Caution Electro-static sensitive devices
The information in this document is subject to change without notice. Before using this document, please
confirm that this is the latestversion.
BIPOLAR ANALOG INTEGRATED CIRCUIT
μ
μμ
μ
PC8187TB
SILICON MMIC HI-IP3 FREQUENCY UP-CONVERTER
FOR WIRELESS TRANSCEIVER
Document No. P15106EJ2V0DS00 (2nd edition)
Date Published January 2001 N CP(K)
DATA SHEET
The mark shows major revised points.
DESCRIPTION
The
μ
PC8187TB is a silicon monolithic integrated circuit designed as frequency up-converter for wireless
transceiver. This IC is higher operating frequency, lower distortion and higher conversion gain than conventional
μ
PC8163TB.
This IC is manufactured using NEC’s 30 GHz fmax UHS0 (Ultra High Speed Process) silicon bipolar process.
FEATURES
High output frequency : fRFout = 0.8 to 2.5 GHz
High-density surface mounting : 6-pin super minimold package
Supply voltage : VCC = 2.7 to 3.3 V
Higher IP3: OIP3 = +10 dBm @ fRFout = 1.9 GHz
APPLICATION
TDMA, PCS, CDMA etc.
ORDERING INFORMATION
mroF gniylppuSgnikraMegakcaPrebmuN traP
μ
PC8187TB-E3-A 6-pin super minimold C3G Embossed tape 8 mm wide.
Pin 1, 2, 3 face the tape perforation side.
Qty 3 kpcs/reel.
Remark To order evaluation samples, please contact your local sales office.
(Part number for sample order:
μ
PC8187TB-A)
DISCONTINUED
Data Sheet P15106EJ2V0DS
2
μ
μμ
μ
PC8187TB
CONTENTS
1. PIN CONNECTIONS.............................................................................................................................3
2. SERIES PRODUCTS............................................................................................................................3
3. BLOCK DIAGRAM ...............................................................................................................................3
4. SYSTEM APPLICATION EXAMPLES (SCHEMATICS OF IC LOCATION IN THE
SYSTEM) ...............................................................................................................................................4
5. PIN EXPLANATION..............................................................................................................................5
6. ABSOLUTE MAXIMUM RATINGS......................................................................................................6
7. RECOMMENDED OPERATING RANGE............................................................................................6
8. ELECTRICAL CHARACTERISTICS ....................................................................................................6
9. OTHER CHARACTERISTICS, FOR REFERENCE PURPOSES ONLY .........................................7
10. TEST CIRCUITS...................................................................................................................................8
10.1 TEST CIRCUIT 1 (fRFout = 0.83 GHz) .........................................................................................................8
10.2 TEST CIRCUIT 2 (fRFout = 1.9 GHz) ...........................................................................................................9
10.3 TEST CIRCUIT 3 (fRFout = 2.4 GHz) .........................................................................................................10
11. TYPICAL CHARACTERISTICS..........................................................................................................12
11.1 fRFout = 0.83 GHz ........................................................................................................................................13
11.2 fRFout = 1.9 GHz ..........................................................................................................................................17
11.3 fRFout = 2.4 GHz ..........................................................................................................................................21
12. S-PARAMETERS FOR EACH PORT...............................................................................................25
13. S-PARAMETERS FOR MATCHED RF OUTPUT ...........................................................................26
14. PACKAGE DIMENSIONS...................................................................................................................28
15. NOTE ON CORRECT USE ..............................................................................................................29
16. RECOMMENDED SOLDERING CONDITIONS................................................................................29
DISCONTINUED
Data Sheet P15106EJ2V0DS 3
μ
μμ
μ
PC8187TB
1. PIN CONNECTIONS
2. SERIES PRODUCTS (TA = +25°C, VCC = VPS = VRFout = 3.0 V, ZS = ZL = 50 Ω
ΩΩ
Ω)
CG (dB)
Part NumberICC
(mA)
fRFout
(GHz) @RF 0.9 GHzNote @RF 1.9 GHz @RF 2.4 GHz
μ
PC8187TB 15 0.8 to 2.5 11 11 10
μ
PC8106TB 9 0.4 to 2.0 9 7
μ
PC8172TB 9 0.8 to 2.5 9.5 8.5 8.0
μ
PC8109TB 5 0.4 to.2.0 6 4
μ
PC8163TB16.5 0.8 to 2.0 9 5.5
PO(sat) PIO)mBd( 3 (dBm)
Part Number
@RF 0.9 GHzNote @RF 1.9 GHz @RF 2.4 GHz @RF 0.9 GHzNote @RF 1.9 GHz @RF 2.4 GHz
μ
PC8187TB +4 +2.5 +1 +10 +10 +8.5
μ
PC8106TB 24+5.5 +2.0
μ
PC8172TB +0.5 0 0.5 +7.5 +6.0 +4.0
μ
PC8109TB 5.5 7.5 +1.5 1.0
μ
PC8163TB +0.5 2+9.5 +6.0
Note fRFout = 0.83 GHz @
μ
PC8163TB and
μ
PC8187TB
Remark Typical performance. Please refer to 8. ELECTRICAL CHARACTERISTICS in detail.
To know the associated product, please refer to each latest data sheet.
3. BLOCK DIAGRAM
LOinput
GND
IFinput
GND
VCC
RFoutput
(Top View)
3
2
1
4
C3G
(Top View)
5
6
4
5
6
3
(Bottom View)
2
1
Pin No. Pin Name
1 IFinput
2 GND
3 LOinput
4 GND
5 VCC
6 RFoutput
DISCONTINUED
Data Sheet P15106EJ2V0DS
4
μ
μμ
μ
PC8187TB
4. SYSTEM APPLICATION EXAMPLES (SCHEMATICS OF IC LOCATION IN THE SYSTEM)
SW
PA
PLL
÷N PLL
I
Q
DEMOD.
I
Q
90˚
TX
RX
VCO
Phase
shifter
μ
PC8187TB
Low Noise Tr.
