIT 3 (fRFout = 2.4 GHz) Strip Line C5 100 pF C4 C3 0.75 pF 1 pF L 1 000 pF VCC C6 1 000 pF RFoutput IFinput 1 5 VCC GND 2 4 10 pF C8 C7 6 C1 470 nH GND LOinput 3 100 pF 50 D 50 Signal Generator 1 000 pF Signal Generator UE Spectrum Analyzer 1 000 pF C2 50 EXAMPLE OF TEST CIRCUIT 3 ASSEMBLED ON EVALUATION BOARD C4 IFin C3 C5 C1 NT L C6 C7 C8 VCC IN RFout SC O uPC8187TB C2 Loin COMPONENT LIST Form Value C1, C6, C8 1 000 pF C2, C5 100 pF C7 10 pF C3 1 pF DI Chip capacitor Symbol Chip inductor C4 0.75 pF L 470 nHNote (1) 35 x 42 x 0.4 mm polyimide board, double-sided copper clad (2) Ground pattern on rear of the board (3) Solder plated patterns (4) : Through holes Note 470 nH: LL2012-FR47 (TOKO Co., Ltd.) 10 Data Sheet P15106EJ2V0DS PC8187TB Caution The test circuits and board pattern on data sheet are for performance evaluation use only (They are not recommended circuits). In the case of actual design-in, matching circuit should be de- DI SC O NT IN UE D termined using S-parameter of desired frequency in accordance to actual mounting pattern. Data Sheet P15106EJ2V0DS 11 PC8187TB 11. TYPICAL CHARACTERISTICS (Unless otherwise specified, TA = +25C, VCC = VRFout) 14 12 10 8 TA = +25C TA = +85C 6 TA = -40C 4 18 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 VCC = 2.8 V 14 VCC = 2.7 V 12 10 -60 -40 -20 4.0 VCC = 3.3 V VCC = 3.0 V 16 2 0 No signals D 16 Circuit Current ICC (mA) Circuit Current ICC (mA) 18 20 No signals CIRCUIT CURRENT vs. OPERATING AMBIENT TEMPERATURE UE 20 CIRCUIT CURRENT vs. SUPPLY VOLTAGE 20 NT SC O DI 12 40 60 80 Operating Ambient Temperature TA (C) IN Supply Voltage VCC (V) 0 Data Sheet P15106EJ2V0DS 100 PC8187TB 11.1 fRFout = 0.83 GHz 10 10 VCC = 2.7 to 3.3 V 5 0 -5 -10 -30 -20 -10 fIFin = 150 MHz fLOin = 980 MHz PIFin = -20 dBm TA = +25C 0 -15 10 0 -5 TA = +85C -20 -10 fIFin = 150 MHz fLOin = 980 MHz PIFin = -20 dBm VCC = 2.8 V 0 -10 0 10 RF OUTPUT POWER vs. IF INPUT POWER 5 0 TA = -40C TA = +25C -5 TA = +85C -10 -15 10 -20 -30 Local Input Power PLOin (dBm) -20 -10 fIFin = 150 MHz fLOin = 980 MHz PLOin = -5 dBm VCC = 2.8 V 0 10 IF Input Power PIFin (dBm) DI -10 -30 -20 fIFin = 150 MHz fLOin = 980 MHz PLOin = -5 dBm TA = +25C IN 10 TA = +25C 5 -20 -30 RF Output Power PRFout (dBm) TA = -40C -5 NT 10 VCC = 2.7 to 2.8 V 0 IF Input Power PIFin (dBm) SC O Conversion Gain CG (dB) 15 5 -10 Local Input Power PLOin (dBm) CONVERSION GAIN vs. LOCAL INPUT POWER VCC = 3.0 to 3.3 V UE RF Output Power PRFout (dBm) Conversion Gain CG (dB) 15 RF OUTPUT POWER vs. IF INPUT POWER D CONVERSION GAIN vs. LOCAL INPUT POWER Data Sheet P15106EJ2V0DS 13 -10 -20 -30 -40 TA = +25C VCC = 2.7 V fIFin1 = 150 MHz fIFin2 = 151 MHz fLOin = 980 MHz PLOin = -5 dBm -50 -60 -70 -80 -30 -20 -10 0 10 IF Input Power PIFin (dBm) 10 0 -30 -40 TA = +25C VCC = 3.0 V fIFin1 = 150 MHz fIFin2 = 151 MHz fLOin = 980 MHz PLOin = -5 dBm -50 -60 -70 -80 -30 -20 -10 -10 -20 -30 -40 -60 -70 -80 -30 -20 0 IF Input Power PIFin (dBm) -10 0 10 IF Input Power PIFin (dBm) 20 RF OUTPUT POWER OF EACH TONE, IM3 vs. IF INPUT POWER 10 0 -10 -20 10 -30 -40 TA = +25C VCC = 3.3 V fIFin1 = 150 MHz fIFin2 = 151 MHz fLOin = 980 MHz PLOin = -5 dBm -50 -60 -70 -80 -30 DI 14 TA = +25C VCC = 2.8 V fIFin1 = 150 MHz fIFin2 = 151 MHz fLOin = 980 MHz PLOin = -5 dBm -50 NT -10 -20 0 IN 20 RF OUTPUT POWER OF EACH TONE, IM3 vs. IF INPUT POWER 10 D 0 20 RF OUTPUT POWER OF EACH TONE, IM3 vs. IF INPUT POWER UE RF Output Power of Each Tone PRFout(each) (dBm) 3rd Order Intermodulation Distortion IM3 (dBm) 10 RF Output Power of Each Tone PRFout(each) (dBm) 3rd Order Intermodulation Distortion IM3 (dBm) 20 RF OUTPUT POWER OF EACH TONE, IM3 vs. IF INPUT POWER SC O RF Output Power of Each Tone PRFout(each) (dBm) 3rd Order Intermodulation Distortion IM3 (dBm) RF Output Power of Each Tone PRFout(each) (dBm) 3rd Order Intermodulation Distortion IM3 (dBm) PC8187TB Data Sheet P15106EJ2V0DS -20 -10 0 IF Input Power PIFin (dBm) 10 -10 -20 -30 -40 TA = -40C VCC = 2.8 V fIFin1 = 150 MHz fIFin2 = 151 MHz fLOin = 980 MHz PLOin = -5 dBm -50 -60 -70 -80 -30 -20 -10 0 10 IF Input Power PIFin (dBm) 10 0 -10 -20 -30 -40 -50 TA = +25C VCC = 2.8 V fIFin1 = 150 MHz fIFin2 = 151 MHz fLOin = 980 MHz PLOin = -5 dBm -60 -70 -80 -30 -20 -10 0 10 IF Input Power PIFin (dBm) -20 -30 -40 NT -10 TA = +85C VCC = 2.8 V fIFin1 = 150 MHz fIFin2 = 151 MHz fLOin = 980 MHz PLOin = -5 dBm -50 -60 -70 -80 -30 0 IN 20 RF OUTPUT POWER OF EACH TONE, IM3 vs. IF INPUT POWER 10 D 0 20 RF OUTPUT POWER OF EACH TONE, IM3 vs. IF INPUT POWER UE 10 RF Output Power of Each Tone PRFout(each) (dBm) 3rd Order Intermodulation Distortion IM3 (dBm) 20 RF OUTPUT POWER OF EACH TONE, IM3 vs. IF INPUT POWER -20 -10 0 10 IF Input Power PIFin (dBm) DI SC O RF Output Power of Each Tone PRFout(each) (dBm) 3rd Order Intermodulation Distortion IM3 (dBm) RF Output Power of Each Tone PRFout(each) (dBm) 3rd Order Intermodulation Distortion IM3 (dBm) PC8187TB Data Sheet P15106EJ2V0DS 15 LOCAL LEAKAGE AT RF PIN vs. LOCAL INPUT FREQUENCY 0 -20 Local Leakage at RF Pin LOrf (dBm) -10 -30 -20 -50 -40 -60 -50 0 500 1 000 1 500 -70 PLOin = -5 dBm VCC = 2.8 V 2 000 2 500 3 000 -80 -60 LOCAL LEAKAGE AT IF PIN vs. LOCAL INPUT POWER -20 -30 -10 -40 -15 -25 NT -50 -20 -60 -30 -70 -35 -40 0 500 1 000 1 500 PLOin = -5 dBm VCC = 2.8 V 2 000 2 500 3 000 -80 -90 -40 IF LEAKAGE AT RF PIN vs. IF INPUT FREQUENCY IF Leakage at RF Pin IFrf (dBm) 0 -10 -20 -30 DI -40 -50 0 100 200 300 PIFin = -20 dBm