DISCONTINUED
Data Sheet P15106EJ2V0DS 5
μ
μμ
μ
PC8187TB
5. PIN EXPLANATION
Pin
No.
Pin
Name
Applied
Voltage
(V)
Pin
Voltage
(V)Note
Function and Explanation Equivalent Circuit
1 IFinput1.2 This pin is IF input to double bal-
anced mixer (DBM). The input is
designed as high impedance.
The circuit contributes to sup-
press spurious signal. Also this
symmetrical circuit can keep
specified performance insensitive
to process-condition distribution.
For above reason, double bal-
anced mixer is adopted.
2
4
GND GND GND pin. Ground pattern on the
board should be formed as wide
as possible. Track Length should
be kept as short as possible to
minimize ground impedance.
3 LOinput2.1 Local input pin. Recommendable
input level is 10 to 0 dBm.
5 VCC 2.7 to 3.3 Supply voltage pin.
6 RFoutput Same
bias as
VCC
through
external
inductor
This pin is RF output from DBM.
This pin is designed as open
collector. Due to the high imped-
ance output, this pin should be
externally equipped with LC
matching circuit to next stage.
Note Each pin voltage is measured at VCC = VRFout = 2.8 V.
3
5
6
1
2
DISCONTINUED
Data Sheet P15106EJ2V0DS
6
μ
μμ
μ
PC8187TB
6. ABSOLUTE MAXIMUM RATINGS
tinUgnitaRsnoitidnoC tseTlobmySretemaraP
VegatloV ylppuS CC TAV6.3C°52+ =
Power Dissipation PDMounted on double-side copperclad
50 × 50 × 1.6 mm epoxy glass PWB,
TA = +85°C
270 mW
Operating Ambient Temperature TA40 to +85 °C
Storage Temperature Tstg 55 to +150 °C
Maximum Input Power Pin +10 dBm
7. RECOMMENDED OPERATING RANGE
Parameter Symbol MIN. TYP. MAX. Unit Remarks
VegatloV ylppuS CC 2.7 2.8 3.3 V The same voltage should be
applied to pin 5 and 6
Operating Ambient Temperature TA40 +25 +85 °C
Local Input Power PLOin 10 5 0 dBm ZS = 50 Ω (without matching)
RF Output Frequency fRFout0.8 2.5 GHz With external matching circuit
IF Input Frequency fIFin 50 400 MHz
8. ELECTRICAL CHARACTERISTICS
(TA = +25°C, VCC = VRFout = 2.8 V, fIFin = 150 MHz, PLOin =
5 dBm)
Parameter SymbolTest ConditionsNote MIN. TYP. MAX. Unit
ItnerruC tiucriC CC Am915111langis oN
CG1 fRFout = 0.83 GHz, PIFin = 20 dBm 8 11 14 dB
CG2 fRFout = 1.9 GHz, PIFin = 20 dBm 8 11 14 dB
Conversion Gain
CG3 fRFout = 2.4 GHz, PIFin = 20 dBm 7 10 13 dB
PO(sat)1 fRFout = 0.83 GHz, PIFin = 0 dBm +1.5 +4 dBm
PO(sat)2 fRFout = 1.9 GHz, PIFin = 0 dBm 0 +2.5 dBm
Saturated Output Power
PO(sat)3 fRFout = 2.4 GHz, PIFin = 0 dBm 1.5 +1 dBm
Note fRFout < fLOin @ fRFout = 0.83 GHz
fLOin < fRFout @ fRFout = 1.9 GHz/2.4 GHz
DISCONTINUED
Data Sheet P15106EJ2V0DS 7
μ
μμ
μ
PC8187TB
9. OTHER CHARACTERISTICS, FOR REFERENCE PURPOSES ONLY
(TA = +25°C, VCC = VRFout = 2.8 V, PLOin =
5 dBm)
Parameter SymbolTest ConditionsNote Value Unit
OIP31 fRFoutmBd01+zHG 38.0 =
OIP32 fRFoutmBd01+zHG 9.1 =
Output 3rd Order Distortion
Intercept Point
OIP33 fRFout = 2.4 GHz
fIFin1 = 150 MHz
fIFin2 = 151 MHz
+8.5 dBm
IIP31 fRFout = 0.83 GHz1.0 dBm
IIP32 fRFout = 1.9 GHz1.0 dBm
Input 3rd Order Distortion
Intercept Point
IIP33 fRFout = 2.4 GHz
fIFin1 = 150 MHz
fIFin2 = 151 MHz
1.5 dBm
SSBNF1 fRFoutBd11zHG 38.0 =
SSBNF2 fRFoutBd21zHG 9.1 =
SSB Noise Figure
SSBNF3 fRFout = 2.4 GHz
fIFin = 150 MHz
12.5 dB
Note fRFout < fLOin @ fRFout = 0.83 GHz
fLOin < fRFout @ fRFout = 1.9 GHz/2.4 GHz
DISCONTINUED
Data Sheet P15106EJ2V0DS
8
μ
μμ
μ
PC8187TB
10. TEST CIRCUITS
10.1 TEST CIRCUIT 1 (fRFout = 0.83 GHz)
Spectrum Analyzer
Strip Line
Signal Generator
Signal Generator
1 000 pF
100 pF
50 Ω
50 Ω
50 Ω
1
2
34
5
6
4 pF
100 pF
C
4
C
1
C
2
C
5
C
6
C
7
C
3
2.2 nHL
1 000 pF
1 000 pF
V
CC
10 pF
IFinput
GND
LOinput
RFoutput
V
CC
GND
1 000 pF
EXAMPLE OF TEST CIRCUIT 1 ASSEMBLED ON EVALUATION BOARD
C1
C2
L
C7
C6
C3
VCC
RFout IFin
uPC8187TB
Loin
C5
C4
COMPONENT LIST
Form Symbol Value
C1, C5, C71 000 pF
C2, C4100 pF
C610 pF
Chip capacitor
C34 pF
Chip inductor L 2.2 nHNote
(1) 35 × 42 × 0.4 mm polyimide board, double-sided copper
clad
(2) Ground pattern on rear of the board
(3) Solder plated patterns
(4) : Through holes
(5) : Join patterns with electrical tape
Note 2.2 nH: LL1608-FH2N25 (TOKO Co., Ltd.)