VCC = 2.8 V 400 500 600 -20 -30 -20 fLOin = 980 MHz VCC = 2.7 to 3.3 V -10 0 Local Input Power PLOin (dBm) IF LEAKAGE AT RF PIN vs. IF INPUT POWER IF Leakage at RF Pin IFrf (dBm) SC O Local Input Frequency fLOin (MHz) -30 -40 -50 -60 -70 -80 -90 -60 IF Input Frequency fIFin (MHz) 16 -30 Local Leakage at IF Pin LOif (dBm) Local Leakage at IF Pin LOif (dBm) -5 -60 -40 Local Input Power PLOin (dBm) LOCAL LEAKAGE AT IF PIN vs. LOCAL INPUT FREQUENCY 0 -50 fLOin = 980 MHz VCC = 2.7 to 3.3 V -20 -10 0 IN Local Input Frequency fLOin (MHz) -45 D -40 -30 -60 LOCAL LEAKAGE AT RF PIN vs. LOCAL INPUT POWER UE Local Leakage at RF Pin LOrf (dBm) PC8187TB -50 -40 -30 fIFin = 150 MHz VCC = 2.7 to 3.3 V -20 -10 0 IF Input Power PIFin (dBm) Data Sheet P15106EJ2V0DS PC8187TB 11.2 fRFout = 1.9 GHz 5 VCC = 2.8 V -10 -30 -20 -10 fIFin = 150 MHz fLOin = 1 750 MHz PIFin = -20 dBm TA = +25C 0 10 TA = -40C 5 -5 -20 TA = +25C -10 -20 -10 fIFin = 150 MHz fLOin = 1 750 MHz PLOin = -5 dBm TA = +25C 0 10 0 RF OUTPUT POWER vs. IF INPUT POWER TA = -40C -10 fIFin = 150 MHz fLOin = 1 750 MHz PIFin = -20 dBm VCC = 2.8 V 0 VCC = 2.8 V 10 -20 -30 -30 Local Input Power PLOin (dBm) TA = +25C TA = +85C -20 -10 fIFin = 150 MHz fLOin = 1 750 MHz PLOin = -5 dBm VCC = 2.8 V 0 10 IF Input Power PIFin (dBm) DI -10 -30 -30 -30 10 TA = +85C 0 -20 NT 10 VCC = 2.7 V IF Input Power PIFin (dBm) SC O Conversion Gain CG (dB) 15 VCC = 3.0 V IN Local Input Power PLOin (dBm) CONVERSION GAIN vs. LOCAL INPUT POWER 0 -10 0 -5 VCC = 3.3 V D VCC = 2.7 V RF OUTPUT POWER vs. IF INPUT POWER UE 10 10 RF Output Power PRFout (dBm) VCC = 3.3 V VCC = 3.0 V RF Output Power PRFout (dBm) Conversion Gain CG (dB) 15 CONVERSION GAIN vs. LOCAL INPUT POWER Data Sheet P15106EJ2V0DS 17 -10 -20 -30 -40 TA = +25C VCC = 2.7 V fIFin1 = 150 MHz fIFin2 = 151 MHz fLOin = 1 750 MHz PLOin = -5 dBm -50 -60 -70 -80 -30 -20 -10 0 10 IF Input Power PIFin (dBm) 10 0 -30 -40 TA = +25C VCC = 3.0 V fIFin1 = 150 MHz fIFin2 = 151 MHz fLOin = 1 750 MHz PLOin = -5 dBm -50 -60 -70 -80 -30 -20 -10 -10 -20 -30 -40 -60 -70 -80 -30 -20 0 IF Input Power PIFin (dBm) -10 0 10 IF Input Power PIFin (dBm) 20 RF OUTPUT POWER OF EACH TONE, IM3 vs. IF INPUT POWER 10 0 -10 -20 10 -30 -40 TA = +25C VCC = 3.3 V fIFin1 = 150 MHz fIFin2 = 151 MHz fLOin = 1 750 MHz PLOin = -5 dBm -50 -60 -70 -80 -30 DI 18 TA = +25C VCC = 2.8 V fIFin1 = 150 MHz fIFin2 = 151 MHz fLOin = 1 750 MHz PLOin = -5 dBm -50 NT -10 -20 0 IN 20 RF OUTPUT POWER OF EACH TONE, IM3 vs. IF INPUT POWER 10 D 0 20 RF OUTPUT POWER OF EACH TONE, IM3 vs. IF INPUT POWER UE RF Output Power of Each Tone PRFout(each) (dBm) 3rd Order Intermodulation Distortion IM3 (dBm) 10 RF Output Power of Each Tone PRFout(each) (dBm) 3rd Order