DISCONTINUED
Data Sheet P15106EJ2V0DS 9
μ
μμ
μ
PC8187TB
10.2 TEST CIRCUIT 2 (fRFout = 1.9 GHz)
Spectrum Analyzer
Strip Line
Signal Generator
Signal Generator
1 000 pF
100 pF
50 Ω
50 Ω
50 Ω
1
2
34
5
6
470 nH
100 pF
3 pF L
C
3
C
6
C
7
C
8
C
1
C
2
C
4
C
5
0.5 pF
1 000 pF
1 000 pF
V
CC
10 pF
IFinput
GND
LOinput
RFoutput
V
CC
GND
1 000 pF
EXAMPLE OF TEST CIRCUIT 2 ASSEMBLED ON EVALUATION BOARD
C1
C2
C3
C4C5
C8
C7
L
VCC
RFout IFin
uPC8187TB
Loin
C6
COMPONENT LIST
Form Symbol Value
C1, C6, C81 000 pF
C2, C3100 pF
C710 pF
C43 pF
Chip capacitor
C50.5 pF
Chip inductor L 470 nHNote
(1) 35 × 42 × 0.4 mm polyimide board, double-sided copper
clad
(2) Ground pattern on rear of the board
(3) Solder plated patterns
(4) : Through holes
Note 470 nH: LL2012-FR47 (TOKO Co., Ltd.)
DISCONTINUED
Data Sheet P15106EJ2V0DS
10
μ
μμ
μ
PC8187TB
10.3 TEST CIRCUIT 3 (fRFout = 2.4 GHz)
Spectrum Analyzer
Strip Line
Signal Generator
Signal Generator
1 000 pF
100 pF
50 Ω
50 Ω
50 Ω
1
2
34
5
6
470 nH
100 pF
C
5
C
4
C
3
C
6
C
7
C
8
C
1
C
2
1 pF0.75 pF L
1 000 pF
1 000 pF
V
CC
10 pF
IFinput
GND
LOinput
RFoutput
V
CC
GND
1 000 pF
EXAMPLE OF TEST CIRCUIT 3 ASSEMBLED ON EVALUATION BOARD
C
1
C
2
C
5
C
3
C
4
C
8
C
7
L
V
CC
RFout IFin
uPC8187TB
Loin
C
6
COMPONENT LIST
Form Symbol Value
C1, C6, C81 000 pF
C2, C5100 pF
C710 pF
C31 pF
Chip capacitor
C40.75 pF
Chip inductor L 470 nHNote
(1) 35 × 42 × 0.4 mm polyimide board, double-sided copper
clad
(2) Ground pattern on rear of the board
(3) Solder plated patterns
(4) : Through holes
Note 470 nH: LL2012-FR47 (TOKO Co., Ltd.)
DISCONTINUED
Data Sheet P15106EJ2V0DS 11
μ
μμ
μ
PC8187TB
CautionThe test circuits and board pattern on data sheet are for performance evaluation use only (They
are not recommended circuits). In the case of actual design-in, matching circuit should be de-
termined using S-parameter of desired frequency in accordance to actual mounting pattern.
DISCONTINUED
Data Sheet P15106EJ2V0DS
12
μ
μμ
μ
PC8187TB
11. TYPICAL CHARACTERISTICS (Unless otherwise specified, TA = +25°
°°
°C, VCC = VRFout)
CIRCUIT CURRENT vs.
SUPPLY VOLTAGE
CIRCUIT CURRENT vs. OPERATING
AMBIENT TEMPERATURE
No signals No signals
00.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 –60 –40 –20 0 20 40 60 80 100
2
4
6
8
10
12
14
16
18
0202
18
16
14
12
10
V
CC
= 3.3 V
V
CC
= 3.0 V
V
CC
= 2.8 V
T
A
= +25
°C
T
A
= –40
°C
T
A
= +85
°C
V
CC
= 2.7 V
Circuit Current I
CC
(mA)
Supply Voltage V
CC
(V)
Circuit Current I
CC
(mA)
Operating Ambient Temperature T
A
(°C)
DISCONTINUED
Data Sheet P15106EJ2V0DS 13
μ
μμ
μ
PC8187TB
11.1 fRFout = 0.83 GHz
–30 –20 –10 0 10
–10 –30 –20 –10 0 10
–20
–30 –20 –10 0 10
–20
–30 –20 –10 0 10
–10
–5
0
5
10
15
–15
–10
–5
0
5
10
–15
–10
–5
0
5
10
–5
0
5
10
15
V
CC
= 2.7 to 3.3 V V
CC
= 2.7 to 2.8 V
V
CC
= 3.0 to 3.3 V
T
A
= +25
°C
T
A
= +25
°C
T
A
= +85
°C
T
A
= –40
°C
T
A
= +85
°C
T
A
= –40
°C
f
IFin
= 150 MHz
f
LOin
= 980 MHz
P
LOin
= –5 dBm
V
CC
= 2.8 V
f
IFin
= 150 MHz
f
LOin
= 980 MHz
P
LOin
= –5 dBm
T
A
= +25
°C
f
IFin
= 150 MHz
f
LOin
= 980 MHz
P
IFin
= –20 dBm
T
A
= +25
°C
f
IFin
= 150 MHz
f
LOin
= 980 MHz
P
IFin
= –20 dBm
V
CC
= 2.8 V
CONVERSION GAIN vs.
LOCAL INPUT POWER
Conversion Gain CG (dB)
Local Input Power P
LOin
(dBm)
RF OUTPUT POWER vs.
IF INPUT POWER
RF Output Power P
RFout
(dBm)
IF Input Power P
IFin
(dBm)
CONVERSION GAIN vs.
LOCAL INPUT POWER
Conversion Gain CG (dB)
Local Input Power P
LOin
(dBm)
RF OUTPUT POWER vs.
IF INPUT POWER
RF Output Power P
RFout
(dBm)
IF Input Power P
IFin
(dBm)
DISCONTINUED
Data Sheet P15106EJ2V0DS
14
μ
μμ
μ
PC8187TB
T
A
= +25
°C
V
CC
= 2.7 V
f
IFin
1 = 150 MHz
f
IFin
2 = 151 MHz
f
LOin
= 980 MHz
P
LOin
= –5 dBm
T
A
= +25
°C
V
CC
= 2.8 V
f
IFin
1 = 150 MHz
f
IFin
2 = 151 MHz
f
LOin
= 980 MHz
P
LOin
= –5 dBm
T
A
= +25
°C
V
CC
= 3.0 V
f
IFin
1 = 150 MHz
f
IFin
2 = 151 MHz
f
LOin
= 980 MHz
P
LOin
= –5 dBm
T
A
= +25
°C
V
CC
= 3.3 V
f
IFin
1 = 150 MHz
f
IFin
2 = 151 MHz
f
LOin
= 980 MHz
P
LOin
= –5 dBm
–30 –20 –10 0 10
–80
–70
–60
–50
–40
–30
–20
–10
00
10
20
–30 –20 –10 0 10
–80
–70
–60
–50
–40
–30
–20
–10
10
20
–30 –20 –10 0 10
–80
–70
–60
–50
–40
–30
–20
–10
00
10
20
–30 –20 –10 0 10
–80
–70
–60
–50
–40
–30
–20
–10
10
20
RF OUTPUT POWER OF EACH
TONE, IM
3
vs. IF INPUT POWER
RF Output Power of Each Tone P
RFout(each)
(dBm)
3rd Order Intermodulation Distortion IM
3
(dBm)
IF Input Power P
IFin
(dBm)
RF OUTPUT POWER OF EACH
TONE, IM
3
vs. IF INPUT POWER
RF Output Power of Each Tone P
RFout(each)
(dBm)
3rd Order Intermodulation Distortion IM
3
(dBm)
IF Input Power P
IFin
(dBm)
RF OUTPUT POWER OF EACH
TONE, IM
3
vs. IF INPUT POWER
RF Output Power of Each Tone P
RFout(each)
(dBm)
3rd Order Intermodulation Distortion IM
3
(dBm)
IF Input Power P
IFin
(dBm)
RF OUTPUT POWER OF EACH
TONE, IM
3
vs. IF INPUT POWER
RF Output Power of Each Tone P
RFout(each)
(dBm)
3rd Order Intermodulation Distortion IM
3
(dBm)
IF Input Power P
IFin
(dBm)
DISCONTINUED
Data Sheet P15106EJ2V0DS 15
μ
μμ
μ
PC8187TB
–30 –20 –10 0 10
–80
–70
–60
–50
–40
–30
–20
–10
0
10
20
–30 –20 –10 0 10
–80
–70
–60
–50
–40
–30
–20
–10
0
10
20
–30 –20 –10 0 10
–80
–70
–60
–50
–40
–30
–20
–10
0
10
20
T
A
= –40
°C
V
CC
= 2.8 V
f
IFin
1 = 150 MHz
f
IFin
2 = 151 MHz
f
LOin
= 980 MHz
P
LOin
= –5 dBm
T
A
= +25
°C
V
CC
= 2.8 V
f
IFin
1 = 150 MHz
f
IFin
2 = 151 MHz
f
LOin
= 980 MHz
P
LOin
= –5 dBm
T
A
= +85
°C
V
CC
= 2.8 V
f
IFin
1 = 150 MHz
f
IFin
2 = 151 MHz
f
LOin
= 980 MHz
P
LOin
= –5 dBm
RF OUTPUT POWER OF EACH
TONE, IM
3
vs. IF INPUT POWER
RF Output Power of Each Tone P
RFout(each)
(dBm)
3rd Order Intermodulation Distortion IM
3
(dBm)
IF Input Power P
IFin
(dBm)
RF OUTPUT POWER OF EACH
TONE, IM
3
vs. IF INPUT POWER
RF Output Power of Each Tone P
RFout(each)
(dBm)
3rd Order Intermodulation Distortion IM
3
(dBm)
IF Input Power P
IFin
(dBm)
RF OUTPUT POWER OF EACH
TONE, IM
3
vs. IF INPUT POWER
RF Output Power of Each Tone P
RFout(each)
(dBm)
3rd Order Intermodulation Distortion IM
3
(dBm)
IF Input Power P
IFin
(dBm)
DISCONTINUED
Data Sheet P15106EJ2V0DS
16
μ
μμ
μ
PC8187TB
–60
–50
–40
–30
–20
–10
0
0
–45
–40
0
–600–90
–80
–70
–60
–50
–60 –50 –40 –30 –20 0–10100 200 300 400 600500
500 1 000 1 500 2 000 2 500 3 000
–20
–30
–40
–50
–60
–70
–80
–60 –50 –40 –30 –20 –10 0
500 1 000 1 500 2 000 2 500 3 000
–35
–30
–25
–20
–15
–10
–5
0
–50
–40
–30
–20
–10
0
–40
–30
–20
f
IFin
= 150 MHz
V
CC
= 2.7 to 3.3 V
f
LOin
= 980 MHz
V
CC
= 2.7 to 3.3 V
f
LOin
= 980 MHz
V
CC
= 2.7 to 3.3 V
P
IFin
= –20 dBm
V
CC
= 2.8 V
P
LOin
= –5 dBm
V
CC
= 2.8 V
P
LOin
= –5 dBm
V
CC
= 2.8 V
–40 –30 –20 –10 0
–90
–80
–70
–60
–50
–40
–30
–20
LOCAL LEAKAGE AT RF PIN vs.