Intermodulation Distortion IM3 (dBm) 20 RF OUTPUT POWER OF EACH TONE, IM3 vs. IF INPUT POWER SC O RF Output Power of Each Tone PRFout(each) (dBm) 3rd Order Intermodulation Distortion IM3 (dBm) RF Output Power of Each Tone PRFout(each) (dBm) 3rd Order Intermodulation Distortion IM3 (dBm) PC8187TB Data Sheet P15106EJ2V0DS -20 -10 0 IF Input Power PIFin (dBm) 10 -10 -20 -30 -40 TA = -40C VCC = 2.8 V fIFin1 = 150 MHz fIFin2 = 151 MHz fLOin = 1 750 MHz PLOin = -5 dBm -50 -60 -70 -80 -30 -20 -10 0 10 IF Input Power PIFin (dBm) 10 0 -10 -20 -30 -40 -50 TA = +25C VCC = 2.8 V fIFin1 = 150 MHz fIFin2 = 151 MHz fLOin = 1 750 MHz PLOin = -5 dBm -60 -70 -80 -30 -20 -10 0 10 IF Input Power PIFin (dBm) -20 -30 -40 NT -10 TA = +85C VCC = 2.8 V fIFin1 = 150 MHz fIFin2 = 151 MHz fLOin = 1 750 MHz PLOin = -5 dBm -50 -60 -70 -80 -30 0 IN 20 RF OUTPUT POWER OF EACH TONE, IM3 vs. IF INPUT POWER 10 D 0 20 RF OUTPUT POWER OF EACH TONE, IM3 vs. IF INPUT POWER UE 10 RF Output Power of Each Tone PRFout(each) (dBm) 3rd Order Intermodulation Distortion IM3 (dBm) 20 RF OUTPUT POWER OF EACH TONE, IM3 vs. IF INPUT POWER -20 -10 0 10 IF Input Power PIFin (dBm) DI SC O RF Output Power of Each Tone PRFout(each) (dBm) 3rd Order Intermodulation Distortion IM3 (dBm) RF Output Power of Each Tone PRFout(each) (dBm) 3rd Order Intermodulation Distortion IM3 (dBm) PC8187TB Data Sheet P15106EJ2V0DS 19 PC8187TB LOCAL LEAKAGE AT RF PIN vs. LOCAL INPUT FREQUENCY -20 Local Leakage at RF Pin LOrf (dBm) Local Leakage at RF Pin LOrf (dBm) 0 -10 0 500 1 000 1 500 -70 PLOin = -5 dBm VCC = 2.8 V 2 000 2 500 3 000 -40 -30 -20 -10 0 Local Input Power PLOin (dBm) -5 LOCAL LEAKAGE AT IF PIN vs. LOCAL INPUT POWER IN LOCAL LEAKAGE AT IF PIN vs. LOCAL INPUT FREQUENCY -20 Local Leakage at IF Pin LOif (dBm) Local Leakage at IF Pin LOif (dBm) fLOin = 1 750 MHz -80 -50 Local Input Frequency fLOin (MHz) 0 VCC = 3.3 V UE -60 -50 -30 -10 -15 -40 -20 NT -50 -25 -60 -30 -35 -70 -40 -45 0 500 1 000 1 500 PLOin = -5 dBm VCC = 2.8 V 2 000 2 500 3 000 -80 -90 -40 SC O Local Input Frequency fLOin (MHz) IF LEAKAGE AT RF PIN vs. IF INPUT FREQUENCY -15 -20 DI -25 0 100 200 300 PIFin = -20 dBm VCC = 2.8 V 400 500 600 0 -30 -20 fLOin = 1 750 MHz VCC = 2.7 to 3.3 V -10 0 Local Input Power PLOin (dBm) IF LEAKAGE AT RF PIN vs. IF INPUT POWER IF Leakage at RF Pin IFrf (dBm) IF Leakage at RF Pin IFrf (dBm) -10 -10 -20 -30 -40 -50 -60 -70 -60 IF Input Frequency fIFin (MHz) 20 VCC = 3.0 V -50 -40 -30 D -40 -30 -50 VCC = 2.7 to 2.8 V -30 -20 -60 LOCAL LEAKAGE AT RF PIN vs. LOCAL INPUT POWER -50 -40 -30 fIFin = 150 MHz VCC = 2.7 to 3.3 V -20 -10 0 IF Input Power PIFin (dBm) Data Sheet P15106EJ2V0DS PC8187TB 11.3 fRFout = 2.4 GHz VCC = 2.8 V 0 fIFin = 150 MHz fLOin = 2 250 MHz PIFin = -20 dBm TA = +25C -5 -10 -30 -20 -10 0 10 TA = +25C 5 -5 -20 TA = +85C -10 -20 0 10 RF OUTPUT POWER vs. IF INPUT POWER 0 TA = +25C TA = +85C -10 fIFin = 150 MHz fLOin = 2 250 MHz PIFin = -20 dBm VCC = 2.8 V 0 -10 fIFin = 150 MHz fLOin = 2 250 MHz PLOin = -5 dBm TA = +25C 10 TA = -40C -20 -30 -30 Local Input Power PLOin (dBm) -20 -10 fIFin = 150 MHz fLOin = 2 250 MHz PLOin = -5 dBm VCC = 2.8 V 0 10 IF Input Power PIFin (dBm) DI -10 -30 -30 -30 10 TA = -40C 0 -20 NT 10 VCC = 2.8 V IF Input Power PIFin (dBm) SC O Conversion Gain CG (dB) 15 VCC = 2.7 V IN Local Input Power PLOin (dBm) CONVERSION GAIN vs. LOCAL INPUT POWER 0 -10 VCC = 2.7 V VCC = 3.0 V UE 5 VCC = 3.3 V D VCC = 3.0 V RF Output Power PRFout (dBm) Conversion Gain CG (dB) VCC = 3.3 V 10 RF OUTPUT POWER vs. IF INPUT POWER 10 RF Output Power PRFout (dBm) 15 CONVERSION GAIN vs. LOCAL INPUT POWER Data Sheet P15106EJ2V0DS 21 -10 -20 -30 -40 TA = +25C VCC = 2.7 V fIFin1 = 150 MHz fIFin2 = 151 MHz fLOin = 2 250 MHz PLOin = -5 dBm -50 -60 -70 -80 -30 -20 -10 0 10 IF Input Power PIFin (dBm) 10 0 -30 -40 TA = +25C VCC = 3.0 V fIFin1 = 150 MHz fIFin2 = 151 MHz fLOin = 2 250 MHz PLOin = -5 dBm -50 -60 -70 -80 -30 -20 -10 -10 -20 -30 -40 0 IF Input Power PIFin (dBm) -60 -70 -80 -30 -20 -10 0 10 IF Input Power PIFin (dBm) 20 RF OUTPUT POWER OF EACH TONE, IM3 vs. IF INPUT POWER 10 0 -10 -20 10 -30 -40 TA = +25C VCC = 3.3 V fIFin1 = 150 MHz fIFin2 = 151 MHz fLOin = 2 250 MHz PLOin = -5 dBm -50 -60 -70 -80 -30 DI 22 TA = +25C VCC = 2.8 V fIFin1 = 150 MHz fIFin2 = 151 MHz fLOin = 2 250 MHz PLOin = -5 dBm -50 NT -10 -20 0 IN 20 RF OUTPUT POWER OF EACH TONE, IM3 vs. IF INPUT POWER 10 D 0 20 RF OUTPUT POWER OF EACH TONE, IM3 vs. IF INPUT POWER UE RF Output Power of Each Tone PRFout(each) (dBm) 3rd Order Intermodulation Distortion IM3 (dBm) 10 RF Output Power of Each Tone PRFout(each) (dBm) 3rd Order Intermodulation Distortion IM3 (dBm) 20 RF OUTPUT POWER OF EACH TONE, IM3 vs. IF INPUT POWER SC O RF Output Power of Each Tone PRFout(each) (dBm) 3rd Order Intermodulation Distortion IM3 (dBm) RF Output Power of Each Tone PRFout(each) (dBm) 3rd Order Intermodulation Distortion IM3 (dBm) PC8187TB Data Sheet P15106EJ2V0DS -20 -10 0 IF Input Power PIFin (dBm) 10 -10 -20 -30 -40 TA = -40C VCC = 2.8 V fIFin1 = 150 MHz fIFin2 = 151 MHz fLOin = 2 250 MHz PLOin = -5 dBm -50 -60 -70 -80 -30 -20 -10 0 10 IF Input Power PIFin (dBm) 0 -10 -10 -20 -30 -40 -50 TA = +25C VCC = 2.8 V fIFin1 = 150 MHz fIFin2 = 151 MHz fLOin = 2 250 MHz PLOin = -5 dBm -60 -70 -80 -30 -20 -10 0 10 IF Input Power PIFin (dBm) -30 -40 NT -20 TA = +85C VCC = 2.8 V fIFin1 = 150 MHz fIFin2 = 151 MHz fLOin = 2 250 MHz PLOin = -5 dBm -50 -60 -70 -80 -30 0 IN 10 RF