LOCAL INPUT FREQUENCY
Local Leakage at RF Pin LO
rf
(dBm)
Local Input Frequency f
LOin
(MHz)
Local Leakage at RF Pin LO
rf
(dBm)
Local Input Power P
LOin
(dBm)
Local Leakage at IF Pin LO
if
(dBm)
Local Input Frequency f
LOin
(MHz)
LOCAL LEAKAGE AT IF PIN vs.
LOCAL INPUT POWER
Local Leakage at IF Pin LO
if
(dBm)
Local Input Power P
LOin
(dBm)
IF LEAKAGE AT RF PIN vs.
IF INPUT FREQUENCY
IF Leakage at RF Pin IF
rf
(dBm)
IF Input Frequency f
IFin
(MHz)
IF LEAKAGE AT RF PIN vs.
IF INPUT POWER
IF Leakage at RF Pin IF
rf
(dBm)
IF Input Power P
IFin
(dBm)
LOCAL LEAKAGE AT IF PIN vs.
LOCAL INPUT FREQUENCY
LOCAL LEAKAGE AT RF PIN vs.
LOCAL INPUT POWER
DISCONTINUED
Data Sheet P15106EJ2V0DS 17
μ
μμ
μ
PC8187TB
11.2 fRFout = 1.9 GHz
–30 –20 –10 0 10
–30 –20 –10 0 10–30 –20 –10 0 10
–30 –20 –10 0 10 –30
–20
–10
0
10
–30–10
–5
0
5
10
15
–10
–5
0
5
10
15
–20
–10
0
10
T
A
= –40
°C
T
A
= +25
°C
V
CC
= 3.3 V
V
CC
= 3.0 V
V
CC
= 2.7 V
V
CC
= 2.8 V
T
A
= –40
°C
V
CC
= 3.0 V
V
CC
= 3.3 V
V
CC
= 2.7 V
V
CC
= 2.8 V
T
A
= +25
°C
T
A
= +85
°C
T
A
= +85
°C
f
IFin
= 150 MHz
f
LOin
= 1 750 MHz
P
LOin
= –5 dBm
V
CC
= 2.8 V
f
IFin
= 150 MHz
f
LOin
= 1 750 MHz
P
LOin
= –5 dBm
T
A
= +25
°C
f
IFin
= 150 MHz
f
LOin
= 1 750 MHz
P
IFin
= –20 dBm
V
CC
= 2.8 V
f
IFin
= 150 MHz
f
LOin
= 1 750 MHz
P
IFin
= –20 dBm
T
A
= +25
°C
CONVERSION GAIN vs.
LOCAL INPUT POWER
Conversion Gain CG (dB)
Local Input Power P
LOin
(dBm)
RF OUTPUT POWER vs.
IF INPUT POWER
CONVERSION GAIN vs.
LOCAL INPUT POWER
RF OUTPUT POWER vs.
IF INPUT POWER
RF Output Power P
RFout
(dBm)
IF Input Power P
IFin
(dBm)
Conversion Gain CG (dB)
Local Input Power P
LOin
(dBm)
RF Output Power P
RFout
(dBm)
IF Input Power P
IFin
(dBm)
DISCONTINUED
Data Sheet P15106EJ2V0DS
18
μ
μμ
μ
PC8187TB
–30 –20 –10 0 10
–80
–70
–60
–50
–40
–30
–20
–10
0
10
20
–30 –20 –10 0 10
–80
–70
–60
–50
–40
–30
–20
–10
0
10
20
–30 –20 –10 0 10
–80
–70
–60
–50
–40
–30
–20
–10
0
10
20
–30 –20 –10 0 10
–80
–70
–60
–50
–40
–30
–20
–10
0
10
20
T
A
= +25
°C
V
CC
= 2.7 V
f
IFin
1 = 150 MHz
f
IFin
2 = 151 MHz
f
LOin
= 1 750 MHz
P
LOin
= –5 dBm
T
A
= +25
°C
V
CC
= 3.0 V
f
IFin
1 = 150 MHz
f
IFin
2 = 151 MHz
f
LOin
= 1 750 MHz
P
LOin
= –5 dBm
T
A
= +25
°C
V
CC
= 2.8 V
f
IFin
1 = 150 MHz
f
IFin
2 = 151 MHz
f
LOin
= 1 750 MHz
P
LOin
= –5 dBm
T
A
= +25
°C
V
CC
= 3.3 V
f
IFin
1 = 150 MHz
f
IFin
2 = 151 MHz
f
LOin
= 1 750 MHz
P
LOin
= –5 dBm
RF Output Power of Each Tone P
RFout(each)
(dBm)
3rd Order Intermodulation Distortion IM
3
(dBm)
IF Input Power P
IFin
(dBm)
RF Output Power of Each Tone P
RFout(each)
(dBm)
3rd Order Intermodulation Distortion IM
3
(dBm)
IF Input Power P
IFin
(dBm)
RF Output Power of Each Tone P
RFout(each)
(dBm)
3rd Order Intermodulation Distortion IM
3
(dBm)
IF Input Power P
IFin
(dBm)
RF Output Power of Each Tone P
RFout(each)
(dBm)
3rd Order Intermodulation Distortion IM
3
(dBm)
IF Input Power P
IFin
(dBm)
RF OUTPUT POWER OF EACH
TONE, IM
3
vs. IF INPUT POWER
RF OUTPUT POWER OF EACH
TONE, IM
3
vs. IF INPUT POWER
RF OUTPUT POWER OF EACH
TONE, IM
3
vs. IF INPUT POWER
RF OUTPUT POWER OF EACH
TONE, IM
3
vs. IF INPUT POWER
DISCONTINUED
Data Sheet P15106EJ2V0DS 19
μ
μμ
μ
PC8187TB
–30 –20 –10 0 10
–80
–70
–60
–50
–40
–30
–20
–10
0
10
20
T
A
= +25
°C
V
CC
= 2.8 V
f
IFin