OUTPUT POWER OF EACH TONE, IM3 vs. IF INPUT POWER 10 D 0 20 RF OUTPUT POWER OF EACH TONE, IM3 vs. IF INPUT POWER UE 10 RF Output Power of Each Tone PRFout(each) (dBm) 3rd Order Intermodulation Distortion IM3 (dBm) 20 RF OUTPUT POWER OF EACH TONE, IM3 vs. IF INPUT POWER -20 -10 0 10 IF Input Power PIFin (dBm) DI SC O RF Output Power of Each Tone PRFout(each) (dBm) 3rd Order Intermodulation Distortion IM3 (dBm) RF Output Power of Each Tone PRFout(each) (dBm) 3rd Order Intermodulation Distortion IM3 (dBm) PC8187TB Data Sheet P15106EJ2V0DS 23 LOCAL LEAKAGE AT RF PIN vs. LOCAL INPUT FREQUENCY 0 -10 Local Leakage at RF Pin LOrf (dBm) -20 -10 -40 -30 -50 -60 -40 0 500 1 000 1 500 -90 -50 -40 -30 -20 -10 0 IN LOCAL LEAKAGE AT IF PIN vs. LOCAL INPUT POWER -20 Local Leakage at IF Pin LOif (dBm) Local Leakage at IF Pin LOif (dBm) -5 -30 -10 -40 -15 -20 NT -50 -25 -60 -30 -35 -70 -40 -45 0 500 1 000 1 500 PLOin = -5 dBm VCC = 2.8 V 2 000 2 500 3 000 -80 -90 -40 SC O Local Input Frequency fLOin (MHz) IF LEAKAGE AT RF PIN vs. IF INPUT FREQUENCY -15 DI -20 -25 0 100 200 300 PIFin = -20 dBm VCC = 2.8 V 400 500 600 0 -30 -20 fLOin = 2 250 MHz VCC = 2.7 to 3.3 V -10 0 Local Input Power PLOin (dBm) IF LEAKAGE AT RF PIN vs. IF INPUT POWER IF Leakage at RF Pin IFrf (dBm) IF Leakage at RF Pin IFrf (dBm) -10 -10 -20 -30 -40 -50 -60 -70 -60 IF Input Frequency fIFin (MHz) 24 fLOin = 2 250 MHz Local Input Power PLOin (dBm) LOCAL LEAKAGE AT IF PIN vs. LOCAL INPUT FREQUENCY 0 VCC = 3.3 V -80 PLOin = -5 dBm VCC = 2.8 V 2 000 2 500 3 000 Local Input Frequency fLOin (MHz) -30 VCC = 3.0 V -70 -50 -50 VCC = 2.7 to 2.8 V D -30 -20 -60 LOCAL LEAKAGE AT RF PIN vs. LOCAL INPUT POWER UE Local Leakage at RF Pin LOrf (dBm) PC8187TB -50 -40 -30 fIFin = 150 MHz VCC = 2.7 to 3.3 V -20 -10 0 IF Input Power PIFin (dBm) Data Sheet P15106EJ2V0DS PC8187TB 12. S-PARAMETERS FOR EACH PORT (VCC = VRFout = 2.8 V) (The parameters are monitored at DUT pins) LO port hp Z 1.0 Units 200.0 mUnits/ 22.762 -104.25 S22 REF 1 hp MARKER 1 1.0 GHz MARKER 2 1.75 GHz MARKER 3 2.25 GHz 3 IF port 0.100000000 GHz 3.100000000 GHz NT START STOP 2 IN UE MARKER 1 850.0 MHz MARKER 2 1.9 GHz MARKER 3 2.4 GHz 1 START STOP 3 1 2 0.100000000 GHz 3.100000000 GHz Z 1.0 Units 200.0 mUnits/ 518.97 -321.09 SC O S11 REF 1 Z 1.0 Units 200.0 mUnits/ 51.172 -252.0 D S11 REF 1 RF port (without matching) hp MARKER 1 150.0 MHz DI 1 START STOP 0.100000000 GHz 1.000000000 GHz Data Sheet P15106EJ2V0DS 25 PC8187TB 13. S-PARAMETERS FOR MATCHED RF OUTPUT (VCC = VRFout = 2.8 V) - ON EVALUATION BOARD - (S22 data are monitored at RF connector on board) 1.9 GHz (matched in test circuit 2) S22 REF 1 S22 REF 1 hp Z 1.0 Units 200.0 mUnits/ 62.424 -9.7871 C hp C MARKER 1 