1 = 150 MHz
f
IFin
2 = 151 MHz
f
LOin
= 1 750 MHz
P
LOin
= –5 dBm
–30 –20 –10 0 10
–80
–70
–60
–50
–40
–30
–20
–10
0
10
20
T
A
= +85
°C
V
CC
= 2.8 V
f
IFin
1 = 150 MHz
f
IFin
2 = 151 MHz
f
LOin
= 1 750 MHz
P
LOin
= –5 dBm
–30 –20 –10 0 10
–80
–70
–60
–50
–40
–30
–20
–10
0
10
20
T
A
= –40
°C
V
CC
= 2.8 V
f
IFin
1 = 150 MHz
f
IFin
2 = 151 MHz
f
LOin
= 1 750 MHz
P
LOin
= –5 dBm
RF Output Power of Each Tone P
RFout(each)
(dBm)
3rd Order Intermodulation Distortion IM
3
(dBm)
IF Input Power P
IFin
(dBm)
RF Output Power of Each Tone P
RFout(each)
(dBm)
3rd Order Intermodulation Distortion IM
3
(dBm)
IF Input Power P
IFin
(dBm)
RF Output Power of Each Tone P
RFout(each)
(dBm)
3rd Order Intermodulation Distortion IM
3
(dBm)
IF Input Power P
IFin
(dBm)
RF OUTPUT POWER OF EACH
TONE, IM
3
vs. IF INPUT POWER
RF OUTPUT POWER OF EACH
TONE, IM
3
vs. IF INPUT POWER
RF OUTPUT POWER OF EACH
TONE, IM
3
vs. IF INPUT POWER
DISCONTINUED
Data Sheet P15106EJ2V0DS
20
μ
μμ
μ
PC8187TB
P
LOin
= –5 dBm
V
CC
= 2.8 V
P
LOin
= –5 dBm
V
CC
= 2.8 V
P
IFin
= –20 dBm
V
CC
= 2.8 V
f
LOin
= 1 750 MHz
f
LOin
= 1 750 MHz
V
CC
= 2.7 to 3.3 V
f
IFin
= 150 MHz
V
CC
= 2.7 to 3.3 V
–60 –50 –40 –30 –20 –10 0
–40
–50 –40 –30 –20 –10 0
–30 –20 –10 0
–70
–60
–50
–40
–30
–20
–10
0
–90
–80
–70
–60
–50
–40
–30
–20
–80
0 500 1 000 1 500 2 000 2 500 3 000
0
0 100 200 300 400 500 600
500 1 000 1 500 2 000 2 500 3 000
–60
–50
–40
–30
–20
–10
0
0
–5
–10
–15
–20
–25
–30
–35
–40
–45
–50
–10
–15
–20
–25
–30
–70
–60
–50
–40
–30
–20
V
CC
= 3.0 V
V
CC
= 3.3 V
V
CC
= 2.7 to 2.8 V
LOCAL LEAKAGE AT RF PIN vs.
LOCAL INPUT FREQUENCY
Local Leakage at RF Pin LO
rf
(dBm)
Local Leakage at RF Pin LO
rf
(dBm)
Local Input Frequency f
LOin
(MHz)
LOCAL LEAKAGE AT RF PIN vs.
LOCAL INPUT POWER
Local Input Power P
LOin
(dBm)
LOCAL LEAKAGE AT IF PIN vs.
LOCAL INPUT FREQUENCY
Local Leakage at IF Pin LO
if
(dBm)
Local Leakage at IF Pin LO
if
(dBm)
Local Input Frequency f
LOin
(MHz)
LOCAL LEAKAGE AT IF PIN vs.
LOCAL INPUT POWER
Local Input Power P
LOin
(dBm)
IF LEAKAGE AT RF PIN vs.
IF INPUT FREQUENCY
IF Leakage at RF Pin IF
rf
(dBm)
IF Input Frequency f
IFin
(MHz)
IF Leakage at RF Pin IF
rf
(dBm)
IF Input Power P
IFin
(dBm)
IF LEAKAGE AT RF PIN vs.
IF INPUT POWER
DISCONTINUED
Data Sheet P15106EJ2V0DS 21
μ
μμ
μ
PC8187TB
11.3 fRFout = 2.4 GHz
f
IFin
= 150 MHz
f
LOin
= 2 250 MHz
P
IFin
= –20 dBm
T
A
= +25
°C
f
IFin
= 150 MHz
f
LOin
= 2 250 MHz
P
IFin
= –20 dBm
V
CC
= 2.8 V
f
IFin
= 150 MHz
f
LOin
= 2 250 MHz
P
LOin
= –5 dBm
T
A
= +25
°C
f
IFin
= 150 MHz
f
LOin
= 2 250 MHz
P
LOin
= –5 dBm
V
CC
= 2.8 V
–30 –20 –10 0 10–30 –20 –10 0 10
–30 –20 –10 0 10–30 –20 –10 0 10
–30
–20
–10
0
10
–30–10
–5
0
5
10
15
–10
–5
0
5
10
15
–20
–10
0
10
V
CC
= 2.7 V
V
CC
= 2.8 V
V
CC
= 3.0 V
V
CC
= 3.3 V
V
CC
= 3.3 V
V
CC
= 3.0 V
V
CC
= 2.8 V
V
CC
= 2.7 V
T
A
= +85
°C
T
A
= –40
°C
T
A
= +25
°C
T
A
= +85
°C
T
A
= –40
°C
T
A
= +25
°C
Conversion Gain CG (dB)
Local Input Power P
LOin
(dBm)
RF Output Power P
RFout
(dBm)
IF Input Power P
IFin
(dBm)
Conversion Gain CG (dB)
Local Input Power P
LOin
(dBm)
RF Output Power P
RFout
(dBm)
IF Input Power P
IFin
(dBm)
CONVERSION GAIN vs.
LOCAL INPUT POWER
RF OUTPUT POWER vs.
IF INPUT POWER
CONVERSION GAIN vs.
LOCAL INPUT POWER
RF OUTPUT POWER vs.