830.0 MHz D 1 S22 REF 1 hp 0.0 dB 10.0 dB -17.772 dB 0.330000000 GHz 1.330000000 GHz log MAG START STOP NT START STOP IN 1 S22 REF 1 hp C MARKER 1 830.0 MHz D SC O D MARKER 1 1.9 GHz UE D C Z 1.0 Units 200.0 mUnits/ 51.719 5.6523 0.0 dB 10.0 dB -24.939 dB DI 0.330000000 GHz 1.330000000 GHz 26 Data Sheet P15106EJ2V0DS 1.400000000 GHz 2.400000000 GHz log MAG MARKER 1 1.9 GHz 1 START STOP D 0.83 GHz (matched in test circuit 1) 1 START STOP 1.400000000 GHz 2.400000000 GHz PC8187TB 2.4 GHz (matched in test circuit 3) S22 REF 1 Z 1.0 Units 200.0 mUnits/ 41.41 -3.2695 hp C D MARKER 1 2.4 GHz 1 0.0 dB 10.0 dB -20.203 dB log MAG NT S22 REF 1 1.900000000 GHz 2.900000000 GHz IN START STOP UE D hp C SC O D MARKER 1 2.4 GHz 1.900000000 GHz 2.900000000 GHz DI START STOP 1 Data Sheet P15106EJ2V0DS 27 PC8187TB 14. PACKAGE DIMENSIONS 6-PIN SUPER MINIMOLD (UNIT: mm) 0.2+0.1 -0.05 UE 0.65 0.65 1.3 2.00.2 1.250.1 D 2.10.1 28 Data Sheet P15106EJ2V0DS 0.15+0.1 -0.05 IN DI SC O NT 0 to 0.1 0.7 0.90.1 0.1 MIN. PC8187TB 15. NOTE ON CORRECT USE (1) Observe precautions for handling because of electrostatic sensitive devices. (2) Form a ground pattern as wide as possible to minimize ground impedance (to prevent undesired oscillation). (3) Connect a bypass capacitor to the VCC pin. 16. RECOMMENDED SOLDERING CONDITIONS D (4) Connect a matching circuit to the RF output pin. (5) The DC cut capacitor must be each attached to the input and output pins. This product should be soldered under the following recommended conditions. For soldering methods and condi- Soldering Method Soldering Conditions UE tions other than those recommended below, contact your NEC sales representative. Recommended Condition Symbol Package peak temperature: 235C or below Time: 30 seconds or less (at 210C) Count: 3, Exposure limit: NoneNote IR35-00-3 VPS Package peak temperature: 215C or below Time: 40 seconds or less (at 200C) Count: 3, Exposure limit: NoneNote VP15-00-3 Wave Soldering Soldering bath temperature: 260C or below Time: 10 seconds or less Count: 1, Exposure limit: NoneNote WS60-00-1 Partial Heating Pin temperature: 300C Time: 3 seconds or less (per side of device) Exposure limit: NoneNote - NT IN Infrared Reflow Note After opening the dry pack, keep it in a place below 25C and 65% RH for the allowable storage period. SC O Caution Do not use different soldering methods together (except for partial heating). For details of recommended soldering conditions for surface mounting, refer to information document DI SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL (C10535E). Data Sheet P15106EJ2V0DS 29 Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: CEL: UPC8187TB-EV08 UPC8187TB-EV24 UPC8187TB-EV19 UPC2757TB-EVAL