IF INPUT POWER
DISCONTINUED
Data Sheet P15106EJ2V0DS
22
μ
μμ
μ
PC8187TB
–30 –20 –10 0 10
–80
–70
–60
–50
–40
–30
–20
–10
0
10
20
T
A
= +25
°C
V
CC
= 2.8 V
f
IFin
1 = 150 MHz
f
IFin
2 = 151 MHz
f
LOin
= 2 250 MHz
P
LOin
= –5 dBm
–30 –20 –10 0 10
–80
–70
–60
–50
–40
–30
–20
–10
0
10
20
T
A
= +25
°C
V
CC
= 3.3 V
f
IFin
1 = 150 MHz
f
IFin
2 = 151 MHz
f
LOin
= 2 250 MHz
P
LOin
= –5 dBm
–30 –20 –10 0 10
–80
–70
–60
–50
–40
–30
–20
–10
0
10
20
T
A
= +25
°C
V
CC
= 3.0 V
f
IFin
1 = 150 MHz
f
IFin
2 = 151 MHz
f
LOin
= 2 250 MHz
P
LOin
= –5 dBm
–30 –20 –10 0 10
–80
–70
–60
–50
–40
–30
–20
–10
0
10
20
T
A
= +25
°C
V
CC
= 2.7 V
f
IFin
1 = 150 MHz
f
IFin
2 = 151 MHz
f
LOin
= 2 250 MHz
P
LOin
= –5 dBm
RF Output Power of Each Tone P
RFout(each)
(dBm)
3rd Order Intermodulation Distortion IM
3
(dBm)
IF Input Power P
IFin
(dBm)
RF Output Power of Each Tone P
RFout(each)
(dBm)
3rd Order Intermodulation Distortion IM
3
(dBm)
IF Input Power P
IFin
(dBm)
RF Output Power of Each Tone P
RFout(each)
(dBm)
3rd Order Intermodulation Distortion IM
3
(dBm)
IF Input Power P
IFin
(dBm)
RF Output Power of Each Tone P
RFout(each)
(dBm)
3rd Order Intermodulation Distortion IM
3
(dBm)
IF Input Power P
IFin
(dBm)
RF OUTPUT POWER OF EACH
TONE, IM
3
vs. IF INPUT POWER
RF OUTPUT POWER OF EACH
TONE, IM
3
vs. IF INPUT POWER
RF OUTPUT POWER OF EACH
TONE, IM
3
vs. IF INPUT POWER
RF OUTPUT POWER OF EACH
TONE, IM
3
vs. IF INPUT POWER
DISCONTINUED
Data Sheet P15106EJ2V0DS 23
μ
μμ
μ
PC8187TB
–30 –20 –10 0 10
–80
–70
–60
–50
–40
–30
–20
–10
0
10
20
T
A
= +25
°C
V
CC
= 2.8 V
f
IFin
1 = 150 MHz
f
IFin
2 = 151 MHz
f
LOin
= 2 250 MHz
P
LOin
= –5 dBm
–30 –20 –10 0 10
–30 –20 –10 0 10
–80
–80
–70
–60
–40
–30
–20
–10
10
0
–70
–60
–50
–40
–30
–20
–10
0
10
20
T
A
= –40
°C
V
CC
= 2.8 V
f
IFin
1 = 150 MHz
f
IFin
2 = 151 MHz
f
LOin
= 2 250 MHz
P
LOin
= –5 dBm
T
A
= +85
°C
V
CC
= 2.8 V
f
IFin
1 = 150 MHz
f
IFin
2 = 151 MHz
f
LOin
= 2 250 MHz
P
LOin
= –5 dBm
–50
RF Output Power of Each Tone P
RFout(each)
(dBm)
3rd Order Intermodulation Distortion IM
3
(dBm)
IF Input Power P
IFin
(dBm)
RF Output Power of Each Tone P
RFout(each)
(dBm)
3rd Order Intermodulation Distortion IM
3
(dBm)
IF Input Power P
IFin
(dBm)
RF Output Power of Each Tone P
RFout(each)
(dBm)
3rd Order Intermodulation Distortion IM
3
(dBm)
IF Input Power P
IFin
(dBm)
RF OUTPUT POWER OF EACH
TONE, IM
3
vs. IF INPUT POWER
RF OUTPUT POWER OF EACH
TONE, IM
3
vs. IF INPUT POWER
RF OUTPUT POWER OF EACH
TONE, IM
3
vs. IF INPUT POWER
DISCONTINUED
Data Sheet P15106EJ2V0DS
24
μ
μμ
μ
PC8187TB
P
LOin
= –5 dBm
V
CC
= 2.8 V
P
LOin
= –5 dBm
V
CC
= 2.8 V
P
IFin
= –20 dBm
V
CC
= 2.8 V
f
LOin
= 2 250 MHz
V
CC
= 2.7 to 3.3 V
f
LOin
= 2 250 MHz
f
IFin
= 150 MHz
V
CC
= 2.7 to 3.3 V
V
CC
= 2.7 to 2.8 V
V
CC
= 3.0 V
V
CC
= 3.3 V
0 500 1 000 1 500 2 000 2 500 3 000
–60
–50
–40
–30
–20
–10
0
–50 –40 –30 –20 –10 0
–90
–80
–70
–60
–50
–40
–30
–20
–10
0 500 1 000 1 500 2 000 2 500 3 000
–50
–45
–40
–35
–30
–25
–20
–15
–10
0
–5
–40 –30 –20 –10 0
–90
–80
–70
–60
–50
–40
–30
–20
0 100 200 300 400 500 600
–30
–25
–20
–15
–10
–60 –50 –40 –30 –20 –10 0
–70
–60
–50
–40
–30
–20
–10
0
Local Leakage at RF Pin LO
rf
(dBm)
Local Input Frequency f
LOin
(MHz)
LOCAL LEAKAGE AT RF PIN vs.
LOCAL INPUT POWER
Local Input Power P
LOin
(dBm)
LOCAL LEAKAGE AT IF PIN vs.
LOCAL INPUT FREQUENCY
Local Leakage at IF Pin LO
if
(dBm)
Local Leakage at RF Pin LO
rf
(dBm)Local Leakage at IF Pin LO
if
(dBm)
Local Input Frequency f
LOin
(MHz)
LOCAL LEAKAGE AT IF PIN vs.
LOCAL INPUT POWER
Local Input Power P
LOin
(dBm)
IF LEAKAGE AT RF PIN vs.
IF INPUT FREQUENCY
IF Leakage at RF Pin IF
rf
(dBm)
IF Input Frequency f
IFin
(MHz)
IF LEAKAGE AT RF PIN vs.
IF INPUT POWER
IF Leakage at RF Pin IF
rf
(dBm)
IF Input Power P
IFin
(dBm)
LOCAL LEAKAGE AT RF PIN vs.
LOCAL INPUT FREQUENCY
DISCONTINUED
Data Sheet P15106EJ2V0DS 25
μ
μμ
μ
PC8187TB
12. S-PARAMETERS FOR EACH PORT (VCC = VRFout = 2.8 V)
(The parameters are monitored at DUT pins)
LO port
S
11
REF
Z
1.0 Units
200.0 mUnits/
22.762 Ω –104.25 Ω
START
STOP
323
1
2
1
1
0.100000000 GHz
3.100000000 GHz
MARKER 1
1.0 GHz
MARKER 2
1.75 GHz
MARKER 3
2.25 GHz
IF port
S
11
REF
Z
1.0 Units
200.0 mUnits/
518.97 Ω –321.09 Ω
START
STOP
0.100000000 GHz
1.000000000 GHz
MARKER 1
150.0 MHz
RF port (without matching)
S
22
REF
Z
1.0 Units
200.0 mUnits/
51.172 Ω –252.0 Ω
START
STOP
0.100000000 GHz
3.100000000 GHz
MARKER 1
850.0 MHz
MARKER 2
1.9 GHz
MARKER 3
2.4 GHz
1
hp
1
hp
1
hp
DISCONTINUED
Data Sheet P15106EJ2V0DS
26
μ
μμ
μ
PC8187TB
13. S-PARAMETERS FOR MATCHED RF OUTPUT (VCC = VRFout = 2.8 V)
ON EVALUATION BOARD
(S22 data are monitored at RF connector on board)
0.83 GHz (matched in test circuit 1)
S22
REF
Z
1.0 Units
200.0 mUnits/
62.424 Ω –9.7871 Ω
START
STOP
0.330000000 GHz
1.330000000 GHz
C
D
1
1
11
S22
REF 0.0 dB
10.0 dB
–24.939 dB
START
STOP
1.400000000 GHz
2.400000000 GHz
log MAG
C
D
MARKER 1
830.0 MHz
1.9 GHz (matched in test circuit 2)
S22
REF
Z
1.0 Units
200.0 mUnits/
51.719 Ω 5.6523 Ω
START
STOP
1.400000000 GHz
2.400000000 GHz
C
D
MARKER 1
1.9 GHz
hphp
1
hp
1
hp
MARKER 1
1.9 GHz
S22
REF 0.0 dB
10.0 dB
–17.772 dB
START
STOP
0.330000000 GHz
1.330000000 GHz
log MAG
C
D
MARKER 1
830.0 MHz
1
1
DISCONTINUED
Data Sheet P15106EJ2V0DS 27
μ
μμ
μ
PC8187TB
2.4 GHz (matched in test circuit 3)
S
22
REF
Z
1.0 Units
200.0 mUnits/
41.41 Ω –3.2695 Ω
START
STOP
1.900000000 GHz
2.900000000 GHz
C
D
1
MARKER 1
2.4 GHz
hp
1
1
hp
S
22
REF 0.0 dB
10.0 dB
–20.203 dB
START
STOP
1.900000000 GHz
2.900000000 GHz
log MAG
C
D
MARKER 1
2.4 GHz
1
DISCONTINUED
Data Sheet P15106EJ2V0DS
28
μ
μμ
μ
PC8187TB
14. PACKAGE DIMENSIONS
6-PIN SUPER MINIMOLD (UNIT: mm)
0.9±0.1
0.7
0 to 0.1
0.15
+0.1
–0.05
2.0±0.2
1.3
0.650.65
0.2
+0.1
–0.05
2.1±0.1
1.25±0.1
0.1 MIN.
DISCONTINUED
Data Sheet P15106EJ2V0DS 29
μ
μμ
μ
PC8187TB
15. NOTE ON CORRECT USE
(1) Observe precautions for handling because of electrostatic sensitive devices.
(2) Form a ground pattern as wide as possible to minimize ground impedance (to prevent undesired oscillation).
(3) Connect a bypass capacitor to the VCC pin.
(4) Connect a matching circuit to the RF output pin.
(5) The DC cut capacitor must be each attached to the input and output pins.
16. RECOMMENDED SOLDERING CONDITIONS
This product should be soldered under the following recommended conditions. For soldering methods and condi-
tions other than those recommended below, contact your NEC sales representative.
lobmyS noitidnoC dednemmoceRsnoitidnoC gniredloSdohteM gniredloS
Infrared Reflow Package peak temperature: 235°C or below
Time: 30 seconds or less (at 210°C)
Count: 3, Exposure limit: NoneNote
IR35-00-3
VPS Package peak temperature: 215°C or below
Time: 40 seconds or less (at 200°C)
Count: 3, Exposure limit: NoneNote
VP15-00-3
Wave Soldering Soldering bath temperature: 260°C or below
Time: 10 seconds or less
Count: 1, Exposure limit: NoneNote
WS60-00-1
Partial Heating Pin temperature: 300°C
Time: 3 seconds or less (per side of device)
Exposure limit: NoneNote
Note After opening the dry pack, keep it in a place below 25°C and 65% RH for the allowable storage period.
Caution Do not use different soldering methods together (except for partial heating).
For details of recommended soldering conditions for surface mounting, refer to information document
SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL (C10535E).
DISCONTINUED
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
CEL:
UPC8187TB-EV08 UPC8187TB-EV24 UPC8187TB-EV19 UPC2757TB-EVAL